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An energetic parton traveling through a quark-gluon plasma loses energy via occasional hard scatterings and
frequent softer interactions. Whether or not these interactions admit a perturbative description, the effect of
the soft interactions can be factorized and encoded in a small number of transport coefficients. In this work,
we present the numerical implementation of a hard-soft factorized parton energy loss model which combines a
stochastic description of soft interactions and rate-based modeling of hard scatterings. We introduce a scale to
estimate the regime of validity of the stochastic description, allowing for a better understanding of the model’s
applicability at small and large coupling. We study the energy and fermion-number cascade of energetic partons
as an application of the model.
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I. INTRODUCTION

The production of energetic hadrons and jets in heavy ion
collisions is markedly different from the production of ener-
getic electroweak bosons. The latter clearly exhibit “binary
scaling”: weak bosons and high-energy photons are produced
as if nucleons from each nucleus were independently under-
going inelastic binary collisions [1–7] (see also Refs. [8,9]
and references therein). Hadron and jet measurements, on
the other hand, display evident deviations from binary scal-
ing. These deviations are understood to be a consequence of
the formation of a quark-gluon plasma in relativistic nuclear
collisions: energetic parton production does follow “binary
scaling”; it is their subsequent interactions with the plasma
that lead to parton energy loss, and consequently to an appar-
ent deviation from binary scaling for hadronic observables.

This characteristic phenomena of jet and hadron “energy
loss” in heavy ion collisions has been observed at both the
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC) [10–15]. Energetic partons are produced at
the earliest stage of heavy ion collisions, and they propagate
through all the different phases of the collisions. As a con-
sequence of their interactions with the quark-gluon plasma,
the momentum distribution of these energetic partons changes
distinctly compared to the baseline observed in proton-proton
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collisions.1 This makes them important probes of the decon-
fined nuclear plasma produced in heavy ion collisions.

A number of different formalisms have been used to
model the interaction of energetic light partons2 with the
constituents of the plasma [17–27] (see also Refs. [10,28–30]
and references therein). Fundamentally, most parton energy
loss formalisms have a well-understood common core, yet
applications to heavy ion collisions tend to require approxima-
tions and practical considerations that lead to non-negligible
differences between parton energy loss models [28–30]. One
difference between the models is the treatment of the un-
derlying plasma, which is often assumed to be made of a
large number of quarks and gluons with energies of �1 GeV
in near local thermal equilibrium. Whether these quarks and
gluons are treated as dynamical entities or as static scattering
centers is one of many differences in the energy loss for-
malisms [28–30]. The above assumption is important, given
that the quark-gluon plasma produced in heavy ion collisions
is understood to be strongly coupled [31], and a quasiparticle
description may not be justified.3

A different phrasing of the above challenge is that the
energy loss of even very energetic partons can be affected
by nonperturbative effects from the strongly coupled plasma.
Hard interactions—those with large momentum transfer be-
tween the energetic parton and the plasma—are expected to

1The role of hadronic energy loss is still under investigation. See
Ref. [16] for example.

2We use a parameter pcut to define which partons we consider as
“energetic”. We only track the propagation of these energetic partons
with p> pcut. We use pcut = 2 GeV throughout this work since we
focus on the energy loss of light partons.

3In particular, hydrodynamic simulations of this plasma’s evolution
do not rely on a quasiparticle picture of deconfined nuclear matter
until hadronization.
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have smaller nonperturbative effects, or even be accessible
perturbatively, as a consequence of the running of the QCD
coupling. On the other hand, “soft” parton-plasma interactions
with small momentum transfer are expected to suffer the
largest nonperturbative effects.4 We note that “hard interac-
tions” and “soft interactions” have various meanings in the
literature, but for the purpose of this work, the temperature
of the plasma can be considered as the scale separating hard
(larger than T ) and soft (smaller than T ) interactions.

A stochastic treatment of these soft interactions of ener-
getic partons provides an alternative approach to account for
nonperturbative effects—an approach that is agnostic to the
strongly or weakly coupled nature of the underlying decon-
fined plasma. The dynamical details of the large number of
soft interactions are encoded in a small number of transport
coefficients. The latter can be parametrized and constrained
from measurements. They can also be studied using lattice
techniques (see for example Ref. [34, Sec. 4] and Refs. [35,36]
and references therein). From a practical point of view, a
stochastic description of a large number of soft interactions
can also be more efficient numerically than a rate-based ap-
proach.

A systematic hard-soft factorization of parton energy loss
was proposed recently to describe parton propagation in a
weakly coupled QGP [34,37]. In this factorization, soft in-
teractions are described as a stochastic process with drag
and diffusion transport coefficients calculated perturbatively;
hard interactions are solved with rates that are also calculated
perturbatively. In the weakly coupled regime, parton energy
loss in this hard-soft factorization scheme was shown to be
equivalent to a fully rate-based treatment of parton energy
loss [37]. Importantly parton energy loss in this hard-soft
factorization can also be extended to next-to-leading order
[37], a feature beyond the scope of this work which we shall
explore in the future.

As discussed above, the drag and diffusion contribu-
tion to parton energy loss can be factorized systematically,
and calculated nonperturbatively, e.g., based on electrostatic
quantum chromodynamics (EQCD) [35], or fitted to data.
These extractions will then depend on the separation scale
μ, which appears in the approach. At higher order, the drag
and diffusion coefficients will evolve with the scale μ ∼
πT , incorporating in a consistent way the running of the
coupling. While this is beyond the scope of this work, we
hope that this paper can provide a first step in that direction.
Throughout the paper we will already study the dependence
of various observables on the separation scale μ, and, en-
couragingly, find that this dependence is moderate in most
cases.

The above work is based on the “effective kinetic the-
ory” approach [25] derived for a weakly coupled quark-gluon
plasma. In a weakly coupled plasma, quark and gluon excita-
tions are described as quasiparticles with effective properties
related to the local density of the plasma. In this effective

4Note other works such as Refs. [32,33] assume that neither soft or
hard interactions are perturbative, and consequently evaluate parton
energy loss using gauge-field duality.

kinetic approach, the dynamics of quasiparticles are described
by Boltzmann transport equations. Leading order [O(αs)] re-
alizations of this effective kinetic approach—extrapolated to
large values of strong coupling constant αs—have been used
widely to study parton energy loss (see e.g. Refs. [26,38–41]).

In this work, we present the first numerical implemen-
tation of the hard-soft factorized parton energy loss model
[37] discussed above. For our implementation we utilize the
publicly available JETSCAPE framework [42], as it allows us
a straightforward integration of our parton energy loss model
with the other ingredients necessary for a full simulation of jet
production in heavy ion collisions. We first test and validate
this factorization of parton energy loss in the weak coupling
regime for a static medium.

We introduce a dimensionless scale to quantify the kine-
matic range for which soft interactions can be described
accurately with a stochastic approach. We use this scale to
discuss a hard-soft factorization model for a stronglycoupled
quark-gluon plasma, relevant for phenomenological applica-
tions in heavy ion collisions.

Finally, we present an application of our new factorized
model of parton energy loss by calculating the energy and
fermion-number cascade of an energetic parton propagating
in a static medium, finding good agreement with known ana-
lytical approximations.

II. HARD-SOFT FACTORIZATION OF PARTON ENERGY
LOSS IN THE WEAKLY COUPLED REGIME: THEORY

A. Effective kinetic approach in the weakly coupled regime

The evolution of an energetic parton in a thermal medium
of temperature T can be described by a Boltzmann transport
equation [43]:(

∂

∂t
+ p

p
· ∇

)
δ fa = −C[δ fa, na], (1)

where P = (p, p) is the four-momentum of the energetic par-
ton and C is the collision kernel of the parton with the medium.
The index a represents partons with a certain color and helic-
ity state. We use the same notation for the parton momentum
distributions as in Ref. [37]: the distribution of rare energetic
partons of type a is δ f a(p, x, t ), to distinguish it from the qu-
asithermal distribution of soft particles na(p, T (x, t ), u(x, t )),
where u is the flow velocity. In this notation, the total
phase space distribution of quasiparticle a is f a(p, x, T ) =
na(p, T (x, t ), u(x, t )) + δ f a(p, x, t ). We assume p � T and
g ≡

√
αs
4π

� 1. Because interactions between energetic par-
tons themselves are rare and can be neglected, the Boltzmann
equation is effectively linear in δ fa.

At leading order, the interactions between quasi-particles
can be divided as 2 ↔ 2 elastic interactions and 1 ↔ 2 inelas-
tic interactions. Elastic 2 ↔ 2 processes refer to elementary
scatterings involving two incoming particles and two out-
going particles without any radiation. Multiple soft 2 ↔ 2
scatterings between the energetic parton and the plasma can
induce a collinear radiation. In the effective kinetic approach,
these multiple soft scatterings are resummed consistently, to
account for interference between subsequent collisions which
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lead to the Landau-Pomeranchuk-Migdal (LPM) effect. This
resummed collinear radiation is known as the effective 1 ↔ 2
process. The collision kernel of both 2 ↔ 2 and 1 ↔ 2 pro-
cesses can be written as

C = C1↔2 + C2↔2. (2)

Importantly, in our approach, we only follow the evolution
of energetic partons with an energy above a cutoff pcut =
2 GeV. Our assumption is that we should focus our efforts on
high-pT observables which are dominated by partons above
this cutoff. After neglecting terms suppressed by exp(−p/T ),
the collision kernels C1↔2 and C2↔2 read [37]

C1↔2
a [δ f ] = (2π )3

2|p|2νa

∑
bc

∫ ∞

0
d p′dq′γ a

bc(p; p′ p̂, q′ p̂)δ(|p| − p′ − q′)

×{δ f a(p)[1 ± nb(p′) ± nc(q′)] − [δ f b(p′ p̂)nc(q′) + nb(p′)δ f c(k′ p̂)]}

+ (2π )3

|p|2νa

∑
bc

∫ ∞

0
dq d p′γ c

ab(p′ p̂; p, q p̂)δ(|p| + q − p′){δ f a(p)nb(q) − δ f c(p′ p̂)[1 ± nb(q)]}, (3)

C2↔2
a [δ f ] = 1

4|p|νa

∑
bcd

∫
kp′k′

∣∣Mab
cd (p, k; p′, k′)

∣∣2
(2π )4δ(4)(P + K − P′ − K ′)

×{δ f a(p)nb(k)[1 ± nc(p′) ± nd (k′)] − δ f c(p′)nd (k′)[1 ± nb(k)] − nc(p′)δ f d (k′)[1 ± nb(k)]}, (4)

where the notation for the Lorentz-invariant integration is∫
k
· · · ≡

∫
d3k

2k(2π )3
· · · (5)

and νa is the degeneracy of particle a.
For C1↔2, a is the incoming hard parton with the mo-

mentum p, and b, c are outgoing particles with the momenta
p′, k′. γ a

bc is the splitting kernel of a → bc, which can
be calculated with the Arnold-Moore-Yaffe (AMY) integral
equations [25,26].

For C2↔2, particle a is the incoming energetic parton
with momentum p, particle b is the plasma particle with the
momentum k interacting with a, and particles c, d are the
outgoing particles with momenta p′, k′. Mab

cd is the matrix
element of the elementary process ab → cd [25].

B. Reformulating parton energy loss
with hard-soft factorization

In the hard-soft factorized parton energy loss model intro-
duced in Ref. [37], 1 ↔ 2 and 2 ↔ 2 processes are further
divided into soft interactions and hard interactions. The colli-
sion kernel is rewritten as

C = C1↔2
hard + C1↔2

soft + C2↔2
hard + C2↔2

soft . (6)

In this hard-soft factorized model, soft interactions de-
scribed by C1↔2

soft and C2↔2
soft are treated stochastically with the

Langevin equation.
Hard inelastic interactions, C1↔2

hard , are treated with an emis-
sion rate as calculated from the AMY integral equations [25].5

We refer to them as large-ω interactions.
The hard 2 ↔ 2 part C2↔2

hard is further divided as (i) large-
angle interactions, and (ii) splitting approximation processes,

5We thank Guy D. Moore for his numerical solver for AMY inte-
gral equations.

based on the energy transfer ω:

C2↔2
hard = C2↔2

large-angle + C2↔2
split . (7)

The physical meaning of this separation is the following. Elas-
tic collisions occur between an energetic parton (p � T ) and
a lower energy quasithermal quark or gluon (k ∼ T ). On rare
occasions, the momentum transfer in these elastic collisions is
sufficient to make the low-energy quark or gluon become an
energetic parton with k � T ; such partons are referred to in
the literature as “recoil partons”. The process through which a
recoil parton is produced is akin to a splitting process: a single
energetic particle splits in two energetic ones. The kinematics
of this process simplifies and it benefits from being treated
separately.

The factorization of the phase space for this reformulation
is summarized in Fig. 1. An ensemble of cutoffs is used to

FIG. 1. Treatment of different processes in the hard-soft factor-
ized parton energy loss model
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FIG. 2. Example of inelastic interaction, in which multiple soft
scatterings induce the radiation of a soft gluon with energy ω. We
denote the radiations with ω > μω as large-ω inelastic interactions.

divide the different regions of phase space. We discuss the
details of the different treatments and these cutoffs in the
following subsections.

1. Treatment of hard interactions: Inelastic case (1 ↔ 2)

The diagram of a typical 1 ↔ 2 inelastic interaction is
shown as Fig. 2. We assume the energy of the radiated particle
is ω. We define a hard-soft cutoff μω based on the radiated
energy ω, to divide C1↔2

hard and C1↔2
soft . In the weakly coupled

regime, the cutoff μω is limited to μω � T , where T is the
temperature of the thermal medium.

Collinear radiations with energy ω > μω are included in
the hard part, C1↔2

hard ; they are treated as usual with emis-
sion rates calculated from the AMY integral equations as in
Eq. (3).

2. Treatment of hard interactions: Elastic case (2 ↔ 2)

The diagram of a typical 2 ↔ 2 elastic interaction is shown
in Fig. 3. We define the momentum transfer between the two
incoming particles as Q = (ω, �q); the four-momenta of the
incoming and outgoing particles are P = (p, p), K = (k, p),
P′ = P − Q, and K ′ = K + Q. Using q̃⊥ ≡

√
q2 − ω2 and ω,

we divide the phase space of elastic interactions as

(i) large-angle scattering C2↔2
large-angle: q̃⊥ > μq̃⊥ and ω <

	;
(ii) “splitting-like” process C2↔2

split : ω > 	

with

C2↔2
hard = C2↔2

large-angle + C2↔2
split . (8)

FIG. 3. (a) Example of large-angle elastic 2 ↔ 2 interactions,
where q̃⊥ > μq̃⊥ and ω < 	; (b) example of elastic 2 ↔ 2 interac-
tions with ω > 	, which is treated with a splitting approximation
(see text).

a. Large-angle scattering (C2↔2
large-angle). Hard scatterings

with q̃⊥ > μq̃⊥ and ω < 	 are denoted as large-angle inter-
actions, because the scattering angle

q⊥
qz

≈ q̃⊥
ω

(9)

is generally large in this region. The cutoff μq̃⊥ is typically
assumed to be gT � μq̃⊥ � T [37], although we will see in
Sec. III that this condition can be relaxed. We assume p � ω

in this region, and simplify the matrix elements accordingly.
We use vacuum matrix elements for C2↔2

hard , because the
screening effects are only significant for soft interactions
(C2↔2

soft ) in the weakly coupled regime [37]. Since we are only
interested in the evolution of energetic partons, we keep terms
to the first order in T/p in the matrix elements.

The treatment of the region q̃⊥ > μq̃⊥ and p − 	 < ω < p,
which is handled differently for technical reasons, is discussed
in Appendix B.

b. Splitting approximation (C2↔2
split ). When both of the out-

going particles of a 2 ↔ 2 interaction are hard (p′, k′ > pcut),
the interaction can be effectively considered as a splitting
process. The splitting leads to a hard recoil parton which
should be included in the calculation.

We use a cutoff 	 on ω to distinguish two hard outgoing
particles from only one hard outgoing particle. In princi-
ple, this cutoff 	 should be 3T � 	 � p. In the numerical
implementation, unless specified otherwise, we choose 	 =
min(

√
3pT , pcut ) to divide C2↔2

split and C2↔2
large-angle. Recall that

we use pcut = 2 GeV in this work. As shown in Fig. 3, the
splitting approximation process is the 2 ↔ 2 interactions with
	 < ω < p − 	.

At the interface between the phase space of large-angle
scattering (C2↔2

large-angle) and splitting-like processes (C2↔2
split ), the

two collision kernels should be consistent. We verified this
in Fig. 4: the differential rates of C2↔2

split and C2↔2
large-angle are

compatible in
√

3pcutT < ω < pcut. As long as we choose
the cutoff 	 in this range, this division of C2↔2

hard should be
consistent.

A detailed discussion of the splitting approximation pro-
cess is in Appendix D. The p � T and ω � T kinematic
cuts lead to significant simplifications for the matrix elements
entering into C2↔2

split .

3. Treatment of soft interactions

In the hard-soft factorized approach, the large number of
soft interactions are described stochastically with drag and
diffusion coefficients. When the momentum transfer is small,
the Boltzmann equation [Eq. (1)] can be approximated as a
Fokker-Planck equation. The collision kernel of the Fokker-
Planck equation is written as

C1↔2,2↔2
diff = C1↔2

soft [δ f ] + C2↔2
soft [δ f ]

= − ∂

∂ pi
[ηD,soft p

iδ f ] − 1

2

∂2

∂ pi∂ pj

×
{[

p̂i p̂ j q̂L,soft + 1

2
(δi j − p̂i p̂ j )q̂soft

]
δ f

}
,

(10)
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FIG. 4. The differential rate of splitting approximation interac-
tions and large-angle interactions for the gg ↔ gg process when
αs = 0.3. The shaded area is the region of

√
3pcutT < ω < pcut.

d�vac/dω is the differential rate of vacuum matrix elements for
2 ↔ 2 interactions. The results are for p0 = 100 GeV. Note that
in the numerical implementation, we double count the large-angle
interaction rate because we only sample in half of the phase space.
Here, to compare with splitting approximation rate, we decrease the
large-angle interaction rate in the numerical implementation by a
factor of 1

2 to cancel out the double count.

where ηD,soft is the drag coefficient of the soft interactions, and
q̂L,soft and q̂soft are the longitudinal and transverse momentum
diffusion coefficients of the soft interactions.

In the diffusion process, the number and the identity of the
particles are preserved. Since the soft radiations of the 1 ↔ 2
process are absorbed by the plasma, the number of particles
is also preserved. We include both the soft 1 ↔ 2 and 2 ↔ 2
collisions in the diffusion process. The diffusion process can
be solved using a Langevin equation [44] in the numerical
implementation.

For the soft 1 ↔ 2 process, we can obtain the perturbative
longitudinal diffusion coefficients by expanding C1↔2 and
only keeping the soft radiation terms. At leading order in αs,

q̂1↔2
L,soft = (2 − ln 2)g4CRCAT 2μω

4π3
, (11)

where CR is the Casimir factor. For gluons, CR = CA, while for
quarks, CR = CF .6 The derivation of this value can be found
in Appendix A.

We assume that the radiation angle is zero for collinear
radiations. Consequently the transverse diffusion coefficient
of 1 ↔ 2 interactions is approximated as zero.

For soft 2 ↔ 2 processes, the diffusion coefficients can be
calculated perturbatively; a modern derivation can be found in
Ref. [37]. The transverse momentum diffusion coefficient due

6Note that the diffusion coefficient q̂1↔2
L,soft does not depend on the

number of the quark flavor, because very soft radiations are domi-
nated by gluon scatterings.

to soft scatterings is

q̂2↔2
soft = g2CRT m2

D

4π
ln

[
1 +

(
μq̃⊥

mD

)2]
, (12)

where m2
D ≡ g2T 2(Nc/3 + Nf /6) is the square of the leading

order Debye mass, Nc = 3 is the number of colors, and Nf

is the number of flavors involved in the interactions. The
longitudinal diffusion coefficient at order O(αs) is

q̂2↔2
L,soft = g2CRT M2

∞
4π

ln

[
1 +

(
μq̃⊥

M∞

)2]
, (13)

where M∞ ≡
√

m2
D/2 is the gluon asymptotic thermal mass

[37,45].
Since detailed balance is preserved in the Fokker-Planck

equation, as verified in Appendix E, the drag coefficient ηD

can be calculated from diffusion coefficients according to
Einstein relation for both soft 1 ↔ 2 and 2 ↔ 2 processes:

ηD,soft(E ) = q̂L,soft

2T p

[
1 + O

(
T

p

)]
. (14)

Equations (11)–(14) assume that the coupling αs is small.
We discuss the range of validity of the perturbative coef-
ficients in Sec. III A 1. Our long-term goal is to treat q̂soft

and q̂L,soft as nonperturbative parameters, incorporating much
more physics than leading order scattering. These parameters
could then either be constrained with lattice inputs [35] or
fitted to experimental data, e.g., with the Bayesian approach
[46,47]. In either case, the results will depend on the separa-
tion scale μ, and this dependence would then have to match
with the hard sector at leading order, LO (order g2), next-
to-leading order, NLO (order g3), and next-to-next-to-leading
order, NNLO (order g4, the first order of the coupling runs).
Ideally the hard sector, and thus the evolution with μ can
be treated perturbatively. As a first step we will study the
sensitivity to the scale separation μ in this paper.

Besides the identity preserving diffusion process, the iden-
tity of the particle can be converted through soft fermion
exchange with the medium. This exchange must be screened
with the nonperturbative hard thermal loops (HTL) resum-
mation scheme. In the hard-soft factorized approach adopted
here, we separate the 2 ↔ 2 processes with fermion exchange
into hard collisions with q̃⊥ > μq̃⊥ and soft collisions with
q̃⊥ < μq̃⊥ (see Fig. 1). The hard exchange collisions are
treated with vacuum matrix elements, while the soft exchange
collisions are incorporated into a conversion rate �conv

q→g(p) for
q → g:

�conv
q→g(p) = g2CF m2

∞
16π p

ln

[
1 + μ2

q̃⊥

m2∞

]
. (15)

Here m2
∞ is the fermion asymptotic mass, m2

∞ = g2CF T 2/4
[37,45]. In each time step there is a probability �t �conv for a
quark to become a gluon, with the same momentum, and vice
versa. Further details about the conversion rate C2↔2

conv are given
in Appendix C. In the future, the nonperturbative conversion
coefficient �conv

q→g can be taken from a next-to-leading order
analysis [37], or can be determined from data in a Bayesian
approach.
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4. Summary

In summary, the collision kernel of hard-soft factorized
model is reformulated as

C = C2↔2 + C1↔2

= C1↔2
large-ω(μω ) + C2↔2

large-angle(μq̃⊥ ,	) + C2↔2
split (	)

+ C1↔2,2↔2
diff (μω,μq̃⊥ ) + C2↔2

conv (μq̃⊥ ). (16)

The cutoff dependence of the stochastic description is
canceled in Eq. (16) by the cutoff dependence of the hard
interactions. That is, each individual process in the hard-soft
factorized model is dependent on the cutoff, but this depen-
dence cancels out when all the processes are summed. We
show this explicitly in Sec. III.

C. Running of the strong coupling αs

All discussions up to this point assumed that the strong
coupling constant αs is fixed at a given small value. It is clear,
however, that the strong coupling constant will be different
for soft and hard interactions; this is in fact a key assumption
of the present model: hard interactions are more perturbative
than soft ones, because the coupling constant scales inversely
with the momentum exchange between the energetic parton
and the plasma (see Ref. [29, Sec. V] for a discussion, for
example). The running is slow (logarithmic in the momen-
tum exchange); however, more studies will be necessary to
understand the exact magnitude of loop corrections or non-
perturbative effects on soft and hard collisions.

As a first step in introducing our model of parton energy
loss, we keep the strong coupling constant αs fixed throughout
the paper.

III. HARD-SOFT FACTORIZATION OF PARTON ENERGY
LOSS IN THE WEAKLY COUPLED REGIME:

NUMERICAL STUDY

In the first part of this section, we compare the analytical
equations for the soft-interaction parton transport coefficients
[Eqs. (11)–(13)] with their numerical values evaluated from
the matrix elements, and summarize the range of cutoff and
coupling where they are consistent. We also compare (i) soft
interactions modeled with matrix elements with (ii) soft in-
teractions modeled with the Langevin equation. We perform
this test in the weak coupling limit. We use this discussion to
review the range of validity of the Fokker-Planck equation and
its stochastic Langevin implementation.

In the second part of this section, we compute the energy
loss of an energetic parton in a brick and discuss the depen-
dence of the results on the soft-hard cutoffs introduced in
Sec. II B.

A. Treatment of soft interactions

Soft interactions can be described either stochastically
with transport coefficients or microscopically with matrix el-
ements. In what follows, we compare these two descriptions,
with particular emphasis on the effect of the soft-hard cutoffs
and of the coupling constant.

The tests performed in the present subsection are not
expected to be related to exact composition of the plasma

(number of quark flavors). Thus, for simplicity, the calcula-
tions are performed in the pure glue limit (Nf = 0).

1. Analytical and numerical calculation
of soft transport coefficients

In a weakly coupled quark-gluon plasma, the drag and
diffusion coefficients for soft interactions can be calculated
analytically using perturbation theory [ Eqs. (11)–(13)], as
discussed in Sec. II B 3. The same drag and diffusion coef-
ficients can be obtained by direct numerical integration of the
parton energy loss rates; these rates are calculated from matrix
elements screened by plasma effects [43].

The diffusion coefficients are defined as [37]

q̂(p) ≡ d

dt
〈(�p⊥)2〉,

q̂L(p) ≡ d

dt
〈(�pL )2〉, (17)

where �p⊥ is the momentum change perpendicular to the
direction of the energetic parton, and �pL is the longitudinal
momentum change of the parton. The brackets represent an
average over all interactions during the parton propagation.
The numerical soft diffusion rates are thus calculated as [37]

q̂2↔2
soft (p) =

∫ μq̃⊥

0
dq̃⊥

∫ 	

−∞
dω q̃2

⊥
d2�(p, q)

dωdq̃⊥

∣∣∣∣
2↔2

,

q̂2↔2
L,soft(p) =

∫ μq̃⊥

0
dq̃⊥

∫ 	

−∞
dω ω2 d2�(p, q)

dωdq̃⊥

∣∣∣∣
2↔2

,

q̂1↔2
L,soft(p) =

∫ μω

−μω

dω ω2 d�(p, q)

dω

∣∣∣∣
1↔2

,

(18)

where d�(p, q)/dω and d2�(p, q)/dω dq̃⊥ are the rates for
an energetic parton with four-momentum (p, p) to undergo
a four-momentum change (ω, q) calculated using screened
matrix elements. The initial parton energy p is assumed to
be much larger than all other energy scales in the problem,
effectively p → ∞. The cutoffs μq̃⊥ , 	, and μω are used to
limit the phase space of interactions included in the transport
coefficients, in the present case to limit the interactions to soft
ones only.

There are two important differences between Eq. (18) and
the analytical diffusion coefficients (11)–(13). First, Eq. (18)
is formally valid for arbitrarily large cutoffs (μq̃⊥ , 	, and
μω), while Eqs. (11)–(13) assume the cutoff to be at most
of order T . Second, there is the question of the smallness
of the coupling. Equations (11)–(13) are derived assuming
αs � 1. Equation (18) is valid at arbitrarily coupling, although
the rates d�(p, q)/dω and d2�(p, q)/dω dq̃⊥ themselves are
typically calculated perturbatively.7

A comparison of Eq. (18) and the analytical diffusion coef-
ficients Eqs. (11)–(13) is shown in Fig. 5 as a function of the

7It is highlighted in Ref. [29] that the AMY differential equa-
tion used to evaluate the inelastic collisions rate remains similar if
interactions with the plasma are nonperturbative. One difference is
the perturbative partonic collision kernel C(q) ∝ m2

D/[q2(q2 + m2
D )]

that must be modified. Non-perturbative contributions to the thermal
masses are another difference.
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FIG. 5. The ratio between the numerical [Eq. (18)] and analytical
[Eqs. (11)–(13)] momentum transport coefficients: q̂1↔2

L,soft, q̂2↔2
soft , and

q̂2↔2
L,soft. The numerical results are computed with exact 1 ↔ 2 or 2 ↔

2 kinematics up to a cutoff μ/T . The analytical coefficients make
kinematic approximations appropriate for μ/T � 1. The results are
shown for different values of the hard-soft cutoffs at αs = 0.005. We
calculate these results using p0 = 100 GeV and T = 300 MeV in
a pure glue medium (Nf = 0). The cutoff μ in the figure denotes
μq̃⊥ for q̂2↔2

soft and q̂2↔2
L,soft, and μω for q̂1↔2

L,soft. In the elastic case, the
additional cutoff on ω is set to 	 = min(pcut,

√
3p0T ).

different cutoffs. This comparison is made at weak coupling
(αs = 0.005) and yields the expected agreement between the
two approaches, as long as the cutoffs are �T .

In Fig. 6 we compare the analytical soft diffusion co-
efficients Eqs. (11)–(13) with the numerical soft diffusion

FIG. 6. Comparison of the numerical and analytical q̂1↔2
L,soft, q̂2↔2

soft ,
and q̂2↔2

L,soft with different coupling constants αs (see Fig. 5 for descrip-
tion). The solid curves denote analytical results and the circles denote
numerical results. For the kinematic cutoffs, we use μq̃⊥ = μω = T
and 	 = min(

√
3p0T , pcut ). The numerical values of the transport

coefficients were calculated assuming a T = 300 MeV pure glue
medium (Nf = 0) and an energetic parton with p0 = 100 GeV.

coefficients Eq. (18) at different values of the strong cou-
pling constant αs. We find that the analytical soft diffusion
coefficients agree well with the numerical calculations even
at large coupling, except for a small tension in q̂2↔2

L,soft at large
αs. Tension between different calculations of the soft transport
coefficients is in fact not unexpected: perturbative calculations
can be equivalent at order gn yet be different at order gn+1.
These differences are negligible at weak coupling, but can
become significant for larger values of the coupling. This
is a natural consequence of pushing the calculations beyond
their regimes of validity. There is a practical consequence:
two-parton energy loss calculations that use the exact same
approach (weakly coupled kinetic theory) can lead to different
results, when used at large coupling; neither approach is more
“correct” than the other. This is important to keep in mind
when comparing the present soft-hard factorized energy loss
model with other implementations such as that of Ref. [39].

2. Theoretical guidance on the range of applicability
of the Fokker-Planck equation

The energy loss of energetic partons through soft interac-
tions is described by solving the Fokker-Planck equation with
a stochastic Langevin approach. The applicability of the
stochastic description is limited to the regime where the
Fokker-Planck equation holds. This regime of applicability
depends partly on properties of the interactions rates. We
can summarize the regime of validity of the Fokker-Planck
equation by first expanding the Boltzmann equation for soft
collisions (around ω = 0):

∂t f (p, t ) = 〈ω〉 f (1,0)(p, t ) + 1
2 〈ω2〉 f (2,0)(p, t )

+ 1
6 〈ω3〉 f (3,0)(p, t ) + · · ·, (19)

where f (p, t ) is the momentum distribution of energetic par-
tons at time t and

〈ωk〉 =
∫

dω ωk d�

dω
(20)

is the kth moment of the differential collision rate d�/dω.8

By keeping only the first two terms on the right-hand side,
Eq. (19) simplifies to the Fokker-Planck equation.

Assuming a single initial energetic parton of energy p0,

f (p, t = 0) = δ(p − p0), (21)

the solution of the Fokker-Planck equation is

fFP(p, t ) =
exp

[− [p−(p0−〈ω〉t )]2

2t〈ω2〉
]

√
2π〈ω2〉t

. (22)

The above solution simply describes the energy distribution of
the energetic parton widening from scatterings with q̂L = 〈ω2〉
energy diffusion and an average energy loss of 〈ω〉t .

Using this solution, we can compute the ratio of the
third and second terms in the expanded Boltzmann equa-

8The bounds on the integration are the same as in Eqs. (18), includ-
ing the additional integration over q̃⊥ necessary in the elastic case.
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tion [Eq. (19)]:

R =
1
6 〈ω3〉 f (3,0)

FP (p, t )
1
2 〈ω2〉 f (2,0)

FP (p, t )
= −2�p〈ω3〉(�p2 − 3〈ω2〉t )

3〈ω2〉t (�p2 − 〈ω2〉t )
, (23)

where �p = p − (p0 − 〈ω〉t ) is the distance in momentum
from the peak of the Fokker-Planck solution [Eq. (22)].

Significant corrections to the Fokker-Planck solution
Eq. (22) are expected unless R � 1. As is clear from Eq. (23),
the range of validity of the Fokker-Planck equation depends
on properties of the rate (the second and third moments 〈ω2〉
and 〈ω3〉), as well as on time t and on the distance in momen-
tum �p from the peak of the distribution.

The Fokker-Planck equation describes the effect of soft
interactions on an energetic parton. The soft interactions dom-
inate for small values of �p. Expanding R [Eq. (23)] around
�p = 0, we obtain

R = −�p〈ω3〉
〈ω2〉2t

+ 2�p3〈ω3〉
3〈ω2〉3t2

+ O(�p5). (24)

By taking the ratio of the second and first term of this
expansion,

r ≡ −2�p3〈ω3〉
3〈ω2〉3t2

/
�p〈ω3〉
〈ω2〉2t

, (25)

we can find the value of �p for which this ratio will be large:

�p =
√

3

2
r
√

〈ω2〉t, (26)

with r a constant assumed to be smaller than 1. We can use
this value of �p as the range of momentum around the mean
energy loss that can reasonably be described by the Fokker-
Planck equation. Using Eq. (26) and the first term of Eq. (24),
we define the scale S as

S = 〈ω3〉
〈ω2〉3/2

1√
t
. (27)

When this scale S is much smaller than 1, the Fokker-
Planck equation is expected to provide a good description of
the Boltzmann equation in the relevant range of momentum.
We emphasize that Eq. (27) was derived without any specific
form for the rate d�/dω; in particular, the formula is the same
for perturbative and nonperturbative calculations of the rate.

a. Scale for inelastic rate. For inelastic interactions at
weak coupling, we can evaluate Eq. (27) analytically using
the formula for the very soft inelastic differential rate de-
scribed in Eq. (A9). In this soft inelastic limit, the scale is
given by

S1↔2 = π3/2

3CA
√

2 − ln(2)

μ3/2
ω

g2T 2
√

t
. (28)

This implies that soft inelastic emissions with energy
smaller than μ can be described with the Langevin equa-
tion as long as the evolution time t in the medium is
sufficiently long:

t � μ3
ω

g4T 4
. (29)

FIG. 7. Dependence of the skewness scale S on the cutoff μq̃⊥ ,
for the elastic parton energy loss rate. The top line is for αs = 0.3
and the bottom line for αs = 0.005. The points denote the values
corresponding to μq̃⊥ = 0.5, 1, 2T . This interaction rate is calculated
assuming a pure glue medium (Nf = 0).

Assuming μω ∼ T results in t � 1/[g4T ], while μω ∼ gT
results in t � 1/[gT ]. This implies that there is a very large
difference between a stochastic description of soft interactions
with ω � T compared to soft interactions with ω � gT : in
the former case, one needs a plasma 1/g3 larger. These values
serve as a reminder that, while one can in principle increase
the phase space of interactions described stochastically, one
may need an unrealistically large plasma for this description
to be valid.

b. Scale for elastic rate. The dependence of the scale S
[Eq. (27)] on the cutoff μq̃⊥ is shown in Fig. 7, for a small
and large value of the coupling constant: αs = 0.005 and 0.3.
One can see that the dependence on the cutoff can be non-
monotonic for small values of αs, unlike in the inelastic case.
Numerical tests, as well as the analytical expression available
for the second moment at small coupling [Eq. (13)], suggest
that the second moment of the elastic rate is the origin of this
nonmonotonic dependence of the elastic scale S on μq̃⊥ .

3. Comparison between the diffusion process and the collision rate

In this section, we verify numerically the conclusion from
the previous section: we compare a stochastic and a micro-
scopic evolution of energetic partons in a static medium. In
the microscopic rate-based picture, we use kinematic cuts to
forbid hard interactions of the energetic parton. Because we
are comparing soft interactions, we must use screened elastic
matrix elements [43] in the microscopic description.9 The
screened inelastic (1 ↔ 2) rate is obtained numerically by
solving the AMY differential equation, except for very small
ω values, in which case the analytical expression described in
Appendix A [Eq. (A9)] is used.

9Note that this is for testing purpose only, and that this is different
from the vacuum matrix elements used for C2↔2

hard in the hard-soft
factorized energy loss model.
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FIG. 8. The energy distribution of a 100 GeV gluon propagating through a 300 MeV pure glue medium (Nf = 0) at αs = 0.005. The
evolution time is t = (0.3/αs )2 = 3600 fm. Only soft 1 ↔ 2 interactions with ω < μω are allowed. Three different values of the cutoff are
shown: μω/T = 0.5, 1, 2.

We choose the hard-soft cutoffs (i.e., μω and μq̃⊥ ) to be at
the order of T in the following tests. We set the coupling to be
αs = 0.005, which corresponds to g ≈ 0.25. We choose T =
300 MeV for the temperature of the fluid, and set the propa-
gation time in the plasma to be t = (0.3/αs)2 = 3600 fm.10

We perform the diffusion approach and the collision rate
approach separately to calculate the single-parton energy dis-
tribution of a hard 100 GeV gluon propagating in the static
pure glue medium. We emphasize once again that we only in-
clude soft interactions in the test by introducing the following
hard-soft cutoffs on radiation energy and momentum transfer:
for C1↔2

soft we only include radiations with the radiation energy
ω < μω, while for C2↔2

soft we only include interactions with
q̃⊥ < μq̃⊥ and the energy transfer ω < 	.

According to Eq. (27), for inelastic interactions (C1↔2
soft )

to be describable stochastically for a cutoff ∼T , one needs
t � 1/[g4T ] ≈ 200 fm of propagation time in the conditions
described above. As expected, we find in Fig. 8 that for inelas-
tic interactions, in the weakly coupled regime, the diffusion
process can reproduce the single parton energy distribution
generated by the collision-rate process. The value of the scale
S , shown for each cutoff μω, are indeed smaller than 1. As
μω increases, small differences appear between the Langevin
description and the microscopic collision approach; the scale
S is correspondingly larger, though still smaller than 1.

The same results are shown for the elastic case (C2↔2
soft )

in Fig. 9. This time, the scale S is somewhat larger, and
somewhat larger differences can indeed be seen between the
Langevin and collision rate descriptions. As for the elastic
case, the scale S increases as the cutoff increases, where more
and more collisions are described stochastically.

10We choose the evolution time t ∝ 1/α2
s to keep the number of the

collisions approximately the same for different values of αs. With
the choice t = (0.3/αs )2, the evolution time is 1 fm when we use
αs = 0.3 later in the paper.

B. Parton energy loss at small coupling in a static medium

Building on the validation from the previous section, we
can combine our approaches for the hard and soft interactions
to implement the entire hard-soft factorized parton energy loss
model described in Sec. II B. Remember that in the following,
we use vacuum matrix elements for C2↔2

hard , since the screening
effects are encoded in the drag and diffusion coefficients of
soft interactions. We also extend this test to a full quark-gluon
plasma, with Nf = 3. We use once again αs = 0.005 (g ≈
0.25), with a propagation time of t = (0.3/αs)2 = 3600 fm
in a T = 300 MeV plasma.

As summarized by Eq. (16), the hard or soft processes
alone are dependent on the cutoff, but their cutoff dependence
cancels out when combined. We confirm that, for both the in-
elastic and elastic cases, the single-parton energy distribution
is independent of the hard-soft cutoffs at small coupling in
Fig. 10, given a sufficiently long evolution time. These results
are consistent with those obtained in the previous section.

IV. HARD-SOFT FACTORIZATION OF PARTON ENERGY
LOSS BEYOND WEAK COUPLING

Soft interactions between an energetic parton and a de-
confined plasma are likely nonperturbative. Evaluating this
nonperturbative rate from first principles is an ongoing chal-
lenge. In this section, we estimate this nonperturbative rate
using a typical approach in the heavy ion literature: we use
the perturbative rate and extrapolate it to large coupling.

Recall that we do not use a running coupling in this work.
As such, we use the same value of αs for soft and hard inter-
actions, with the understanding that the future introduction of
a running coupling will indeed lead to smaller values of αs for
hard interactions, as assumed in this work.

As discussed in Sec. III A 2, soft interactions can always
be described stochastically, if propagation in the medium is
sufficiently long. We quantified this duration as t �
〈ω3〉2/〈ω2〉3, or S � 1 as defined in Eq. (27), with 〈ωn〉 given
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FIG. 9. The energy distribution of a 100 GeV gluon propagating through a 300 MeV pure glue medium (Nf = 0) at αs = 0.005. The
evolution time is t = (0.3/αs )2 = 3600 fm. Only soft 2 ↔ 2 interactions with ω < 	 and q̃⊥ < μq̃⊥ are allowed. Three different values of the
cutoff μq̃⊥ are shown: μq̃⊥/T = 0.5, 1, 2. We choose 	 = min(pcut,

√
3p0T ).

by Eq. (20). We emphasize once again that Eq. (27) is general,
and not limited to the perturbative regime.

We can use inelastic interactions to get an estimate of
the length of the medium required to describe soft interac-
tions stochastically. When extrapolating the weakly coupled
inelastic rate to large coupling, the ω dependence of the rate
remains the same. This means that, within this approximation,
the analytical expression for S , Eq. (28), remains the same.
Consequently, Eq. (29) remains the same as well, and it states
that a stochastic description of inelastic interactions with ω <

T requires a time t � 1/[g4T ]. For temperatures of a few
hundred MeV and a coupling g ≈ 1–2 encountered in heavy
ion collisions, 1/[g4T ] < 1 fm. Under this estimate, it would

be reasonable to describe stochastically soft interactions with
μ � T occurring in a heavy ion collision.

Note that the above conclusion is based on the estimate of
the soft inelastic rate discussed above; should the nonpertur-
bative rate differ significantly from it, it could lead to change
the range of applicability of the Langevin equation. However,
we do believe that the above estimates—based on extrapo-
lations of the weakly coupled rates to strong coupling—are
encouraging.

In what follows, we use αs = 0.3 (g ≈ 2), and first compare
a stochastic and a microscopic description of parton energy
loss for soft interactions. We use a plasma of length 1 fm and
temperature T = 300 MeV.

FIG. 10. The energy distribution of a 100 GeV gluon propagating through 300 MeV QGP medium (Nf = 3) at αs = 0.005 with different
values of the cutoffs. The evolution time is t = (0.3/αs )2 = 3600 fm. The subplot (a) only includes the C1↔2 interactions and (b) only includes
C2↔2 interactions. In both cases the cutoff μ is varied: the soft interactions (those with momentum transfer less than μω and μq̃⊥ respectively)
are treated with a Langevin process, while the rest of the kinematic phase space is treated with rates. Results obtained when propagating an
energetic light quark instead of a gluon can be found in Appendix G.
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FIG. 11. The energy distribution of a 100 GeV gluon propagating through a 300 MeV pure glue medium (Nf = 0) at αs = 0.3. The
evolution time is t = (0.3/αs )2 = 1 fm. Only soft 1 ↔ 2 interactions with ω < μω are allowed. Compare with the weak-coupling result from
Fig. 8.

Note that, when the coupling is large, the analytical diffu-
sion coefficients computed perturbatively are not necessarily
consistent with numerical values obtained by direct integra-
tion of the rates (see Fig. 6 and surrounding discussion). For
what follows, we use the numerical diffusion coefficients in
the Langevin part of the hard-soft factorized model.

A. Comparison between diffusion process and collision rate

As in the weak-coupling case (Sec. III A 3), we perform
this section’s test in the pure glue limit (Nf = 0).

We first study the inelastic interactions, and as discussed
above, we expect inelastic interactions softer than ∼T to be
describable by the Langevin equation in a 1 fm brick. We show
this explicitly in Fig. 11. We show calculations for three dif-
ferent cutoffs μω, and we plot the results for the scale S from
Eq. (27).11 As expected, agreement between the Langevin
approach and the microscopic collision rate approach are best
when S � 1. In the current setting, agreement is still good for
μω = 2T , for which S = 0.33. This is encouraging evidence
that the effect of nonperturbative inelastic interactions (C1↔2

soft )
can be treated stochastically in phenomenological applica-
tions such as heavy ion collisions.

The equivalent result for soft elastic interactions (C2↔2
soft ) is

shown in Fig. 12. The result is very different. On one hand, the
mean energy and width of the parton distribution described
with the Langevin equation is almost identical to that de-
scribed with collision rates. However their shape are different,
especially at smaller values of the cutoffs μq̃⊥ . Agreement
between the two approaches is improved when the cutoff is
larger. This is also reflected in the values of the scale S ,
evaluated numerically with Eq. (27), which decreases with
increasing μq̃⊥ (see Fig. 7). This is different from what was
observed (i) in the inelastic case (see Figs. 8 and 11) and
(ii) in the elastic case at weak coupling (see Fig. 9): both

11We verified that the result from Eq. (27) is close to that of
Eq. (28). The values we quote are from Eq. (27).

cases preferred smaller values of the cutoff. Yet this result
is fully consistent with our discussion in Sec. III A 2 b of the
scale S for the elastic rate: it is purely a consequence of the
ω dependence of the elastic rate. We verified in Fig. 13 that
longer evolution times do lead to better agreement between
the Langevin and the collision rate descriptions, reflected in
smaller values of the scale S . Our tentative conclusion is that
soft elastic collision may be more difficult to describe stochas-
tically; it is possible that one needs a larger cutoff μq̃⊥ to
describe these elastic interaction stochastically, although more
studies will be necessary to confirm this conclusion. Note,
however, that observables which are mainly sensitive to the
average energy loss and the width of the parton distribution
may tolerate a wider range of soft interactions being described
with the Langevin approach.

More generally, it is clear that the choice of cutoff is very
important in stochastic descriptions: careful choices of cutoffs
can broaden significantly the range of applicability of the
factorized approach presented in this work. Importantly, the
cutoff choice should be chosen based on the expected relative
size of the third and second moments of the energy loss rates.

B. Parton energy loss at large coupling in a static medium

To close this section, we quantify the cutoff dependence of
a 100 GeV parton propagating for 1 fm in a 300 MeV brick
of plasma, with αs = 0.3. This “brick” is the same as in the
previous section. The soft interactions are described with the
Langevin equation, and hard interactions are included as in
the full implementation of the hard-soft energy loss model
(Sec. II B). We use Nf = 3 in this test.

We plot the energy distributions with different values of the
cutoff in Fig. 14. In this larger coupling regime, as expected
from the results of the previous section, inelastic interactions
(C1↔2) are independent of the cutoff [panel (a)]. For the elastic
case (C2↔2), the energy distributions with different values of
the cutoff are slightly different in the large energy region,
although the long tail of the distribution is not affected [panel
(b)].
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FIG. 12. The energy distribution resulting from a 100 GeV gluon propagating through a 300 MeV pure glue medium (Nf = 0) at αs =
0.3. The evolution time is t = (0.3/αs )2 = 1 fm. Only soft 2 ↔ 2 interactions with ω < 	 and q̃⊥ < μq̃⊥ are allowed. We choose 	 =
min(pcut,

√
3p0T ). Compare with the weak-coupling result from Fig. 9.

Note that we also performed a cutoff dependence test on
the cutoff 	 for 2 ↔ 2 interactions. We found the energy
distribution of a parton propagating in a static medium to be
independent of the choice of 	, as expected. The result and
further discussion can be found in Appendix F.

V. APPLICATION: ENERGY AND FERMION-NUMBER
CASCADE

In this section, we use the hard-soft factorized model to
study the energy and fermion-number cascade resulting from
inelastic interactions between an energetic parton and a ther-
mal medium. This section thus focuses on C1↔2 [Fig. 1(b)] in
the hard-soft factorized model; both the hard and soft inelastic
interactions are included, with the soft inelastic interactions

modeled by the Langevin evolution. The collision kernel C2↔2

is switched off for this section.

A. Energy cascade of hard gluons

When a gluon propagates through a thermal QCD medium,
successive medium-induced inelastic radiations result in a
gluon cascade. An analytical approximation for the gluon
cascade was introduced in Refs. [48,49]; it was argued that the
successive medium-induced quasidemocratic emissions lead
to the accumulation of gluons at zero energy and cause a
power-law scaling in the small energy region. We will study
this scaling in this section [50].

At leading order, the successive radiations can be assumed
to be independent [51]. In the deep LPM region, where the

FIG. 13. The energy distribution resulting from a 100 GeV gluon propagating through a 300 MeV pure glue medium (Nf = 0) at αs = 0.3.
The evolution time is 200, 50, 20 fm for μq̃⊥/T = 0.5, 1, 2; the times were chosen to obtain similarly small values of the skewness parameter
S [Eq. (27)]. Only soft 2 ↔ 2 interactions with ω < 	 and q̃⊥ < μq̃⊥ are allowed. We choose 	 = min(pcut,

√
3p0T ).
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FIG. 14. The energy distribution of a 100 GeV gluon propagating through 300 MeV QGP medium (Nf = 3) at αs = 0.3 with different
values of the cutoff. The evolution time is t = (0.3/αs )2 = 1 fm. The subplot (a) only includes C1↔2 interactions and (b) only includes C2↔2

interactions. See the weakly coupled results in Fig. 10 for comparison and additional explanations. Results obtained when propagating an
energetic light quark instead of a gluon can be found in Appendix G.

timescale of the radiation process is much larger than the mean
free path between multiple scatterings, the rate per unit time
of a gluon with energy p splitting into two gluons with energy
fractions z and 1 − z can be approximated as12 [51–53]

d�

dz

∣∣∣∣
g↔gg

= αsNc

π

1

[z(1 − z)]3/2

√
q̂eff

p
. (30)

Here q̂eff is the average transverse momentum broadening of
the radiated gluon, and z = ω/p with ω the energy of the
radiated gluon. We have kept only the most singular parts
of the splitting function at z ≈ 0. We will treat q̂eff as a fit
parameter, and then relate it to the parameter q̂2↔2

soft in Eq. (12).
The energy of the initial gluon is p0, and we define

x ≡ ω/p0. The evolution of the gluon spectrum D(x, τ ) =
x(dN/dx) is governed by [48,50]

∂D(x, τ )

∂τ
=

∫ 1

0
dz

1

[z(1 − z)]3/2

×
[√

z

x
D

(
x

z
, τ

)
− z√

x
D(x, τ )

]
, (31)

where

τ ≡ αsNc

π

√
q̂eff

p0
t, (32)

and t is the evolution time of the gluon.
The exact solution for Eq. (31) can be calculated via

Laplace transform:

D0(x, τ ) = τ√
x(1 − x)3/2

e−π[τ 2/(1−x)]. (33)

12Accounting for the identical particles in the final state, the total
rate is

∫ 1/2
0 d�/dz dz.

As remarked in Ref. [48], this power-law gluon spectrum
Eq. (33) scales as 1/

√
x in the small-x region.

In order to compare with Eq. (33), we first determine the
approximate value of q̂eff to use in the simplified rate Eq. (30);
this value also enters Eqs. (31)–(33). We fix q̂eff by comparing
Eq. (30) with the full leading-order inelastic rate, as shown
in Fig. 15. With parameters given in Fig. 15, we find q̂eff �
0.04 GeV3 at ω/p � 10−2. We will use this value of q̂eff in
our analysis of the cascade below.

It should be emphasized that Eq. (30) is an approximation
to the full inelastic rates corresponding to Eq. (3). Indeed, a
leading-log analysis of the full rates at small z in the deep
LPM regime shows that [52]

q̂eff = q̂2↔2
soft (μ2

⊥), (34)

FIG. 15. Comparison between the full leading-order inelastic
rate and the deep-LPM regime approximation of the rate from
Eq. (30) with q̂eff = 0.04 GeV3 for Nf = 0 (p = 1 TeV, T =
300 MeV, and αs = 0.1).
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FIG. 16. A comparison of the current numerical implementation
of QCD kinetics and the analytical approximation of Ref. [48] for the
energy cascade in the pure glue medium for different evolution times.
The analytical solution is denoted by the dotted curve. In this test, we
only include inelastic 1 ↔ 2 processes. We use Nf = 0, αs = 0.1,
T = 300 MeV, and p0 = 1000 GeV.

where q̂2↔2
soft is given in Eq. (12), and μ2

⊥ = C0
√

2ωq̂eff with
C0 ≈ 1. The cutoff μ2

⊥ scales with the accumulated transverse
momentum of the radiated gluon over its formation time. A
next-to-leading logarithmic analysis fixes the coefficient C0

[54]:

μ2
⊥ = C0

√
2ωq̂eff , C0 = 2e2−γE +π/4. (35)

For Nf = 0, p = 1 TeV, T = 300 MeV, αs = 0.1 (same as
in Fig. 15), and, using ω/p = 10−2, we can solve Eqs. (34)
and (35) numerically. We find q̂eff ≈ 0.052 GeV3, which as
expected is close to the value we found in Fig. 15.

We next perform the gluon cascade in a pure-glue medium
(Nf = 0) using the hard-soft factorized model, i.e., we include
both soft inelastic interactions described with the Langevin
equation, and rate-based hard inelastic interactions which
dominate this test. In Fig. 16, we compare this numerical
result calculated by the current model with the analytical
spectrum in Eq. (33). We find that the numerical solution for
the medium-induced cascade is reasonably well described by
the approximate analytic solution. In particular, the power-law
behavior, dN/dx ∝ x−3/2, is nicely captured by this solution.

B. Fermion-number cascade of gluons and quarks

The fermion-number cascade was investigated in Ref. [55].
Given the power-law scaling in the small energy region, at
small x, we can write the power-law spectrum of quarks and
gluons as

Dg ≡ x
dNg

dx
= G√

x
,

Ds ≡
NF∑
i=1

(Dqi + Dq̄i ) = Q√
x
. (36)

FIG. 17. The fermion number cascade of the numerical imple-
mentation in the QGP medium with different evolution times. In
this test, we only include inelastic interactions (C1↔2). We use Nf =
3, αs = 0.3, T = 300 MeV, and p0 = 10 TeV. The black horizon-
tal line reflects the expected limiting value of DS/(2Nf Dg) ≈ 0.07
[Eq. (37)].

As derived in Ref. [55], the quark-to-gluon ratio of the
soft radiated partons is determined by the transformation rate
between gluons and fermions. We have

Q

2Nf G
= 1

2Nf

∫ 1
0 dz zKqg(z)∫ 1
0 dz zKgq(z)

≈ 0.07, (37)

where Kqg is the splitting function of g → qq̄, and Kgq is the
splitting function of q → gq.

To test the quark-to-gluon ratio in the hard-soft factorized
model, we numerically simulate the evolution of a gluon or
a quark propagating through a static QGP medium (Nf = 3)
using the full leading order inelastic rate. We perform the
calculation for both an energetic gluon and an energetic light
quark with an initial energy of 10 TeV. The result is shown
in Fig. 17; we find that it converges to the universal quark-to-
gluon ratio when using the full QCD rates.

VI. SUMMARY AND OUTLOOK

This work introduces a new formulation of parton energy
loss where soft and hard interactions with the underlying
plasma are factorized and treated separately. The factorization
is performed with cutoffs based on the momentum transfer
of the interactions. Rare hard interactions are considered as
independent successive interactions, and solved with collision
rates (Secs. II B 1 and II B 2); the larger momentum exchange
with the medium make them more likely to be amenable to
a perturbative description. On the other hand, frequent soft
interactions are treated stochastically using a Langevin evolu-
tion with drag and diffusion coefficients encoding the effect
of these soft interactions (Sec. II B 3); nonperturbative effects
can thus be absorbed in these transport coefficients.

Our numerical implementation of this model (Sec. III)
shows that this factorization works well in the weakly coupled
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regime where the theory was derived [37]. In fact, by revis-
iting the conditions under which the Langevin equation can
describe the Boltzmann equation (Sec. III A 2), we extended
the region of phase space (“cutoffs”) that can be described
stochastically. We used the dimensionless scale S [Eq. (27)]
to quantify the length of a plasma necessary for soft collisions
to be describable with the Langevin equation. Our numerical
tests showed that this scale works very well in practice.

Because the scale S is a property of the Boltzmann equa-
tion and not a perturbative concept, we used it to extend
our discussion of parton energy loss beyond the perturbative
regime. We estimated that inelastic collisions resulting in par-
ton energy loss of order T could be described stochastically
in a QCD plasma of size ≈1 fm (Sec. IV). Given that inelastic
interactions dominate parton energy loss for high-energy par-
tons, this supports the applicability of the present energy loss
model in heavy ion collisions.

This work paves the way to systematic phenomenological
constraints on the soft transport coefficients of light partons.
The key strength of our approach is that perturbative parton
energy loss calculations are still being used for harder in-
teractions: the regions of phase space where they are most
likely to hold. Conversely, the interactions most sensitive
to nonperturbative effects—soft interactions—are encoded in
simple transport coefficients which can be constrained by
comparison with measurements. A stochastic description of
soft collisions can also be very efficient numerically, as a large
number of soft interactions can be absorbed in the transport
coefficients. These phenomenologically constrained transport
coefficients can eventually be compared with lattice results
(e.g., Ref. [35]). A similar program is already being pursued
for the energy loss of heavy quarks [56]; studies of light
parton energy loss, with a model that includes many features
of soft-hard factorization, are also ongoing [47].

Future generalization of this framework includes improv-
ing the treatment of the radiation angle of collinear radiation,
and the inclusion of a running coupling constant and of next-
to-leading order effects; these additions will increase the type
of observables that can be studied with this model. The in-
clusion of finite-size effects in this formalism will also be an
important addition. These additions will be able to build on
Ref. [47] and other works.
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APPENDIX A: INELASTIC RATE AT LOW ω

At leading order, the differential rate of the 1 ↔ 2 process
can be expressed using the AMY rate [26,29]:

d�(p, ω)

dω

∣∣∣∣
1↔2

= g2

16π p3ω2(p − ω)2
[1 ± n(ω)][1 ± n(p − ω)]

× Pa
bc(z)

∫
d2h

(2π )2
2h · Re F(h, p, ω) (A1)

where z = ω/p and Pa
bc(z) are the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) splitting kernels of the radiation
a → bc,

Pa
bc(z) =

⎧⎪⎪⎨
⎪⎪⎩

CF
1+(1−z)2

z , q → gq,

CA
1+z4+(1−z)4

z(1−z) , g → gg,

dFCF
dA

[z2 + (1 − z)2], g → qq̄.

(A2)

Very soft interactions (ω � T ) are dominated by gluon ra-
diations, i.e., g ↔ gg, q ↔ gq with a soft final state gluon
(see footnote 6). In this case (ω � T � p), the AMY integral
is symmetric and can be expanded in terms of the radiated
energy ω [37]:∫

d2h

(2π )2
2h · Re F(h, p, ω)

∣∣∣∣
soft gluon

= 8p6CAz2(1 − 2z)
∫

d2q⊥
(2π )2

∫
d2k⊥
(2π )2

CF (k⊥)

CF

×
[

q⊥
q2

⊥ + M2∞
− q⊥ + k⊥

(k⊥ + q⊥)2 + M2∞

]2

, (A3)

where the collision kernel is

CF (k⊥)

CF
= g2T m2

D

k2
⊥
(
k2
⊥ + m2

D

) . (A4)

We define the integral in Eq. (A3) as

I =
∫

d2q⊥
(2π )2

∫
d2k⊥
(2π )2

CF (k⊥)

CF

×
[

q⊥
q2

⊥ + M2∞
− q⊥ + k⊥

(k⊥ + q⊥)2 + M2∞

]2

. (A5)

Combining the factors, we have

I = g2T m2
D

∫
dq2

⊥
4π

∫
dk2

⊥
4π

1

k2
⊥
(
k2
⊥ + 2M2∞

)
×

∫
dφq

2π

∫
dφkq

2π

[
q⊥

q2
⊥ + M2∞

− q⊥ + k⊥
(k⊥ + q⊥)2 + M2∞

]2

. (A6)
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FIG. 18. Comparison of the g ↔ gg collision rate between the
soft analytical expression [Eq. (A8)] and the full leading order rate.
We used Nf = 3, αs = 0.3, T = 300 MeV, and p0 = 100 GeV.

By rescaling all the dimensional quantities by M∞, the integral
I can be calculated as

I = g2T
m2

D

M2∞

∫
dq̂2

⊥
4π

∫
dk̂2

⊥
4π

1

k̂2
⊥(k̂2

⊥ + 2)

×
∫

dφq

2π

∫
dφkq

2π

[
q̂⊥

q2
⊥ + 1

− q̂⊥ + k̂⊥
(k̂⊥ + q̂⊥)2 + 1

]2

= 2 − ln(2)

8π2
g2T . (A7)

We therefore have an analytical approximation of the soft
gluon radiation rates:

d�(p, ω)

dω

∣∣∣∣
1↔2

soft gluon

= [2 − ln(2)]g4CAT

16π3 p
[1 ± n(ω)]

× [1 ± n(p − ω)]
1 − 2z

(1 − z)2
Pa

bc(z).

(A8)

For the tests in Secs. III and IV, we use this soft limit of
differential rate when |ω| � 0.2T . In Fig. 18, we compare this
soft limit with the AMY full rate for g ↔ gg, and they agree
well in the soft ω region.

With the soft radiation assumption ω � T � p, we can
simplify Eq. (A8) by neglecting the terms suppressed by ω/T
and ω/p

d�(p, ω)

dω

∣∣∣∣
1↔2

soft gluon

≈ [2 − ln(2)]g4CACRT 2

8π3ω2
. (A9)

Using the above expressions, we can calculate the per-
turbative q̂1↔2

L, soft. We find that the longitudinal momentum
broadening of soft 1 ↔ 2 is

q̂1↔2
L, soft =

∫ μω

−μω

dωω2 d�(p, ω)

dω

∣∣∣∣
1↔2

soft gluon

= [2 − ln(2)]

4π3
g4CRCAT 2μω. (A10)

APPENDIX B: ENERGY LOSS RATE FOR HARD 2 ↔ 2
INTERACTIONS

The differential energy loss rate of a hard 2 ↔ 2 interaction
is calculated using the vacuum matrix elements:

d2�ab↔cd
vac

dω dq̃⊥
=

∫ ∞

q−ω

2

dk
∫ 2π

0

dφ

2π

1

4(2π )3

× q̃⊥
q

Qab
cd (p, k, ω, q̃⊥, φ)

4p2
, (B1)

with

Qab
cd (p, k, ω, q̃⊥, φ) = 1

νa

∣∣Mab
cd

∣∣2
[nb(k){1 ± nd (k + ω)}],

(B2)
where νa = 2da is the degeneracy of the particle a, q̃⊥ =√

q2 − ω2, and Mab
cd is the matrix element of a vacuum 2 ↔ 2

interaction as a hard parton a interacts with a thermal particle
b and transforms into particles c and d . The expression of Mab

cd
can be found in Table II in [25].

The collision kernel of the 2 ↔ 2 large-angle interactions
is

C2↔2
large-angle =

∑
bcd

∫ 	

−∞
dω

∫ ∞

μq̃⊥

dq̃⊥
d2�ab↔cd

vac

dωdq̃⊥
. (B3)

In Eq. (B3), if outgoing particles c and d are identical
species, a symmetry factor of 1

2 should be included. However,
this factor of 1

2 is canceled out to incorporate the interactions
with p − 	 < ω < p, since symmetric 2 ↔ 2 interactions
with p − 	 < ω < p are equivalent to interactions with ω <

	. For c and d being distinct species, a factor of 1
2 is also nec-

essary to cancel the double count of the final states in
∑

cd . We
eliminate this factor by constraining that the energy of particle
c is larger than particle d . These asymmetric interactions with
ω < 	 and p − 	 < ω < p are treated separately.

In Eq. (B1), the expression of Qab
cd (p, k, ω, q̃⊥, φ) is depen-

dent on the types of particles a, b, c, and d . We summarize
them using Mandelstam variables (s, t , u), Casimir factors
(CA, CF ), and color degrees of freedom (dF , dA) as fol-
lows, where CA = 3, CF = 4/3, dA = N2

c − 1, dF = Nc. We
summarize the expression of Qab

cd (p, k, ω, q̃⊥, φ) for different
interactions in Table I.

Up to order T/p, we have the following kinematics:

t = −(−Q)2 = −(P′ − P)2 = −q̃2
⊥,

s = −(P + K )2 = −t

2q2
[(p+ p′)(k + k′) + q2

− cos(φ)
√

(4pp′+t )(4kk′ + t )]

� (2p)
−t

2q2
[(k + k′) − cos φ

√
4kk′ + t]

(
1 + T

p

)
,

u = −(K ′ − P)2 = −t − s � −s. (B4)

APPENDIX C: SOFT CONVERSION PROCESS

Soft conversion is a process where the identity of the
hard parton is changed by its interaction with the medium.
Diffusion processes only include the identity preserving soft
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TABLE I. In this table, we use capital letters G and Q to denote
hard gluons and quarks (p > pcut), and lowercase letters g and q to
denote soft gluons and quarks( p < pcut). To simplify the notation,
we do not specify the quark species. Q and q include the conditions
of various quark species, and can also be antiquarks.

ab ↔ cd
∑

bcd Qab
cd/g4 = ∑

bcd 1/νa|Mab
cd |2[nb(1 ± nd )]/g4

Gg ↔ Gg 4C2
A

s2+u2

t2 nB(k)[1 + nB(k + ω)] + O( T 2

p2 )

Gq ↔ Gq 8Nf
dF
dA

CFCA
s2+u2

t2 nF (k)[1 − nF (k + ω)] + O( T 2

p2 )

Qq ↔ Qq 8Nf
dF
dA

C2
F

s2+u2

t2 nF (k)[1 − nF (k + ω)] + O( T 2

p2 )

Qg ↔ Qg 4CFCA
s2+u2

t2 nB(k)[1 + nB(k + ω)] + O( T 2

p2 )

Gq ↔ Qg 8Nf
dF
dA

C2
F

u
t nF (k)[1 + nB(k + ω)] + O( T 2

p2 )

Qg ↔ Gq 4C2
F

u
t nB(k)[1 − nF (k + ω)] + O( T 2

p2 )

Gg ↔ Qq̄ 8Nf C2
F

u
t nB(k)[1 − nF (k + ω)] + O( T 2

p2 )

Qq̄ ↔ Gg 4C2
F

u
t nF (k)[1 + nB(k + ω)] + O( T 2

p2 )

interactions; a soft conversion process is necessary to consider
identity nonpreserving soft interactions.

The collision kernel of the soft conversion reads

C2↔2
conv,qi

[δ f ] = δ f qi (p)�conv
q→g(p) − δ f g(p)

dA

dF
�conv

g→q(p),

C2↔2
conv,q̄i

[δ f ] = δ f q̄i (p)�conv
q→g(p) − δ f g(p)

dA

dF
�conv

g→q(p),

C2↔2
conv,g[δ f ] =

Nf∑
i=1

{
δ f g(p)

[
�conv

g→qi
(p) + �conv

g→q̄i
(p)

]

− dF

dA

[
δ f qi (p)�conv

q→g(p) + δ f q̄i (p)�conv
q̄→g(p)

]}
.

(C1)

As derived in in Sec. 3.3 of Ref. [37], at leading order, the
parton identity exchange rate is

�conv
q→g(p) = g2CF

4p

∫ μq̃⊥ d2q⊥
(2π )2

m2
∞

q2
⊥ + m2∞

= g2CF m2
∞

16π p
ln

[
1 +

(
μ̃2

q⊥

m∞

)2]
, (C2)

�conv
g→q(p) = dF

dA
�conv

q→g(p),

where m2
∞ ≡ g2CF T 2/4 is the asymptotic mass of quarks.

Given that the rate of these identity nonpreserving soft in-
teractions is suppressed by T/p and the energy exchange ω is
small, we neglect the energy loss due to these soft conversion
process, and only incorporate the identity exchange.

In the numerical implementation, at each time step, we
change the identity of the leading parton according to the
conversion rates in Eqs. (C1) and (C2).

APPENDIX D: SPLITTING APPROXIMATION PROCESS

As discussed in the body of the text, the collision kernel for
2 ↔ 2 scattering processes can be simplified when the energy
transfer is large.13

For simplicity, we will begin the discussion with the pure
glue theory. As we will show here, and as is obvious pictori-
ally, the 2 ↔ 2 scattering rate with large ω can be written as
an effective 1 → 2 rate, which takes the form

C2↔2
split (	) = 1

2

∫ p−	

	

dω
d�(p, ω)

dω
, (D1)

where

d�(p, ω)

dω
= g4

8π p3

Pg
gg(z)

z2(1− z)2

× CA

2
(1− z + z2)

∫
d2q⊥
(2π )2

q̂(δE )

δE2
. (D2)

Here we have defined

δE ≡ pq2
⊥

2p′k′ , (D3)

and for comparison with other literature we have defined
q̂(δE ) for the pure glue case [37],

q̂(δE )

δE2
≡

∫
d3k

(2π )3k
nB(k) 2πδ(k− − δE ). (D4)

This is an approximation of the (unscreened) scattering
rate given in Eq. (4) with the matrix element for the gg ↔ gg
collisions given by

|M|2/g4 = 16dAC2
A

(
3 − su

t2
− st

u2
− tu

s2

)
. (D5)

In this kinematic regime, we can neglect the population factors
nc(p′) and nd (k′). We will write∫

k
≡

∫
d3k

(2π )32k
=

∫
K

2πδ+(K2) (D6)

for the k, p′, and k′ integrals, with
∫

K = ∫
d4K/(2π )4 and

δ+(K2) = θ (k0)δ(K2). Next, we change variables to integrate
over Q = P − P′ instead of P′, and use the four-momentum
constraint to eliminate K ′ = K + Q, yielding the phase space
integral

C2↔2
split (	) = 1

4pνg

∫
Q,K

2πδ+(K2) 2πδ(−2P · Q + Q2)

× 2πδ(2K · Q + Q2)|M|2δ f (p)n(k). (D7)

To understand the kinematics of the process, it is
convenient to use the light cone coordinates where q+ =
−q− = (q0 + qz )/2 and q− = q0 − qz and we take p along

13We thank Jacopo Ghiglieri for sharing notes on this, which served
as the basis for this Appendix.
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the z direction,

p+ + k+ = k′+ + p′+, (D8)

k− = k′− + p′−, (D9)

k⊥ = k′
⊥ + p′

⊥, (D10)

while the outgoing on-shell constraints read

2p′+ p′− + p′2
⊥ = 0, (D11)

2k′+k′− + k′2
⊥ = 0. (D12)

Now, all four components of the momentum k are of or-
der ∼T . In order to satisfy the on-shell constraints and
energy-momentum conservation, we have the following
scalings with the energy of the probe for the light cone mo-
menta:

k′+ ∼ p, (D13)

k′⊥ ∼
√

pT , (D14)

k′− ∼ T . (D15)

Thus, the incoming transverse momentum k⊥ ∼ T can be
ignored, and transverse momentum conservation fixes that

−p′
⊥ = k′

⊥ = q⊥. (D16)

Plus-coordinate momentum conservation yields

p = k′ + p′, q+ = k′ = ω, (D17)

Minus-coordinate momentum conservation yields

k− = pq2
⊥

2p′k′ , (D18)

p′− = q2
⊥

2p′ = −q−, (D19)

k′− = q2
⊥

2k′ , (D20)

The invariants are t = −Q2, s = −2P · K , u = 2K ′ · P,

s = p2

p′k′ q
2
⊥, (D21a)

t = − p

p′ q
2
⊥, (D21b)

u = − p

k′ q
2
⊥, (D21c)

and satisfy s + t + u = 0. Now we write∫
Q

=
∫

dq+dq−

(2π )2

d2q⊥
(2π )2

, (D22)

and integrate over q−:∫
dq−

(2π )
2πδ(−2P · Q + Q2)2πδ(2K · Q + Q2)

= 2π

4k′ p′ δ(k− − δE ). (D23)

Assembling the ingredients we have

C2↔2
split (	) = 1

2

∫ p−	

	

dω
d�

dω
, (D24)

where

2π
d�

dω
= 1

p3

|M|2/(16νg)

z(1 − z)
(D25)

×
∫

d2q⊥
(2π )2

∫
d3k

(2π )3k
nB(k)2πδ(k− − δE ).

(D26)

where
|M|2

16νg z(1 − z)
� g4C2

A

(1 − z + z2)2

2z3(1 − z)3
, (D27)

Reorganizing terms one finds

d�

dω
= g4

8π p3

Pg
gg(z)

z2(1 − z)2

× {(
CA − 1

2CA
)
z2 + 1

2CA[1 + (1 − z)2]
}

×
∫

d2q⊥
(2π )2

∫
d3k

(2π )3k
nB(k) 2πδ(k− − δE ), (D28)

in agreement with Eq. (D2).
The analysis can be extended to include quarks. Our start-

ing point is again Eq. (4). As for the pure glue case it is our
interest to describe the splitting process where p′ and k′ are
both large. Then we have as before

C2↔2
split (	) = 1

4pνa

∑
bcd

∫
Q,K

2πδ+(K2) 2πδ(−2P · Q + Q2)

× 2πδ(2K · Q + Q2)
∣∣Mab

cd

∣∣2
δ f a(p)nb(k).

(D29)

Now we distinguish two cases: (i) when a gluon is absorbed
from the bath and (ii) when a quark is absorbed from a bath.

In the first case the gluon is absorbed from the bath and the
hard particle splits into flavors cd . The differential rate takes
the form

d�
a(g)
cd

dω
= g4Ga

cd (z)

32π p3

∫
d2q⊥
(2π )2

∫
d3k

(2π )3k

× nB(k) 2πδ(k− − δE ), (D30)

where the effective splitting rate are the matrix elements (see
Table II of [25]) evaluated using the kinematic approximations
of Eq. (D21):

Ga
cd (z) ≡

∣∣Mag
cd

∣∣2
/g4

νaz(1 − z)
. (D31)

The effective splitting function is for gluon absorption is

Gq
qg = 4Pq

qg(z)

z2(1 − z)2

[(
CF − CA

2

)
z2 + CA

2
(1 + (1 − z)2)

]
,

(D32a)

Gg
qq̄ = 4Pg

qq̄(z)

z2(1 − z)2

[(
CF − CA

2

)
+ CA

2
(z2 + (1 − z)2)

]
,

(D32b)

Gg
gg = 4Pg

gg(z)

z2(1 − z)2

[(
CA − CA

2

)
z2 + CA

2
(1 + (1 − z)2)

]
.

(D32c)
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TABLE II. The total rates for gluon absorption.

�
a(g)
bc c	 cp cln

q → qg 2 CFCA −CFCA + C2
F /2 −2CFCA + C2

F∑
q g → qq̄ 0 −Nf (CA/3 + CF ) Nf CF

g → gg 4C2
A

10
6 C2

A −4C2
A

Here for the process a → cd the momentum fraction z is
associated with particle d , i.e., z = k′/p = −q2

⊥/u and 1 −
z = p′/p = −q2

⊥/t .
To find the total rate we must perform the integral over

ω. The integration is straightforward and yields for gluon
absorption

�
a(g)
bc = g4

32π p

(
T 2

12

) ∫ 1−	/p

	/p
dz z(1 − z) Ga

bc(z). (D33)

The total rate for the splitting process through gluon absorp-
tion is �a(g) = 1

2

∑
bc �

a(g)
bc , where the factor of 1/2 is a

symmetry factor. In practice this symmetry factor is handled
by summing over only distinct processes, and, if the final state
involves identical particles, by integrating over the distinct
phase space. In writing this expression we have used the
thermodynamic integral,

∫ ∞
0 dk knB(k) = π2T 2/6.

The last remaining integral over z can be done and the total
rate for gluon absorption takes the form

�
a(g)
bc = g4T 2

96π p

[
c	

z0
+ cp − cln ln(z0)

]
, (D34)

where z0 = 	/p. The coefficients, c	, cp, cln are in tabular
form as in Table II. We note (again) that the total rate for
g → gg is �

g(g)
gg /2 to account for the symmetry of the final

state. We also note that the second row in this table has been
summed over quark flavors.

We will now consider the case when a soft quark is ab-
sorbed from the bath, and the hard particle of type a splits
a → cd . The differential rate now takes the form

d�
a(q)
cd

dω
= g4F a

cd (z)

32π p3

∫
d2q⊥
(2π )2

∫
d3k

(2π )3k
nF (k) 2πδ(k− − δE ),

(D35)

where

F a
cd (z) ≡

∣∣Maq
cd

∣∣2
/g4

νaz(1 − z)
. (D36)

Evaluating the matrix elements [again using Table II. of [25]
and Eq. (D21)], we find

F q1
q1q2

= 2CF

z(1 − z)

[
1 + (1 − z)2

z2

]
, (D37a)

F q1
q1q1

= 2CF

z(1 − z)

[
1 + (1 − z)2

z2
+ 1 + z2

(1 − z)2

+ 4

(
CF − CA

2

)
1

z(1 − z)

]
, (D37b)

F q1
q1q̄1

= 2CF

z(1 − z)

[
1 + (1 − z)2

z2
+ z2 + (1 − z)2

− 4

(
CF − CA

2

)
(1 − z)2

z

]
, (D37c)

F q1
q2 q̄2

= 2CF

z(1 − z)
[z2 + (1 − z)2], (D37d)

F q1
gg = 4CF

z2 + (1 − z)2

z2(1 − z)2

[(
CF − CA

2

)

+ CA

2
[z2 + (1 − z)2]

]
, (D37e)

F g
q1g = 4dFCF

dA

1 + z2

z2(1 − z)3

[(
CF − CA

2

)
(1 − z)2

+ CA

2
(1 + z2)

]
. (D37f)

Again integrating over the momentum fraction we find that
the total rate takes the form

�
a(q)
cd = g4

32π p

(
T 2

24

)[
c	

z0
+ cp − cln ln(z0)

]
, (D38)

where we used the integral,
∫ ∞

0 d p p nF (p) = π2T 2/12. The
coefficients c	, cp and cln are tabulated in Table III.

TABLE III. The total rates for quark absorption.

�
a(q)
bc c	 cp cln∑

q2
q1 → q1q2 + q1 → q1q̄2 4CF (2Nf − 2) −2CF (2Nf − 2) −4CF (2Nf − 2)

q1 → q1q1 8CF −4CF −8CF (1 + CA − 2CF )

q1 → q1q̄1 4CF
2
3CF (−1 − 9CA + 18CF ) −4CF (1 − CA + 2CF )∑

q2
q1 → q2q̄2 0 4

3CF (Nf − 1) 0

q1 → gg 0 − 8CF
3 (CA + 3CF ) 8C2

F∑
q1

g → q1g + g → q̄1g 4CA(2Nf ) (CF − 2CA)(2Nf ) (2CF − 4CA)(2Nf )
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FIG. 19. Distribution of momentum from a gluon with initial
energy E0 = 16 GeV evolved for a time t = 100 fm in a 300 MeV
static medium, compared with the thermal distribution. We used
Nf = 3 and αs = 0.3.

The full transition rate for collisional splittings takes the
form

C2↔2
split (	) = 1

2

∑
cd

∫ p−	

	

dω

(
d�

a(g)
cd

dω
+ d�

a(q)
cd

dω

)
, (D39)

and includes both the gluon and quark induced splittings.

APPENDIX E: DETAILED BALANCE OF THE LANGEVIN
MODEL

The diffusion process as described by the Fokker-Planck
equation [Eq. (10)] can be stochastically realized with the
Langevin model. The stochastic Langevin equations solves
the evolution of the space-time coordinates and the momen-

tum of the particle [44,57]:

�x
�t

= p
E

,

�p
�t

= −ηD,soft p + F thermal(t ), (E1)

where x is the space coordinates of the parton, F thermal is a
thermal random force satisfying the mean and the correlation
function

〈
F thermal

i

〉 = 0,

〈
F thermal

i F thermal
j

〉 = − 1

�t

[
p̂i p̂ j q̂L + 1

2
(δi j − p̂i p̂ j )q̂

]
. (E2)

The realization of the stochastic differential equation is de-
pendent on the discretization scheme. We choose the prepoint
Ito scheme in this work [58]. In the infinite medium limit, the
initial energetic partons should eventually reach the thermal
equilibrium via diffusion in the thermal plasma. The equilib-
rium distribution of the light parton δ f (p) is proportional to
exp(−p/T ) in the Fokker-Planck equation [Eq. (10)], and the
time derivative of the equilibrium distribution is zero. We can
thus obtain the drag coefficient ηD,soft as in Eq. (14).

We check the thermalization of the light partons in the QGP
plasma using the Langevin model [Eq. (E2)] with the drag and
diffusion coefficients in Eqs. (11)–(14). As shown in Fig. 19,
after a long evolution time, the momentum distribution of
the light parton approaches the Maxwell-Jüttner distribution
(Ref. [59]; see also [60] and references therein):

δ f (p) ∝ p2 exp

(
− E

T

)
. (E3)

FIG. 20. Momentum distributions of final gluons from an initial gluon with energy E0 = 200 GeV after 1 fm of evolution in a
300 MeV static medium. The system is evolved with elastic 2 ↔ 2 interactions only, for three different prescriptions for the cutoff
	: 	 = {0.25, 1, 4} min(

√
3pT , pcut ). The three panels show how the 2 ↔ 2 processes is divided into subprocesses: (a) a large-angle

process with soft drag and diffusion, (b) a splitting process with soft drag and diffusion, and (c) the full 2 ↔ 2 rate including large-
angle scattering, splitting, and soft drag and diffusion. The full rate shown in (c) is approximately independent of the prescription
for 	.
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FIG. 21. The energy distribution of a 100 GeV “up” quark propagating through 300 MeV QGP medium (Nf = 3) at αs = 0.005 with
different values of the cutoff. The evolution time is t = (0.3/αs )2 = 3600 fm. The subplot (a) only includes C1↔2 interactions and (b) only
includes C2↔2 interactions.

APPENDIX F: � CUTOFF DEPENDENCE

As described in Sec. II, the hard elastic interactions are
divided as the large-angle process and the splitting approxi-
mation process. In Fig. 20, we show the evolution of a gluon
in quark-gluon plasma (Nf = 3) with only 2 ↔ 2 interac-
tions. In Fig. 20(a), with only C2↔2

large-angle and C2↔2
diff , the tail

of the energy distribution depends significantly on the value
of 	. In Fig. 20(b), with only C2↔2

diff and C2↔2
split , the interac-

tions with q̃⊥ > μq̃⊥ and ω < 	 is missed, which result in a
missing part of the energy distribution; inevitably, the energy
distribution around the initial parton energy p0 is found to
depend on 	. In Fig. 20(c), with all the types of the 2 ↔
2 interactions combined (C2↔2

large-angle + C2↔2
diff + C2↔2

split + C2↔2
conv ),

the result is found to be independent of the cutoff 	, as
expected.

APPENDIX G: PROPAGATION OF ENERGETIC LIGHT
QUARKS

In Secs. III B and IV B, we presented the propagation of
a hard gluon in a static quark-gluon plasma (Nf = 3) at both
small and large coupling. The energy distribution of this hard
gluon evolution was presented for different values of hard-soft
cutoffs in Figs. 10 and 14. In this Appendix, we perform
the same tests for a hard “up” quark: Figs. 21 and 22. The
conclusions are the same for the evolution of a quark and that
of a gluon. In the small coupling regime (αs = 0.005), both
1 ↔ 2 interactions and 2 ↔ 2 interactions are independent of
the hard-soft cutoff. In the larger coupling regime (αs = 0.3),
1 ↔ 2 interactions are still independent of the hard-soft cut-
off, while, for 2 ↔ 2 interactions, there is a slightly larger
cutoff dependence around the initial energy.

FIG. 22. The energy distribution of a 100 GeV “up” quark propagating through 300 MeV QGP medium (Nf = 3) at αs = 0.3 with different
values of the cutoff. The evolution time is t = (0.3/αs )2 = 1 fm. The subplot (a) only includes C1↔2 interactions and (b) only includes C2↔2

interactions. See the weakly coupled results in Fig. 21 for comparison.
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