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Energy dependence of the chiral magnetic effect in expanding holographic plasma
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Based on a holographic far-from-equilibrium calculation of the chiral magnetic effect (CME) in an expanding
quark gluon plasma, we study collisions at various energies. We compute the time evolution of the CME current
in the presence of a time-dependent axial charge density and subject to a time-dependent magnetic field. The
plasma expansion leads to a dilution of the CME current. We study distinct combinations of how the initial
magnetic field and initial axial charge behave with changing initial energy as proposed in previous literature.
Most scenarios we consider lead to an increasing time-integrated CME current upon increasing the initial energy.
This would make it more likely to observe the CME at higher collision energies.
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I. INTRODUCTION

Significant experimental effort has been directed at the
observation of the chiral magnetic effect (CME), which refers
to the separation of electromagnetic charges along a magnetic
field �B [1–8], a signal of the presence of the chiral anomaly
[9,10]. The resulting charge current is referred to as CME
current, which near equilibrium is given by [2,3,11]

〈 �J 〉 ∝ Cμ5 �B, (1)

where the chiral anomaly coefficient C can be computed
from a triangle diagram [9,10], and μ5 is the axial chemical
potential.

The CME current has been shown to exist in the
condensed-matter physics context [12–16] and was first mea-
sured in condensed-matter experiments [17–25]. After more
than a decade of experimental searches in heavy ion collisions
at both the Relativistic Heavy Ion Collider (RHIC) [26–32],
and the Large Hadron Collider (LHC) by the ALICE [33–35]
and CMS [36,37] Collaborations, a dedicated experiment was
designed at RHIC aimed at observing a clean CME current.
This experiment involved collisions of isobar nuclei, Zr + Zr
and Ru + Ru collision systems, because one expected little
difference in the overall collision geometries, but a larger
magnetic field, and consequently a larger CME current, in
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Ru + Ru collisions, due to the larger electric charge of Ru
versus Zr.

Based on the data collected in this isobar run at RHIC
[38], the STAR Collaboration recently reported that, based
on the pre-blind criteria which had been defined before the
blind analysis, at 200 GeV nucleon-nucleon center-of-mass
energy there was no signal of the CME [32]. The analysis
by the STAR Collaboration [32] was highly impressive and
diligent. In the aftermath of their report it has become clear
that Zr and Ru are not as similar as one had anticipated,
in particular the differences in the collision geometry were
underappreciated. Such differences had not been taken into
account when constructing the criteria for a positive signal
during the blind analysis [32]. As a result, an updated analysis
could lead to there being room for a CME current in the
isobar data. However, due to the extreme complexity of the
systems under investigation, there remain uncertainties, which
at least in part can be decreased by a more accurate theoretical
understanding.

While the number of uncertainties is large, there are a
few which are of primary importance to understanding CME
physics in the isobar run. As mentioned above, there is an un-
certainty about the initial state in each collision, i.e., the shape
of the colliding ions as well as the individual distributions of
protons and neutrons. Differences in the collision geometry
can affect the definition of centrality, leading to differences
in the charged hadron multiplicities between Ru + Ru and
Zr + Zr systems, in the same centrality percentiles. In addi-
tion, the charge distribution inside the nuclei will also affect
the magnetic field generated by the colliding ions. This con-
stitutes another known uncertainty: the magnitude, spatial
extent, and time evolution of the magnetic field over the lifetime
of the plasma, for which there exist many different (sometimes
contradictory) predictions [39–46]. We discuss this in more
detail in the discussion, Sec. IV.

These uncertainties are often compounded by the need
for time evolution through (magneto)hydrodynamics or other
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approximate methods.1 Here, not only the regime of applica-
bility of the method of time evolution is uncertain, but so are,
in addition, the necessary input parameters such as the value of
the axial charge density. In particular, it is not well understood
how these parameters vary for collisions at different energies,
i.e., their beam-energy dependence. Early reports by the STAR
Collaboration [30] provided some information on how the
CME current depends on the beam energy. However, it is still
unclear how much of the reported data in Ref. [30] can be
attributed to the CME itself and how much was due to the
background.

The existence of these uncertainties provides ample moti-
vation for us to further investigate the behavior of the CME in
controlled settings. While we will not address issues of colli-
sion geometries, multiplicity distributions, or the distribution
of the charges within the nuclei generating the magnetic field,
we will present a holographic model in which the time evo-
lution of the axial charge and the magnetic field is governed
by the symmetries of the system, manifest in the equations of
motion.

Various computations based on magnetohydrodynamics at
late times support the view that, during the collision, the
magnetic field first decays in vacuum and then more slowly,
inversely proportional to the proper time, B ∝ τ−1 [39,45],
as also expected from analytic solutions to Bjorken-like flow
with magnetic field [41,42]. In Bjorken-like flow, the axial
charge density is also expected to decay inversely proportional
to the proper time, 〈J0

(5)〉 ∝ τ−1. From linearized hydrody-
namics it is known that the CME current is proportional to
the axial chemical potential μ5 and the magnetic field B, so
that this Bjorken-like scenario would suggest a CME current
proportional to τ−2. Then the question is if this current starts
out large enough during the plasma phase to be detectable
in the produced particles. Within our model we are going to
answer this question.2

In this work, we address a subset of the uncertainties men-
tioned above. We start our holographic model evolution in a
known initial state determined by the strongly coupled field
theory itself. We merely fix the initial value of the magnetic
field, the initial value of the axial charge density, and require
the electric field to vanish initially.

As dictated by the holographic equations of motion, the
axial charge density decreases as 〈J0

(5)〉 ∝ τ−1, while the
magnetic field decreases as B ∝ τ−1, like in magnetohydro-
dynamic models [39,41,42,45]. Our time evolution includes
the full far-from-equilibrium dynamics which need not be
hydrodynamic and need not be Bjorken-like.

A similar holographic system was studied previously; it
featured a nonexpanding plasma, isotropic in the transverse
plane and included a time-independent axial charge density
and time-independent magnetic field [48]. There, the authors
find that, at RHIC energies, a nonexpanding plasma can yield

1Also uncertainties in the hadronic phase and freeze-out or conver-
sion to observable particles need to be considered.

2A magnetohydrodynamic computation of the effect of the CME
in Bjorken-like flow was conducted in Ref. [47] and its effect on the
electromagnetic fields was described.

a significant CME current, while it does not at LHC energies.
Here, considering several distinct scenarios, we indeed come
to a different conclusion for most of those scenarios, as will
be discussed in the remainder of this paper.

In Fig. 6, we display the main result of our work, the
charge accumulated during the expansion of the plasma in six
scenarios (cases). Four out of these six cases lead to a larger
accumulated charge for larger initial collision energies.

We extend Ref. [48] to include the effect of the expansion
of the plasma, include the time dependence for the axial
charge density and magnetic field, start with an initial state
anisotropic in the transverse plane, and consider the pressure
anisotropies as observables. A comparison of our results with
Ref. [48] is given in Sec. III. In terms of the time evolution
of the plasma, the axial charge and the magnetic field, our
model plasma extends this nonexpanding case [48] as well as
the (ideal) magnetohydrodynamics Bjorken-expanding case,
which is discussed in Ref. [47].

In Sec. II, we introduce the gravitational holographic
model, present our numerical results for the CME current
and pressure anisotropies in Sec. III, and conclude with
a discussion in Sec. IV. Appendix A contains the gravi-
tational equations of motion and Appendix B details the
near-boundary expansions of each field in the gravity theory.
Appendix C briefly details the numerical methods we use to
solve the time-dependent Einstein equations.

II. HOLOGRAPHIC MODEL

In this section we construct a holographic model which at
late times follows Bjorken expansion along the “beamline”
(x3 direction), which is subject to a magnetic field along
one transverse direction (x1 direction), and which contains a
nonzero axial charge density. Both the magnetic field and the
axial charge density are time dependent.

A. Gravitational theory

Consider the five-dimensional gravity action [4,48]3

S = 1

16πG

∫
d5x

√−g

×
[

R − 2� − L2

4

(
FμνFμν + F (5)

μν Fμν

(5)

)

+ α

3
εμνρστ Aμ

(
3FνρFστ + F (5)

νρ F (5)
στ

)] + Sct , (2)

whose holographic dual enjoys a global U (1)A × U (1)V sym-
metry. Here, R is the Ricci scalar and g is the determinant
of the five-dimensional metric gμν . G is the five-dimensional
Newton constant, � is the cosmological constant, which in
AdS4+1 is given in terms of the radius of AdS, L, namely

3In our conventions, Greek indices are used for five-dimensional
coordinates xμ, xν, . . . = {r, v, x1, x2, ξ}, and Latin indices for the
four-dimensional field theory coordinates xa, xb, . . . = {v, x1, x2, ξ},
and the second part of the Latin alphabet for three-dimensional
spatial directions xi, x j, . . . = x1, x2, ξ .
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� = −6/L2, and α is the Chern-Simons coupling. The gauge
fields associated with this vector and axial U(1) symmetry in
the bulk theory are given as Aμ and V μ, respectively, with their
field strengths4 defined as F (5)

μν = ∂[μ,Aν] and Fμν = ∂[μ,Vν]

where we have made use of the square brackets to indicate
an antisymmetrization of the indices, i.e., A[μBν] = AμBν −
AνBμ. The Levi-Civita tensor in this work is defined in terms
of the totally antisymmetric Levi-Civita symbol ε(μνρστ ) as
εμνρστ = ε(μνρστ )/

√−g.
The counter-term action Sct contains the relevant counter

terms required to render the variational problem well posed
[here presented for a (d + 1)-dimensional bulk space-time;
d = 4 in our case] [49]

Sct = 1

8πG

∫
dd x

√
γ

[
K − 1

2L

(
2(1 − d ) − L2

d − 2
R(γ )

)]

+ L3

64πG
ln (ε)

∫
dd x

√
γ0F 2

0 , (3)

where K is the trace of the extrinsic curvature, γ is the induced
metric on a constant r = 1/ε hypersurface (with a small cutoff
energy value ε), γ0 is the metric of the dual field theory, and
F0 is the external field strength of the gauge field V in the dual
theory.5

The equations of motion, which follow from the action, are
given by

Rμν − 1

2
gμν (R − 2�) = L2

2
Tμν + L2

2
T (5)

μν , (4a)

∇μFμν = −2α

L2
ενβλρσ FβλF (5)

ρσ , (4b)

∇μFμν

(5) = − α

L2
ενβλρσ

(
FβλFρσ + F (5)

βλ F (5)
ρσ

)
,

(4c)

where we have defined the standard energy-momentum tensor
associated with the gauge-field Lagrangian,

Tμν = FμλFλ
ν − 1

4 gμνF 2, T (5)
μν = F (5)

μλ F (5)λ
ν − 1

4 gμνF 2
(5),

(5)
and Rμν is the Ricci tensor derived from the space-time
metric gμν . We are interested in bulk solutions which at
the asymptotic AdS5 boundary are undergoing a Bjorken
expansion at late times. In the bulk five-dimensional space
we work with generalized Eddington-Finkelstein coordi-
nates (r, v, x1, x2, ξ ), adapted to reduce to Milne coordinates
(τ, x1, x2, ξ ) at the AdS boundary. Here r is the radial AdS
direction, v is the Eddington-Finkelstein time, x1, x2 are co-
ordinates in the transverse plane, ξ = 1

2 ln[(t + x3)/(t − x3)]
is the space-time rapidity, and τ = (t2 − x2

3 )1/2 is the proper
time for which

τ = lim
r→∞ v. (6)

4The position of the subscript (or superscript) (5) is arbitrary and
serves only to distinguish the axial field strength from its vector
companion.

5We do not include the dual axial field strength F (5)
0 in Eq. (3) since

it vanishes for the ansatz we consider

That is, the bulk Eddington-Finkelstein time v reduces to the
Milne proper time at the AdS boundary.

B. Metric and gauge field ansatz

As an ansatz for the bulk five-dimensional metric we take6

ds2 = 2drdv − A(v, r)dv2 + F1(v, r)dvdx1

+ S(v, r)2eH1(v,r)dx2
1 + S(v, r)2eH2(v,r)dx2

2

+ L2S(v, r)2e−H1(v,r)−H2(v,r)dξ 2, (7)

where A, F1, S, H1, and H2 are scalar functions of the bulk
radial coordinate r and the Eddington-Finkelstein time v. To
obtain an expanding (3 + 1)-dimensional space-time at the
conformal boundary of the AdS4+1 space-time, we place the
following boundary condition on the metric at the conformal
boundary

lim
r→∞

L2

r2
ds2 = −dτ 2 + dx2

1 + dx2
2 + τ 2dξ 2. (8)

In terms of the components of the metric, the boundary con-
dition in Eq. (8) implies

lim
r→∞ A →

( r

L

)2
, (9)

lim
r→∞ H1 → −2

3
ln

( τ

L

)
, (10)

lim
r→∞ H2 → −2

3
ln

( τ

L

)
, (11)

lim
r→∞ S → r

( τ

L4

)1/3
, (12)

lim
r→∞ F1 → 0. (13)

As an ansatz for the gauge fields we take

Aμ = 1

L
(0,−φ(v, r), 0, 0, 0),

(14)

Vμ = 1

L
(0, 0,−V (v, r), b ξ, 0),

with the dimensionless magnetic field b. Note that we choose
the ordering (r, v, x1, x2, ξ ) when writing vector components
explicitly as in Eq. (14).

Considering the field strength associated with Vμ, we see
that our ansatz produces a vector magnetic field directed along
the x1 direction. This vector magnetic field will persist in the
field theory at the conformal boundary of our space-time. We
can compute the precise form of the dual external gauge field
in the boundary theory by considering

lim
r→∞Va = V ext

a = 1

L
(0, 0, b ξ, 0). (15)

6This is similar to the ansatz used in Ref. [50] by the authors who
originally used this method in asymptotically AdS space-times and
is an extension of the ansatz used in Ref. [51] to study the time
evolution of the axial current in an explicitly top-down holographic
model.
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This implies that the only nonzero components of the dual
field strength are Fξ2 = −F2ξ = b/L. Given the fluid velocity
ua, the magnetic field as seen in a fluid cell is

Ba = 1

2
εabcd ubFcd ⇒ B1 = b

Lτ
. (16)

where we have used the fluid velocity in the comoving frame
at the boundary ua = (1, 0, 0, 0). The choice of the other
components of the gauge fields are motivated by our desire to
capture essential chiral magnetic physics. The bulk quantity
V (v, r) will soon be shown to produce7 the x1 component of
the vacuum expectation value of a global U(1) vector charge
current operator in the dual field theory [see Eq. (25)]. The
temporal component of the axial gauge field will provide the
axial chemical potential in the dual theory.

Our choice of ansatz realizes a SO(3) symmetry which has
been entirely broken in a controlled way by the expansion
along x3 on one hand, and by the magnetic field along x1 on
the other hand. Inserting the ansatz from Eqs. (14) and (7) into
Eqs. (4b) and (4c), one obtains three equations. One of these
equations is for the evolution of the bulk gauge-field compo-
nent V (which is included with the Einstein equations during
the evolution) while the other two are for the axial scalar
potential φ. The equations for the scalar potential can be
solved [48] once it is realized that they can be written as a
total derivative and hence determine a constant of motion,

q5/L = L4S(v, r)3φ′(v, r) + 8αbV (v, r), (17)

E5 ≡ −φ′(v, r) = q5L−1 − 8αbV (v, r)L−4

S(v, r)3 , (18)

where E5 is the bulk electric field. Here we have used a prime,
φ′, to denote a derivative with respect to the radial coordinate,
and q5 is a conserved quantity. We show that q5 is directly
related to the axial charge density in the dual field theory
in Sec. II C. The result in Eq. (18) is highly useful numer-
ically. The energy-momentum source, which appears on the
right-hand side of the Einstein field equations, is composed
of contractions of the vector and axial field strengths, which
themselves are composed of derivatives of the vector and
axial gauge fields. Hence it is the bulk electric field E5, the
derivative of the temporal component of the axial gauge field,
which explicitly appears in the Einstein field equations, as
can be seen in Appendix A in the appearance of the terms
proportional to q5.

The equations of motion that follow from Eq. (4a) can
be rewritten into a pseudo-nested8 list by the definition of an

7Note that, in Eq. (15), we have implicitly chosen the source of V1 to
be zero, i.e., V1 ≈ O(r−2) near the conformal boundary. This choice
implies that we can consistently set the metric function F1 = 0. If we
were to keep this term and provide a source for this component of
the vector gauge field, the metric component F1 would describe the
backreaction of the CME current on the energy-momentum tensor
[48,51].

8We call this a pseudo-nested list since the nesting is only partial. In
this case, three of the equations must be solved as a coupled system
while the coupled system itself sits within the nested structure.

additional derivative denoted by ḟ . The definition of the dotted
derivative is given by

ḟ ≡ ∂v f + 1
2 A∂r f (19)

and constitutes a derivative along outgoing null geodesics
[52]. The pseudo-nested list generated by treating the direc-
tional derivatives of the metric components along outgoing
geodesics as auxiliary fields is collected for this system in
Appendix A. The method of solution is directly analogous to
earlier work [51], although we repeat it in Appendix C for
completeness.

C. Energy-momentum tensor and currents of the dual
boundary field theory

Using the standard holographic dictionary [49,53–55] we
can obtain the vacuum expectation values 〈·〉 of the operators
in the boundary corresponding to the energy-momentum ten-
sor Tab, the vector current Ja and the axial current Ja

(5). We
will not go into detail as to how one obtains these results,
instead, we refer the interested reader to Refs. [49,53] for
more details on how one extracts this information using the
holographic dictionary. For the vacuum expectation value of
the energy-momentum tensor we find the following results:

ε = 〈T00〉 = 2L3

κ2

(
−3a4(τ )

4L4
− b2 ln (b1/2)

8L2τ 2

)
, (20)

P1 = 〈T11〉

= 2L3

κ2

(
− a4(τ )

4L4
+ h(1)

4 (τ )

L4
+ b2 ln (b1/2)

8L2τ 2
− 1

6τ 4

)
,

(21)

P2 = 〈T22〉 = 2L3

κ2

(
− a4(τ )

4L4
+ h(2)

4 (τ )

L4

− b2 ln (b1/2)

8L2τ 2
− b2

16L2τ 2
− 1

6τ 4

)
, (22)

τ 2Pξ = 〈Tξξ 〉 = 2L3τ 2

κ2

(
− a4(τ )

4L4
− h(1)

4 (τ )

L4
− h(2)

4 (τ )

L4

− b2 ln (b1/2)

8L2τ 2
− b2

16L2τ 2
+ 1

3τ 4

)
, (23)

where ε is the energy density, and P1, P2, and Pξ are the
pressures in the x1, x2, and ξ directions, respectively. For the
axial as well as the vector currents we obtain9

〈
Ja

(5)

〉 = 1

2κ2

(q5L

τ
, 0, 0, 0

)
, (24)

〈Ja〉 = 1

2κ2
(0, 2V2(τ ), 0, 0), (25)

9Note that these are the consistent currents (as opposed to the
covariant currents) [7,56,57]. With this definition the vector current
is conserved and the axial current is equal to the consistent chiral
anomaly. A standard Bardeen-Zumino term could be added to the
generating function to produce the covariant currents.
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where the ordering of components is (τ, x1, x2, ξ ). The τ

dependence of the axial current (24) is due to the expan-
sion along the x3 direction. In Eqs. (24) and (25) we have
used the standard definition of the gravitational constant κ2 =
8πG. The nonvanishing components of the dual vector field
strength are given by Fξ2 = −F2ξ = B while the dual axial
field strength is identically zero, F (5) = 0.

The quantities that appear in the energy-momentum tensor
as well as in the vector current, namely, a4(τ ), h(1)

4 (τ ), h(2)
4 (τ ),

and V2(τ ) are coefficients which result from an expansion of
the (4 + 1)-dimensional metric (gμν), and gauge fields (Aμ

and Vμ) near the conformal boundary. This expansion can be
obtained by solving the Einstein equations order by order in
the holographic coordinate r, near r → ∞. These expansions
are collected and displayed in Appendix B. The goal of the
numerical evolution is to extract these coefficients in order to
construct with them the vacuum expectation values of the dual
operators.

Conformal symmetry is explicitly broken by the magnetic
field, the trace of the energy-momentum tensor is propor-
tional to the electromagnetic field strength as can be explicitly
checked,

〈
T a

a

〉 = L3

8κ2
F 2 = − b2L

4κ2τ 2
= −B2

1L3

4κ2
. (26)

One can see that, at asymptotically late times, conformal sym-
metry is restored as τ → ∞ while b, κ , and L are constant
over time. From Eq. (24) the axial charge density 〈J0

(5)〉 is
completely determined up to an initial constant, even out of
equilibrium. This initial constant value was determined as the
conserved quantity q5 in Sec. II B. As expected from Eq. (24)
with the fact that q5 is constant in τ and the Bjorken expansion
in one spatial direction, this current density falls off as τ−1.
This falloff will manifest itself in a finite time available for
the CME vector current to grow before it is diluted due to the
expansion of the medium.

As an aside, we conclude this section by putting into con-
text how the standard Navier-Stokes equations relate to the
equations governing the time evolution of the energy density
in our holographic model. Of particular interest for compar-
ison with known equations is the evolution equation for the
energy density of the plasma. In (0 + 1)-dimensional Bjorken
dynamics, the Navier-Stokes equations for an uncharged fluid
reduce to a single equation for the energy density [58],

∂τ ε + 4

3

ε

τ
− 4

3

η

τ 2
= 0. (27)

The equivalent equation in the system we evolve can be
determined from a near-boundary solution to the Einstein
equations, as displayed in Appendix B. Making use of the
energy density and pressures as defined in Eqs. (20)–(23), the
evolution equation is given by

−P1(τ )

τ
− P2(τ )

τ
− B1(τ )2

8τ
+ ∂τ ε(τ ) + 2ε(τ )

τ
= 0, (28)

where we recall B1(τ ) = b
Lτ

. In the late-time limit one can
show that solutions for the energy density as obtained from
Eq. (28) asymptote to the solutions of Eq. (27).

D. Preparation of initial conditions

Initial conditions in this system consist of a choice of the
following quantities: an initial time τ0, the coefficient a4(τ0)
associated with the initial energy density, initial axial charge
density q5(τ0), initial magnetic field B1(τ0) and a choice of the
profile for the functions H1(v0, z), H2(v0, z), V (v0, z) along
the (inverted) bulk AdS radial direction, z = L2/r. The choice
of the functions H1(v0, z), H2(v0, z), V (v0, z) implicitly sets
the initial pressure anisotropies as well as the initial value of
the vector current in the dual theory. In all computations we set
the initial radial profile for the Maxwell field V in the vector
U(1) sector to zero, V (v0, z) = 0, and hence 〈J1(τ0)〉 = 0 for
every evolution. This means that each case which we study
starts with a vanishing CME current at τ = τ0. So the current
will grow for τ > τ0 and will simultaneously be diluted as the
plasma expands.

We parametrize the initial profile for the metric compo-
nents Hi in terms of a deviation, H (d )

i away from the vacuum
AdS solution,

Hi = H (AdS) + H (d )
i , H (AdS) = − 2

3 ln (v + z). (29)

In every evolution we choose to set H (d )
1 (v0, z) = H (d )

2 (v0, z).
This choice implies a relation between asymptotic coefficients
of the metric at the initial time, h(1)

4 (τ0) = h(2)
4 (τ0) = h4(τ0),

and also implies the following about the pressure anisotropies
at the initial time,

�P12 ≡ P1 − P2 = 2L3

κ2

(
b2

16L2τ 2
0

+ b2 ln (b)

4L2τ 2
0

)
, (30)

�P1ξ ≡ P1 − Pξ

= 2L3

κ2

(
b2

16L2τ 2
0

+ b2 ln (b)

4L2τ 2
0

+ 3h4(τ0)

L4
− 1

2τ 4
0

)
,

(31)

�P2ξ ≡ P2 − Pξ = 2L3

κ2

(
3h4(τ0)

L4
− 1

2τ 4
0

)
. (32)

The parametrization of the initial data in Eq. (29) must then
be translated to the parametrization of the metric functions
used in the numerical evolution scheme, where we work with
scaled and subtracted metric components [52], e.g.,

Hi(z, v) = �Hi (z, v) + z4H̃i(z, v), (33)

where the scaling is determined so that the value of the
subtracted function H̃i at the AdS boundary is the unknown
asymptotic coefficient of interest, e.g.,

lim
z→0

H̃i = h(i)
4 . (34)

The functions �Hi represent singular and regular terms in the
functions Hi. These functions are referred to as subtractions.
We make use of these subtractions so that the function for
which we solve numerically, the tilde quantity H̃i, is a regular
function. As a result, in practice, we never compute the “un”-
tilded functions. Rather, our numerics make use of only tilded
functions—as regular functions they can be represented with
high accuracy by the Chebyshev basis we employ.
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We take the following ansatz for the initial deviations from
the AdS vacuum solution [59]

H (d )
i (z) = z4�1 cos (γ1z) + z4�2 tan (γ2z),

+ z4�3 sin (γ3z) + z4
4∑

j=0

β j z
j, (35)

where γi, �i, βi are parameters which we choose to influence
the behavior of the anisotropy functions in the bulk AdS
space-time. For the choice of parameters we use in this work
the initial deviation of the bulk space-time anisotropy from
the vacuum solution is shown in the top panel of Fig. 1.
The values we choose for this work correspond to all 23
initial conditions10 tabulated in the supplemental material of
Ref. [59].

E. Remarks on the holographic model construction

Actions of the form (2) can arise within extensions of the
top-down constructed original AdS-CFT [60,61] correspon-
dence between N = 4 Super-Yang-Mills (SYM) theory and
type-IIB Supergravity (SUGRA). For example, within type-
IIB superstring theory we may consider adding extra Dirichlet
branes (D branes) to the standard AdS-CFT-construction in-
volving a stack of N coincident D3 branes. While we will
not give an explicit string theory embedding for Eq. (2), this
is the way we approach its holographic interpretation. We
consider the gauge theory dual to our holographic model
(2) as a deformed version of N = 4 SYM theory. It is de-
formed in that it is allowed to have a Chern-Simons coupling
α breaking supersymmetry, and in that it contains an extra
symmetry, namely, the U(1)V symmetry that is manifesting in
the presence of an extra gauge field V μ. Recall that N = 4
SYM theory already contains an anomalous U(1)A symmetry
(and associated gauge field Aμ), which is a subgroup of the
R-symmetry (the symmetry which rotates supercharges into
each other).

Choosing values for the Chern-Simons coupling α and the
gravitational coupling constant κ defines the dual field theory.
In this work, we choose the Chern-Simons coupling such
that our field theory has the same chiral anomaly as QCD,
namely by αQCD = 6/19. To reduce our holographic model to
N = 4 SYM theory, one would choose the vector gauge field
to vanish, V μ ≡ 0, along with choosing the supersymmetric
value of the Chern-Simons coupling, α = 1/

√
3.

While the matching of the anomaly coefficient is straight-
forward, the matching of the gravitational coupling is not
as well constrained. In this work we utilize the AdS-CFT
dictionary to give the value of κ in terms of the number of
colors Nc and the AdS radius. In the most familiar form of the
correspondence built as a stack of Nc coincident D3 branes in
type-IIB string theory, one finds

κ2 = 4π2L3

N2
c

. (36)

10We do not use initial condition (12) and we have changed the
value of one coefficient of initial condition (23) to �3 = 1.

FIG. 1. (top) Deviation of the bulk space-time anisotropy from
the vacuum solution on the initial time slice. The thick curve displays
the choice of initial data which we later investigate further in Fig. 6
and Figs. 2–5. The thick line in the bottom two figures corresponds
to results using the choice of parameters leading to three thick line
in the top plot. (middle) The corresponding evolution of the energy-
momentum tensor components: energy density (red), and the three
distinct pressures, along the beamline (green), and in the transverse
plane along the magnetic field (blue) and perpendicular to it (orange).
(bottom) The vector current J1

V , the CME current, along the magnetic
field.

Unfortunately, as discussed above, it is unclear if the relation
given in Eq. (36) applies to the action of our holographic
model (2) because it is a deformed version of N = 4 SYM
theory. Nevertheless, we use Eq. (36) as our definition of κ

in our deformed version of N = 4 SYM theory. A separate
method of fixing the value of the gravitational coupling is
discussed in Ref. [48]. Their method relies on the fact that the
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late-time geometries in their calculations will be a static black
brane. One can then consider matching thermodynamic data
[48]. In particular the entropy of the black brane is matched to
three-fourths of the Stefan-Boltzmann value for three-flavor
QCD.11

The method used in Ref. [48] poses several problems in
our work, perhaps the most challenging of which is that the
solutions we obtain will never asymptote to a static black
brane configuration. Instead, as stated above, we assume that
the relation in Eq. (36) continues to hold. We are then forced to
fix the number of colors, for which we set Nc = 3. Although
not infinite, lattice studies have shown that Nc = 3 produces
thermodynamic results not so different (≈20%) from Nc = ∞
[63–65]. In addition, we must fix the value of the AdS radius
L. We then make the arbitrary choice of L = 1 fm. Having
fixed the AdS radius and the number of colors we are now
in a position to match to QCD data. To do so, we perform
one run of our code at arbitrary parameters and obtain the
dynamical temperature T = ε1/4 in units of GeV. We then use
a scaling symmetry of our field theory, which acts on physical
quantities as

x̃i = xi

λ
, B̃ = λ2B, μ̃(5) = λμ(5), (37a)

〈T̃μν〉 = λ4〈Tμν〉,
〈
J̃ i

(5)

〉 = λ3〈Ji
(5)

〉
, 〈J̃ i〉 = λ3〈Ji〉,

(37b)

to scale the data of our run such that, at τ = 7 fm, our
temperature is T ≈ 90 MeV, or T (7 fm/λ)λ = 90 MeV. For
the scaling run we used, the value of the rescaling we find
is λ = 0.768. Once we have fixed the scaling, we obtain
starting values of our initial data such that it yields models
of collisions corresponding to RHIC BES beam energies of√

s = (19 GeV, 27 GeV, 39 GeV, 64 GeV, 200 GeV). We
also include

√
s = 2.74 TeV in some of our analyses to show

the distinction between RHIC and LHC energies in our model.

III. RESULTS: CHIRAL MAGNETIC EFFECT CURRENT
AND PRESSURE ANISOTROPIES

In this section we present and analyze the results for the
time evolution of the energy density and pressures as well as
the CME current.

A. AdS radial dependence of the chiral magnetic effect current

We begin by showing that the time evolution of the energy
density, pressure, and CME current is largely independent of
the choices of profiles in the AdS radial direction at the initial
time. In the dual field theory, the choice of the bulk profile on
the initial time slice corresponds to choosing the magnitude
of spatial anisotropies as well as their initial time derivative.
The choices of this initial data, given in Eq. (29) at fixed

11It has been shown repeatedly that thermodynamic quantities as
calculated at strong coupling via the gauge-gravity duality are rel-
atively unaffected by the strong coupling, taking on approximately
75% of their weak-coupling values, see, for instance, Ref. [62]

axial charge, magnetic field, initial time, and initial energy
density, are shown in the top panel of Fig. 1. The results of
our time evolution for the energy-momentum tensor and the
vector current are displayed in the middle and bottom panels
of Fig. 1, respectively. In the middle panel of Fig. 1 we see
that the difference in initial profile leads to variations of the
pressures and the energy density where we have highlighted
a “characteristic” curve with a thicker line with the remaining
initial conditions represented as thinner lines. However, we
see that the variations die off over time. In the pressures the
variations persist until approximately τT = 2.2. While for
the energy density the variations persist until approximately
τT = 3, beyond which it is seen that all the curves evolve with
approximately the same behavior, despite being at different
values of energy density for any given set of initial conditions.

However, one can see that the different initial data in gen-
eral do not have a very strong effect on the time evolution of
the energy-momentum tensor. This is especially pronounced
in the bottom panel of Fig. 1, where we have displayed the
vector current (CME current) for each of the different ini-
tial conditions. The CME response is clearly robust against
different choices of the initial space-time anisotropy. Here,
again, we have shown a characteristic curve with a thicker line
and this curve corresponds to the same characteristic curve as
displayed in the upper two panels of Fig. 1.

B. Energy dependence of the chiral magnetic effect

Having shown that our results do not depend strongly on
the choice of initial data for the space-time anisotropy, we fix
a particular form of the initial data in Eq. (35) with

�i = γi = β3 = β4 = β5 = 0, (38a)

β0 = 1/10, β1 = 2/10, β2 = −1/2. (38b)

This choice of initial parameters for the initial space-time
anisotropy profile corresponds to the thick lines displayed
in Fig. 1. We then use the matching procedure outlined in
Sec. II E to present our results in physical units.

In the ensuing sequence of plots and titled paragraphs we
display the results of the analysis for various energies relevant
to the RHIC beam energy scan. We provide this analysis in
several stages. We begin by holding all initial input values
fixed at the initial time while we vary the initial energy density
at the QCD-matched value for the anomaly coefficient, i.e.,
α = αQCD = 6/19 (Case I). We then repeat this analysis for a
second value of the anomaly coefficient, the supersymmetric
value for which α = αSUSY = 1/

√
3 (Case II). After this we

return to the physically relevant QCD value for the anomaly
coefficient while we vary the initial energy and scale the initial
axial charge density accordingly (Case III). We then study the
dependence on the initial magnetic-field value by repeating
our analysis with an initial magnetic field of half the size (Case
IV). We then transition and consider the magnetic field on
the initial time slice to depend on the initial energy density
while holding the initial axial charge fixed (Case V). Finally,
we push our model to its logical conclusion by varying the
initial energy while scaling the initial axial charge density and
initial peak magnetic field strength accordingly (Case VI).
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FIG. 2. CME current—fixed initial axial charge and magnetic-
field strength (Case I): The vector current J1

V along the magnetic field
is displayed for six different beam energies (initial energy densities)
for a fixed initial axial charge density of 〈J0

(5)〉 = 0.000 32 GeV3, and
the initial magnetic field is fixed to be eB ≈ m2

π .

Case I: Fixed initial axial charge and magnetic field
strength. In Fig. 2 we display the results of our simulations
for a fixed initial value of the magnetic field of eB ≈ m2

π and
axial charge density12 〈J0

(5)〉 = 0.000 32 GeV3, at initial en-
ergy densities corresponding to values of collision energy and
temperature as displayed in Table I. Qualitatively similar for
all initial energy densities, the CME current quickly rises to a
peak value before decreasing with time. Remarkably, the peak
value obtained for the highest initial energy we used (light
blue curve) is smaller than that of the lowest initial energy run
(red curve). In addition, the highest initial energy run has the
sharpest falloff for the CME current. Hence, we conclude that,
for this set of initial data, the CME current survives longer at
lower beam energies. At the end of this section, we quantify
these statements by introducing a measure of the total amount
of CME current that has flowed per area. This measure is
referred to as charge accumulation and was shown already
in Fig. 6.

Case II: Anomaly coefficient dependence. It is interesting
to ask how the value of the anomaly coefficient affects the re-
sponse of the CME current. In Fig. 3 we address this question
by comparing the evolutions for αQCD = 6/19 ≈ 0.316 and
the formerly supersymmetric value αSUSY = 1/

√
3 ≈ 0.577.

In Fig. 3, the larger supersymmetric value of the anomaly
coefficient (thin dashed curves) leads to an enhancement of
the peak signal (and of the whole curve at all times) by an
approximate factor of two. This is consistent with the ratio
αQCD/αSUSY ≈ 0.54, as expected from Eq. (1) since C ∝ α.

Case III: Varying initial energy and axial charge densities at
fixed initial magnetic field. The peak value of the axial charge
density generated during a collision changes as a function of
the beam energy. Since our model contains a time-dependent

12In Case III we see that this is actually an order of magnitude
smaller than estimates of the axial charge density we use in later
plots. However, here this value is chosen simply to illustrate the
basic behavior of our system. Using a value of the same order of
magnitude as in Cases III–VI does not change the essential physics,
it only scales the magnitude of the CME response.

TABLE I. Starting values of energy density and temperature used
in our numerical simulations.

√
s [GeV] 19 27 39 64 200 2750

T [MeV] 165 181 199 225 299 577

charge density it is then interesting to consider appropriately
changing the initial axial charge density along with the initial
energy. As shown in Ref. [66] (and the references therein)
the axial charge density is related to fluctuations of color
electric and magnetic fields. We collect their arguments here
and display the resulting axial charge density approximated as
follows [66]:

2
〈
J0

(5)

〉
τthAoverlap = 2τ 2

thπρ2
tubeQ4

s

√
Ntube

16π2
≈ 135, (39)

where ρtube and Ntube are the radius and number of glasma flux
tubes, with the latter approximately equal to the number of bi-
nary collisions between nuclei Ntube ≈ Ncoll, and ρtube ≈ 1 fm
at 200 GeV. The other parameters are the thermalization time
τth of the quark gluon plasma (QGP) which is taken to be
τth = 0.6 fm along with the saturation scale Q2

s ≈ 1.25 GeV2

for gluons at collision energy of 200 GeV. Finally the number
of collisions can be estimated [66] to be Ncoll = 82.73 for
Zr + Zr and Ru + Ru for impact parameter b = 7 fm. We can
then determine the axial charge density by considering a rough
estimate for the area of overlap Aoverlap as a circle of radius
10 fm to give 〈J0

(5)〉 = 0.0027 GeV3.
Given this estimate of the value of the axial charge at

200 GeV we must now produce an estimate for its value for
all energies we consider. We arrive at these values by using
that the axial charge density scales as Q2

s (when assuming that
ρ2

tube ∼ 1/Q2
s ) and Q2

s ∼ (1/x)1/3 ∼ s1/3, and hence we arrive
at the values displayed in Table II. There are a few caveats
associated with the values given in Table II. First, each of

FIG. 3. CME current—anomaly coefficient dependence (Case
II): The vector current J1

V along the magnetic field is displayed for
four different beam energies (initial energy densities) for a fixed
initial axial charge density. The thick curves are generated with
αQCD ≈ 0.319 while the thin curves are generated at the supersym-
metric value of α = 1/

√
3. In both cases the initial axial charge

density is 〈J0
(5)〉 = 0.000 32 GeV3, while the initial magnetic field is

fixed to eB ≈ m2
π .
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TABLE II. Estimates of axial charge density at various beam
energies (initial energy densities) used in the numerical evolution.

√
s [GeV] 19 27 39 64 200 2750

〈J0
(5)〉 [10−3GeV3] 1.2 1.4 1.6 1.9 2.7 6.6

these values we calculated assuming a thermalization time of
τth = 0.6 fm. Our simulation begins before this thermalization
time occurs. To be proper, one should use the expected time
evolution of the axial charge in our setup [see Eq. (24)] to
propagate these values back to the initial time slice. Doing
so increases the values reported in Table II by a factor of
three. Given that each of the values would be scaled by an
overall factor of three we expect only a scaling of the resulting
CME current by an approximate factor of three for all curves.
In principle, we could run these simulations. However, our
holographic method encounters a systematic problem for such
large values of the axial charge density at the initial time
because this set of initial data leads to situations where it is
not possible to form an apparent horizon.13 Hence, we choose
not to do this and use the values reported in Table II as the
data on the initial time slice. What is important for interpreting
our results is the relative scaling with energy, not the overall
scaling as a result of back-propagation. The results of this
simulation are displayed in Fig. 4 as thick lines. We find
that with the energy-dependent initial axial charge density the
higher energy collisions lead to a faster rise and a larger peak,
but also a faster decrease of the CME current.

Case IV: Decreased magnetic-field strength. Here we have
repeated the analysis of Case III with half the initial value of
the magnetic field [i.e., eB(τ0) = m2

π/2]. The results of this
analysis are displayed as thin lines in Fig. 4. This comparison
is made to show that simply decreasing the initial value of the
magnetic field for all sets of initial data by the same amount
has a minimal effect on the resulting CME current, apart
from its overall reduction. Given that both the axial charge
and magnetic field in the field theory are time-dependent,
it is a nontrivial outcome of this test to see that the peaks
of the CME current shift slightly as we decrease the initial
magnetic-field strength. For eB(τ0) = m2

π/2 the CME current
peaks later for

√
s = (27, 39) GeV while they peak sooner for√

s = (64, 200) GeV as compared with the case of eB(τ0) =
m2

π .
Case V: Varying initial energy density and magnetic-field

strength at fixed axial charge density. While it is still unclear
what is the appropriate magnitude, spatial extent, and time

13This fact may indicate that this system needs all the energy to
support the required charge density, similar to an extremal Reissner-
Nordström black hole, which carries charge but has no thermal
energy (although it is an equilibrium state which has an event hori-
zon). Increasing the initial axial charge density even further may
lead to unphysical situations where the supplied energy density is
insufficient to support the demanded axial charge density. However,
there may also be interesting dynamical solutions possible in this
ever-expanding setup which have no equilibrium analogs. We leave
this for future investigations.

FIG. 4. CME current—varying initial axial charge densities
(Cases III and IV). The vector current J1

V along the magnetic field
is displayed for four different beam energies (four different initial
energy densities) for an initial axial charge density which scales with
the initial energy density as displayed in Table II. The thick curves
(Case III) are generated with eB ≈ m2

π and thin curves (Case IV) are
generated with eB ≈ m2

π/2.

evolution of the magnetic field generated during a heavy ion
collision, it is well agreed upon that its magnitude changes
as a function of beam energy. Since our model contains a
time-dependent magnetic field determined by symmetries and
equations of motion alone, it is then interesting to consider
appropriately changing the initial magnitude of the magnetic
field along with the beam energy. In this case we work again at
a fixed value of the axial charge density on the initial time slice
as a function of the energy density. We do so in order to isolate
the effect of an initial energy-dependent peak magnetic-field
strength on the CME current.

A simple estimate of the peak magnetic-field strength at the
center of the collision is given in Ref. [40] as

eB = 1

2

γ∗
γ

(
Qs

Q∗
s

)2

(eB∗), (40)

where B is the magnitude of the magnetic field, which we wish
to compute at energies lower than a given high-energy scale.
Quantities at that high-energy scale are starred. Here γ is the
Lorentz factor of the associated collision energy and Qs is the
gluon saturation scale. In this work, in order to compare as
closely as possible to previous work [48], we choose to fix the
high-energy magnitude of the magnetic field to eB∗ = 10m2

π

at 1 TeV. Application of this formula then provides us with the
estimates for the magnetic-field strength shown in Table III.
The results of our analysis are displayed as thin lines in Fig. 5.
We see that, by holding the charge density fixed, independent
of the initial energy, while varying the initial magnetic field as
a function of the energy, the CME current response is similar
to that displayed in Fig. 4. Large initial energies lead to larger

TABLE III. Estimates of peak magnetic-field strengths at various
beam energies (initial energy densities).

√
s [GeV] 19 27 39 64 200

eB 0.095m2
π 0.135m2

π 0.195m2
π 0.32m2

π 1m2
π
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FIG. 5. CME current (Cases V and VI): The vector current J1
V

along the magnetic field is displayed. The thin lines (Case V) in-
dicate the time evolution for four different beam energies (initial
energy densities) for an initial axial charge density independent of
the initial energy density and magnetic field, which scales with the
initial energy as shown in Table III. Thick lines (Case VI) indicate
running for four different energies with an initial axial charge density
and magnetic field which scales with the initial energy, as shown in
Tables III and II.

peak values of the CME current with sharper falloffs over
time.

Case VI: Varying initial energy density, magnetic-field
strength, and axial charge density. As a final case we consider
varying both the magnetic field and the axial charge density
with the initial energy density (modeling different beam en-
ergies). The results of this analysis are displayed in Fig. 5 as
thick lines. We can see that the peak value is the largest for
the highest energy (200 GeV collisions). This peak value is
quickly damped away, but we show below that the large peak
will manifest itself in a large total charge, accumulated during
the evolution, and contributes to the main conclusion of this
work (see Fig. 6). In contrast to Case V, shown as thin lines,
the overall magnitude of the signal is larger.

Charge accumulation. Although the previous results al-
ready indicate how the vector current varies throughout its
time evolution depending on the initial conditions, it will
be useful to assign some measure of how much current is
produced for a given case. This will provide an estimate of the
total amount of CME-produced charge separation that would
be detectable. A simple, yet effective measure is the amount of
charge that flows through a surface of a given area throughout
the duration of the simulation,

qV =
∫

dt
∫

〈�J 〉 · d �A. (41)

Given that the current flows along the x1 direction, we can take
d �A = îdx2dx3 from which we find

qV =
∫

dtdx2dx3〈J1〉 =
∫

dx2dξ

∫
dττ 〈J1〉. (42)

The bounds on the integrals for x2 and ξ are our choice, so we
choose to compute this per unit value of the area Ã defined as
Ã = ∫

dx2dξ and report the charge accumulation defined as

qV /Ã =
∫ τ f

τi

dττ 〈J1〉, (43)

FIG. 6. Charge accumulation from time-integrated CME current:
The total amount of charge per area which has flowed during the
simulations considered throughout this work [see Eq. (43)]. The
plot legend labels the case in which the total charge was computed
corresponding to the titled paragraphs in Sec. III. The cases differ
by either holding fixed, or varying, the initial value of the magnetic
field and the axial charge density [B1(τ0 ), 〈J0

(5)(τ0)〉], as a function of
the initial energy density at the initial time τ0. Case I: both 〈J0

(5)(τ0)〉
and B1(τ0 ) are constant as a function of initial energy. Case II: both
〈J0

(5)(τ0 )〉 and B1(τ0) are constant as a function of initial energy while
the Chern-Simons coupling α is taken at the supersymmetric value.
Case III: B1(τ0) is held fixed while 〈J0

(5)(τ0 )〉 varies as a function of
initial energy density. Case IV: Case III is repeated with B1(τ0) taking
half the value of case III. Case V: 〈J0

(5)(τ0)〉 is held fixed while B1(τ0 )
varies as a function of initial energy density. Case VI: both 〈J0

(5)(τ0)〉
and B1(τ0) vary as a function of the initial energy density.

considering it a measure of the charge which flows through a
unit area throughout the duration of our simulation. The values
of τi = 0.260 fm and τ f = 4.88 fm, the initial and final time,
respectively, correspond to the duration of each simulation
(in Cases I through VI). The results of this calculation are
displayed in Fig. 6.

The results show that only two of the cases we consider
in this work produce a larger amount of charge transport as
we decrease the energy of the collisions (Cases I and II).
These curves are displayed as the orange and bright green
lines in Fig. 6. They correspond to the case of working with
values of the magnetic field and axial charge density at the
initial time, which do not depend on the initial energy density.
The difference in the two curves is due to the choice of the
Chern-Simons coupling, the orange curve corresponding to
the case with α = αQCD (Case I), the bright green correspond-
ing to α = αSUSY (Case II). Using the supersymmetric value
increases the amount of charge accumulated, but the trend still
displays a decreasing slope as a function of the initial energy
density.

The blue line in Fig. 6 corresponds to Case III, where the
initial magnetic field is independent of the choice of initial
energy density, but the value of the initial axial charge density
scales with the initial energy density according to the model
shown in Eq. (39) [66]. In this case our model predicts that an
increased amount of charge will pass through a unit surface in
the field theory during the evolution as we increase the initial
energy density. The forest green line corresponds to Case IV,
where we have repeated Case III with only the magnetic field
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reduced by a factor of two. Here we clearly see the influence
of the choice of the initial value of the magnetic field if it
is kept independent of the initial energy density. An increased
value of the magnetic field leads to an increase in current flow,
as expected already from the near-equilibrium current Eq. (1).

The red curve in Fig. 6 corresponds to Case V, working
with an initial axial charge density, independent of the initial
energy while allowing the magnetic field on the initial slice
to vary as given in Eq. (40). Here, we again see an increasing
amount of total charge has passed through a surface during
our simulation as we increase the energy of the collision.

The final curve (purple) which we display in Fig. 6 corre-
sponds to Case VI, allowing both the magnetic field and axial
charge density to depend on the initial energy density (beam
energy). Here, we see the largest positive slope, indicating
a significant increase in the accumulated CME charge as a
function of the initial energy density.

Comparison with previous work. Just like the present
work, earlier works have also considered fully back-reacted
setups, i.e., setups in which the bulk matter sources the
Einstein equations. Among them are time-dependent holo-
graphic models including the works [48,51]. The model used
in Ref. [51] is similar to the one used in this work, however, in
Ref. [51] the model did not contain a vector gauge field, Vμ =
0. As a result, the model used in Ref. [51] is a consistent trun-
cation of type-IIB string theory, provided the supersymmetric
value of the Chern-Simons coupling is chosen. It further dif-
fers in construction by choice of boundary conditions on the
metric, where the author in Ref. [51] enforced

lim
r→∞

L2

r2
gμν = diag(−1, 1, 1, 1), (44)

implying that the geometry of the boundary field theory is flat
Minkowski space-time. With this choice of boundary metric
and the choice that field theory quantities should depend only
on time, the author’s chosen initial data generate initially
anisotropic plasmas with trivial flow (i.e., no expansion). Fur-
thermore, the author’s choice of axial gauge field ansatz leads
to aligned, time-independent, external electric and magnetic
fields in the dual field theory. The consequence of this choice
is an indefinite production of axial charges. Due to these
differences, in particular since this model does not account
for any vector current, it is difficult to compare the results of
Ref. [51] with those of the present work.

The model most similar to the one used in the present
work is that of Ref. [48], where the authors furthered the
work of Ref. [51] to include the missing U(1)V gauge field
and used the same model as presented in Eq. (2) to study the
evolution of the vector, rather than axial, current response in
an isotropizing SYM plasma. To achieve this particular set of
solutions, the authors use the same boundary conditions on the
metric as the author of Ref. [51] [see Eq. (44)], leading to a
flat boundary space-time. With this choice of boundary metric
and the choice that field theory quantities should depend only
on time, the authors choose initial data generating initially
isotropic plasmas with trivial flow (i.e., no expansion). The
initially isotropic plasma, with nonzero axial chemical poten-
tial subjected to an external magnetic field, then relaxes to

a final anisotropic configuration with nonzero vector current
response. The authors provide a parameter space scan over
different energies, axial chemical potentials, anomaly coeffi-
cients, and magnetic-field strengths.

In contrast with our work, the axial charge density and
magnetic field in their work are static. The combination of
static axial charge density and magnetic field as well as the
static behavior of the fluid (no expansion) makes direct com-
parison of our results impossible. Looking to the results [48],
one first observes that, while their vector current response
grows, and eventually saturates, ours peaks and then decreases
over time. This can be attributed to the longitudinal expansion,
causing a decreasing axial charge density and magnetic field
in our setup. Besides this notable difference, all basic quali-
tative checks behave as expected. As an example, increasing
the value of the anomaly coefficient from the QCD-matched
value to the SUSY value leads to an increase in the magnitude
of the CME response (as seen in Fig. 3), the same can be seen
in Fig. 4 of their work.

An important conclusion from their model is that the CME
is not fast enough at LHC energies [48]. This conclusion
is based on the observation that the time it takes for their
CME current to reach its steady-state value is larger than the
expected lifetime of the magnetic field. Hence, the authors
concluded that their simulation predicts no measurable CME
current at LHC energies. In contrast with this, while we have
a time-dependent magnetic field within our model, we do
not draw the conclusion of the viability of the CME current
based on lifetimes. Rather, we base our conclusion on the
amount of current generated throughout the duration of our
simulation. We believe this is a better measure because what
is experimentally relevant is the number of charged particles
that reach the detectors.

Note that we do not see the oscillations reported in
Ref. [48]. The oscillatory behavior of the one point functions
in Ref. [48] are interpreted as being due to quasinormal modes
of the black brane in their geometry. For large values of the
axial charge density, relative to the appropriate powers of the
energy density and magnetic-field strength, the frequencies of
these modes approach the real axis in the complex-frequency
plane, hence these excitations represent long lived waves or
oscillations.

Our current understanding is that, by the time in our evolu-
tion that one might expect oscillations in the pressures and
the vector current response in the nonexpanding case, the
value of the magnetic field, axial charge density and energy
density have already seen an appreciable decrease in their
values. When charge densities become small compared with
the temperature, the potential barrier near the horizon shrinks
such that the quasinormal modes dissipate more energy into
the black hole, leading to a larger damping of the correspond-
ing field theory excitations [67,68]. Decreasing the magnetic
field below the temperature scale has a similar effect [68].
As a result the frequencies of the would be long-lived modes
have, rather than approached the real axis, retreated deeper
into the complex plane. Therefore we see no oscillations as
the frequencies of these modes are representative of highly
damped excitations.
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IV. DISCUSSION

In this work we reported on the beam energy dependence
of the chiral magnetic effect in an expanding quark gluon
plasma (QGP) based on a holographic model, initially far
from equilibrium. Of the six combinations of initial data used,
we have found four of them to lead to a larger chiral magnetic
effect (CME) signal at higher energies. These are Sases III, IV,
V, and VI for which the CME current is shown as a function of
time in Figs. 4 and 5. That mentioned CME signal is character-
ized by the total charge transported along the magnetic-field
direction (see Fig. 6), representing the amount of charged
particles reaching the detectors during a heavy ion collision.
In addition, the only scenario in which the accumulated charge
per area is larger at smaller energies represents perhaps the
most physically inaccurate description, one in which the initial
value of the axial charge density and magnetic-field strength,
present moments after the initial collision, is independent of
the energy of the colliding nuclei; these are Cases I and II with
the CME currents shown in Figs. 2 and 3.

The conclusion that a more significant CME signal is to
be found at higher collision energies is of course based on a
model, which necessarily includes caveats. Besides the choice
of using a holographic plasma, the model relies on the choice
of parameters. We find that the parameters with the strongest
influence on the results are the value of the initial magnetic
field and initial axial charge density at lower energies. In our
model these are spatially uniform quantities with dependence
only on the proper time τ . Clearly, this is not the case in a re-
alistic heavy ion collision, where the magnetic field and axial
charge density can have a complicated spatial distribution and
evolution. As a result, our current setup with its magnetic field
decreasing as τ−1 likely does not correctly reflect realistic
relative sizes of the magnetic field, axial chemical potential,
and energy density at all times. This is an especially relevant
criticism given that a community consensus still has to be
reached on both the true time dependence of the magnetic field
as well as the energy or time dependence of the axial charge
density. Furthermore, electric and magnetic fields are external
and not dynamical in our setup.

An additional source of uncertainty in our results lies in the
use of a boost-invariant14 ansatz. While this may be expected
to be an appropriate approximation at very high energy, it
is not expected to be so at the lowest RHIC energies. Fur-
thermore, it has been shown previously that Chern-Simons
fluctuations are suppressed in the Bjorken rapidity invariant
regime [69]. There, the authors found that there must be a de-
viation from the rapidity-invariant regime for Chern-Simons
fluctuations to occur. With these deviations expected to be
large during low-energy collisions there may be a sizable
increase in the initial axial charge density present during

14We recall that the whole system (action and metric solution) is
boost invariant along the x3 direction. That is a symmetry. Nothing
depends on ξ . The time-evolution of fluid velocity, energy density,
and pressures is not Bjorken flow at all times. It is approximately
Bjorken flow at late times only.

low-energy collisions. In addition, at lower beam energies,
the collision’s trajectory through the phase diagram may be
closer to the QCD critical point, where the Chern-Simons
fluctuations generating the axial charge were recently shown
to be enhanced [70]. In our present work these two potential
sources of additional initial axial charge were not considered
and taken together may provide enough initial axial charge
density to reverse the slopes in Fig. 6. This is especially true if
it is the case that the magnetic field, although smaller initially,
has a longer lifetime at lower energies [71]. We leave these
topics to be investigated in the future.

In fact, the many existing predictions for the evolution of
the magnetic field in a heavy ion collision can be incorporated
into our model and studied in the future. As one example,
the magnetic field was found to be sustained longer than
implied by 1/τ behavior when the finite conductivity of the
medium was taken into account [40]. Furthermore, because of
combined effects of the electromagnetic response of the QGP
and continued production of a field by the valence charges,
the magnetic field was argued to be effectively constant during
the lifetime of the QGP (from approximately 1 fm/c after the
collision until freeze-out) [46]. That calculation was based
on a decoupling of the fluid dynamics and the dynamics of
the electromagnetic fields [43]. As another example, in a
distinct approach the time-evolution and effects of electric
and magnetic fields within proton-nucleus collisions at rel-
ativistic energy has been considered in the Parton-Hadron-
String Dynamics approach [44], predicting a sizable electric
field (while standard magnetohydrodynamic approaches ne-
glect the electric field by definition). This situation of several
distinct theoretical predictions for electromagnetic field be-
havior emphasizes the significant uncertainty stemming from
our lack of detailed knowledge about the magnetic field; a
situation which may be remedied considering these different
scenarios within our model and comparing with experimental
data such as the isobar run.

We expect the effect of nonzero baryon or electric charge
density to leave our results qualitatively unchanged based on
previous nonlinear [72] and linearized [68] computations in
holographic models similar to ours.

As a final note, we point out that there are two distinct
pressure anisotropies which may serve as indicators for the
time evolution of the plasma and the magnetic field, respec-
tively. If the system evolves according to viscous Bjorken
flow, then the pressure anisotropy without a magnetic field
is �P = PL − PT ∝ τ−1. This is the anisotropy due to the
viscosity created between the longitudinal pressure (along the
rapidity direction defined with the beamline) and transverse
plane pressure by the expansion along the beamline. If there is
a magnetic field, then there is an additional anisotropy, now in
the transverse plane. It is created between the pressure along
the magnetic field PB and the pressure that is perpendicular
to the magnetic field and also perpendicular to the beamline
P⊥⊥. If the magnetic field is constant over the lifetime of
the plasma, then we expect the transverse plane anisotropy
�P⊥ = PB − P⊥⊥ to be constant over time. If the magnetic
field decays as B ∝ τ−1, then the �P⊥ ∝ τ−2. If these two
anisotropies �P and �P⊥ could be measured, they would
allow us to distinguish between the magnetic field being
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constant, time dependent, or absent during the lifetime of the
plasma.15
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APPENDIX A: EQUATIONS OF MOTION

For completeness we here include the equations of motion in the coordinates z = L2/r.

0 = zS(v, z)2[H ′
1(v, z)H ′

2(v, z) + H ′
1(v, z)2 + H ′

2(v, z)2] + ze−H1(v,z)V ′(v, z)2

+ 6[2S′(v, z) + zS′′(v, z)]S(v, z), (A1)

0 = L6b2eH1(v,z)S(v, z)2 + [L3q5 − 8αbV (v, z)]2 − 24L6z2S(v, z)4S′(v, z)Ṡ(v, z)

− 12L6z2S(v, z)5Ṡ′(v, z) − 24L6S(v, z)6, (A2)

0 = −64α2b2eH1(v,z)V (v, z) + 8αbL3q5eH1(v,z) − L6z2S(v, z)3[S′(v, z)V̇ (v, z) + Ṡ(v, z)V ′(v, z)]

+ L6z2S(v, z)4[H ′
1(v, z)V̇ (v, z) + Ḣ1(v, z)V ′(v, z) − 2V̇ ′(v, z)], (A3)

0 = −9z2S(v, z)3[H ′
1(v, z)Ṡ(v, z) + Ḣ1(v, z)S′(v, z)] − 4z2e−H1(v,z)S(v, z)2V ′(v, z)V̇ (v, z)

− 6z2Ḣ1
′(v, z)S(v, z)4 − 2b2eH1(v,z), (A4)

0 = −6z2Ḣ2
′(v, z)S(v, z)4 + b2eH1(v,z) + 2z2e−H1(v,z)S(v, z)2V ′(v, z)V̇ (v, z)

− 9z2S(v, z)3[H ′
2(v, z)Ṡ(v, z) + Ḣ2(v, z)S′(v, z)], (A5)

0 = 3L4S(v, z)6{2L2z4A′′(v, z) + 4z3A′(v, z) − L2z2Ḣ1(v, z)[2H ′
1(v, z) + H ′

2(v, z)]

− L2z2H ′
1(v, z)Ḣ2(v, z) − 2L2z2H ′

2(v, z)Ḣ2(v, z) + 8L2} − 5b2L6eH1(v,z)S(v, z)2

+ 2L6z2e−H1(v,z)S(v, z)4[36eH1(v,z)S′(v, z)Ṡ(v, z) − V ′(v, z)V̇ (v, z)] − 7[L3q5 − 8αbV (v, z)]2, (A6)

0 = 3z2A′(v, z)S(v, z)Ṡ(v, z) + L2e−H1(v,z)V̇ (v, z)2 + L2Ḣ1(v, z)Ḣ2(v, z)S(v, z)2

+ L2Ḣ1(v, z)2S(v, z)2 + L2Ḣ2(v, z)2S(v, z)2 + 6L2S(v, z)S̈(v, z). (A7)

In this list of equations, a prime denotes a radial derivative, i.e., A′(v, z) = ∂zA(v, z).

APPENDIX B: ASYMPTOTIC EXPANSION

To numerically evolve the Einstein equations we adopt coordinates r = L2/z placing the conformal boundary at z = 0. We
can solve the coupled Einstein-Maxwell-Chern-Simons (EMCS) system order by order near the AdS boundary. We do this for
two reasons: first, to extract the relevant information for the construction of the dual energy-momentum tensor and, second, two
inform our choice of field redefinitions to improve the numerical accuracy of our solutions. The solution to the EMCS system

15Our model does not include the potentially large anisotropy created by the initial geometry or fluctuations, although two of the authors have
studied the time evolution of that type of anisotropy within this framework before [72].
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near the conformal boundary at z = 0 is given by

A(v, z) = a4(v)z2 + ξ (v)2 + 2ξ (v)

z
+ 1

z2
+ O(z3), (B1)

H1(v, z) = h(1)
4 (v)z4 − 6v2ξ (v)2 + 6vξ (v) + 2

9v3
z3 + 2vξ (v) + 1

3v2
z2 − 2z

3v
− 2

3
ln(v) + O(z5), (B2)

H2(v, z) = h(2)
4 (v)z4 − 6v2ξ (v)2 + 6vξ (v) + 2

9v3
z3 + 2vξ (v) + 1

3v2
z2 − 2z

3v
− 2 ln(v)

3
+ O(z5), (B3)

S(v, z) = 3vξ (v) + 1

3v2/3
+ (9vξ (v) + 5)

81v8/3
z2 − 1

9v5/3
z + v1/3

z
+ O(z3), (B4)

φ(v, z) = q5

2v
z2 + O(z3), (B5)

V (v, z) = V2(v)z2 + O(z3), (B6)

where we have set L = 1 to reduce clutter in the equa-
tions. Factors of L can be restored through dimensional
analysis. The coefficients a4, h(1)

4 , h(2)
4 , V2, q5 cannot be de-

termined by a near-boundary analysis and represent either
data to be extracted from our evolution (a4, h(1)

4 , h(2)
4 ,V2)

or data that must be supplied to begin our evolution
(a4(τ0), h(1)

4 (τ0), h(2)
4 (τ0),V2(τ0), q5).

APPENDIX C: NUMERICAL ALGORITHM

1. Setting initial data

We begin by fixing H1(vi, z; ξi ) and H2(vi, z; ξi ) on the
initial time step where ξi is a guess for the initial radial shift.
We then solve the linear equation given by Eq. (A1) in the
limit of vanishing Chern-Simons coupling and vanishing bulk
electric field V (v, z), for SLinear. Given SLinear we fix V (v, z)
on the initial time step and solve the nonlinear system for
S(v, z) using Fréchet differentiation and Newton iteration.
The linear solution SLinear serves as an initial guess for this
nonlinear relaxation approach. We then solve Eq. (A2) and
locate the apparent horizon by solving the equation for the
roots of the expansion of a congruence of null geodesics,
θ = Ṡ(vi, Ah) = 0. Once we have obtained the location of the
apparent horizon we use the residual shift symmetry to place
the horizon at z = 1 by setting ξ = ξi + 1 − 1/Ah.

2. Numerical evolution

After setting the initial data and obtaining ξ on the initial
time slice we repeat our initial step of solving the equation for
S by fixing H1(vi, z; ξ ) and H2(vi, z; ξ ). Once we have a so-
lution we proceed to solve Eq. (A2) for Ṡ. We then solve
the coupled system, Eq. (A3) through (A5), for the func-
tions (V̇ , Ḣ1, Ḣ2). We then check the location of the apparent
horizon and demand the time independence of the expansion
∂vθ = 0 to obtain a boundary condition for the metric func-
tion A. With our boundary condition we can solve Eq. (A6)
completing our run through the “pseudo-nested” system.

After each run through the pseudo-nested system we ex-
tract the time derivatives ∂vH1(v, z), ∂vH2(v, z), and ∂vV (v, z)
from the definition in Eq. (19) and use them to construct data
for H1, H2, and V on the next time step. The time derivative of
ξ is found by extracting it from the near-boundary behavior of
the function A. By use of appropriate redefinitions this can be
done such that

ξ ′(v) = lim
z→0

− 1
2 As(z, v). (C1)

On each subsequent time slice we use the previous solution
to Eq. (A1) as an initial guess for Newton iteration of the
nonlinear system. We continue to repeat the procedure until
we reach the specified final time.
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