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Generator coordinate method for transition-state dynamics in nuclear fission
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Since its beginnings, fission theory has assumed that low-energy induced fission takes place through transition-
state channels at the barrier tops. Nevertheless, up to now there is no microscopic theory applicable to those
conditions. We suggest that modern reaction theory is suitable for this purpose, and propose a methodology
based on a configuration-interaction framework using the generator coordinate method (GCM). Simple reaction-
theoretic models are constructed with the Gaussian overlap approximation to parametrize both the dynamics
within the channels and their incoherent couplings to states outside the barrier. The physical characteristics of
the channels examined here are their effective bandwidths and the quality of the coupling to compound-nucleus
states as measured by the transmission factor T . We also investigate the spacing of GCM states with respect to
their degree of overlap. We find that a rather coarse mesh provides an acceptable accuracy for estimating the
bandwidths and transmission factors. The common numerical stability problem in using the GCM is avoided due
to the choice of meshes and the finite bandwidths of the channels. The bandwidths of the channels are largely
controlled by the zero-point energy with respect to the collective coordinate in the GCM configurations.
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I. INTRODUCTION

An important goal in the description of fission reactions is
to understand their excitation functions, that is, the probability
that the reaction leads to fission as a function of the total
energy. Another important goal is to understand the properties
of the daughter nuclei after a fission event. There has been
enormous progress in recent years on understanding the char-
acteristics of the final state thanks to improved computational
tools in many-body quantum mechanics such as the time-
dependent Hartree-Fock-Bogoliubov approximation [1,2].

The theory of the excitation function in reactions with
many possible outcomes has not seen comparable advances.
Fission theory has relied on the transition-state hypothesis1

since the original paper by Bohr and Wheeler in 1939 [3]
and continuing up to the present era [4–10]. Briefly, it is
encapsulated in the formula for the decay rate �BW:

�BW = 1

2πρ

∑
μ

Tμ, (1)

where μ labels channels, ρ is the level density of the
compound nucleus, and Tμ is a transmission coefficient or
conductance. It is also identical to the penetration factor in
sub-barrier conductance. It satisfies the bounds

0 � Tμ � 1. (2)

1The term “channel” describes its role in reaction theory better than
“state”, but we shall use both designations for the models presented
here.

Typically the energy dependence of T is assumed to be the
same as that of a particle traversing a one-dimensional po-
tential barrier, but that is a pure guess absent a microscopic
understanding of the many-body Hamiltonian dynamics.

It is clear that the present time-dependent formulations
are ill suited to the task of describing the barrier-crossing
dynamics in heavy nuclei. We expect that a formulation using
reaction theory might be more successful. In this paper, we
examine how the transition-state dynamics might be realized
in a reaction theory based on a configuration-interaction treat-
ment of the Hamiltonian.

In the theory of large nuclei, one starts with the wave func-
tions of self-consistent mean-field theory, such as those given
by the energy density functionals of Skyrme, Gogny, or rela-
tivistic formulations [11]. Besides the self-consistent solutions
of the Hartree-Fock (HF) or Hartree-Fock-Bogoliubov (HFB)
equations, an adequate basis of states for studying transport
properties can be constructed using the generator coordinate
method (GCM). This requires the calculation of mean-field
configurations that are constrained by one or more single-
particle fields. The GCM has been used previously for mod-
eling fission dynamics near the barrier top [12–14]. In those
works, the authors used GCM with two constraining fields
and the Gaussian overlap approximation (GOA) to map the
Hamiltonian onto a two-dimensional Schrödinger equation.
However, the steps needed to arrive at a Schrödinger equation
ignore the statistical aspects of the decay and gives no hint
of a connection to Eq. (1). Here we only need the matrix ele-
ments between GCM configurations in our reaction-theoretic
approach, avoiding the mapping onto a Schödinger equation.
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In an earlier paper [15] we showed how one can derive the
transition-state formula in a highly simplified configuration-
interaction approach. Here, we shall use the same reaction
theory formalism to calculate transmission coefficients, but
with a more realistic description of the channels. An important
advantage of the reaction theory is that statistical aspects of
the theory can be easily included in the formalism [16].

A technical obstacle in the GCM approach is the
nonorthogonality of the basis configurations. As will be
shown, its formal difficulties are avoided by making use of
the many-body Green’s function defined in Eq. (4) below. A
related problem is the danger of numerical instabilities when
overlaps between configurations are large. We will show that
this problem does not arise because one can use coarse bases
without much loss of accuracy.

For investigating transition channels in fermionic systems,
the general characteristics can be derived independently of the
details of the constraining field. A configuration is labeled by
the expectation value of the field; we shall call the expectation
value qk for a kth configuration in a finite-dimensional basis.

Besides the internal properties of the channel, one needs
specific information about the coupling to the reservoirs of
states on either side of the channel. The situation is very
similar to the cables in computer networks. The cable has a
characteristic impedance, and conductance between the con-
nected devices depends on impedance matching. An optimally
matched coupling yields a transition conductance T = 1. Mis-
matches decrease it and makes it dependent on the signal
frequency. For the fission theory, one needs to understand in
detail the interaction connecting compound-nuclear states to
the states in the channel. That is beyond the scope of this
paper; we will treat these couplings schematically.

II. GCM METHODOLOGY FOR TRANSMISSION
CHANNELS

The usual procedure for applying the GCM to nuclear
spectroscopy consists of the following steps:

(1) Select a set of configurations calculated in mean-field
theory and constrained by some physical one-body field such
as the mass quadrupole moment Q. The set of expectation
values of the field (q1, q2, . . . , qN ) defines an N-dimensional
basis for the configuration space. In more advanced ap-
proaches the configurations are projected to restore broken
symmetries.

(2) Calculate the matrix N of overlaps between configu-
rations and the matrix H of the Hamiltonian or the energy
functional that plays the role of the Hamiltonian in the mean-
field theory. Here and below we use boldface symbols for
matrices.

(3) Solve the Hermitian eigenvalue problem2 (i.e., the Hill-
Wheeler equation)

Hψ = ENψ (3)

2The equation is put into Hermitian form through the standard
variable transformation ψ ′ = N1/2ψ .

for energies E and corresponding N-dimensional wave func-
tions ψ .

(4) Check for convergence by varying the number of con-
figurations N in the calculation. The effect on the properties
in the low-energy part of the spectrum should be small.

Steps (1) and (2) are the same for calculating reaction rates
in the GCM, but the remaining steps are completely different.
Namely, the new steps are:

(3′) In a new step (3), the Hamiltonian is made complex by
adding imaginary terms −� j/2 to it and calculate the Green’s
function. This replaces the matrix diagonalization in the old
step (3). Each � j is a matrix of decay rates to states j outside
of the model space. It is a sum of rank-one matrices, each
corresponding to an S-matrix channel [17]. See Eq. (8) below
for a consistent implementation in our modeling framework.
Time-dependent methods also make use of complex Hamilto-
nians to treat fluxes out of the model spaces, as for in Ref. [13],
but there the � j can be parametrized as diagonal matrices.
There are two decay modes in the present fission study, one
corresponding to the set of compound nucleus states and the
other to states in the second well and beyond. We label them
a and b, respectively, in the equation below. The required
Green’s function is

G(E ) = (H − i�a/2 − i�b/2 − NE )−1. (4)

(5) The transmission factor Tab between reservoir a and b
is given by the S-matrix expression:

Tab =
∑
μ∈a

∑
ν∈b

|Sμν |2. (5)

The S matrix is usually written in terms of H and a set
of reduced decay amplitudes as in [17], Eq. 14-19]. In our
application the phase information in Sμν is not needed and we
use the Datta formula [18,19] to calculate Tab in terms of G
and �,

Tab =
∑
jklm

(�a) jkGkl (�b)lmG∗
mim = Tr (�aG�bG∗). (6)

The resulting Tab is a continuous real function of E ; the in-
dividual channels satisfy 0 � Tμν � 1. As in the procedure
for spectroscopic studies, one gains confidence by varying the
dimension of the configuration spaces.

III. DECAY WIDTHS

What is left now are the tasks of constructing the matrices
N, H , and G. The overlap matrix N is simply the determinant
of the orbital overlaps when the configurations are pure Slater
determinants. We shall not go into the well-known difficul-
ties [20] in defining H when the energetics are based on an
energy functional rather than a Hamiltonian, and simply re-
mark that the prescriptions for dealing with an energy density
functional are well established.

A new issue arises in defining the decay matrix. Our
guiding principle is Fermi’s folden rule for the decay of a
configuration j into a set of states a. This reads

�a, j = 2π
∑
k∈a

|〈k|v| j〉|2δ(Ek − E ), (7)
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where the density-of-states function
∑

k∈a δ(Ek − E ) smeared
out in some way for numerical computations. The state j is
in the set of configurations defining the transition state, while
the set a are configurations in the compound nucleus on one
side or the post-barrier configurations on the other side. The
interaction which connects the transition-state configurations
to the rest is denoted v.

Due to the lack of orthogonality among the states in H
an individual decay channel may couple to more than one
configuration in the transition-state channel. This implies that
� can have off-diagonal matrix elements. If these off-diagonal
matrix elements are ignored, the individual transmission fac-
tors may violate the Eq. (2).

The matrix structure can be achieved in a generalized
Fermi golden rule of the form [21]

(� j )kk′ = 2π
∑
j∈a

〈k|v| j〉〈k′|v| j〉δ(Ej − E ). (8)

In this work we do not attempt to compute the � from Eq. (8)
from the Hamiltonian but simply assume the separable ap-
proximation

(� j )kk′ = γ jg j (k)g j (k
′). (9)

to parametrize it.

IV. EXAMPLES OF GOA HAMILTONIANS

In these examples the transition-state channel is composed
of one or two chains of configurations with varying assump-
tions about the Hamiltonian H . Calling the collective GCM
coordinate q, we take chains of N regularly spaced states
spanning an interval [q1, qN ] with a mesh spacing 	q =
(qN − q1)/(N − 1) = 1. To examine the dependence on the
mesh spacing the calculations are carried out for two choices
of mesh spacing, keeping the Hamiltonian and the total length
QT = (N − 1)	q = 3 fixed.

To derive the matrix elements in the model, we assume that
the variables in the wave function of a configuration 
qk can
be decomposed into a continuous coordinate q and a set of
other coordinates ξ , and the dependence on q is Gaussian in
the GCM configuration,


qk (ξ, q) = 
 ′(ξ )(πs2)−1/4 e−(q−qk )2/(2s2 ). (10)

Here, s is the width of the Gaussian wave packet. Then the
overlap matrix has elements

N jk = exp(−(q j − qk )2/4s2). (11)

The model Hamiltonian matrix is constructed with separate
kinetic and potential energy terms,

H = K + V . (12)

For the matrix K, we are guided by the GCM theory for a
cluster of particles bound together by a translationally in-
variant particle-particle interaction, but free of any external
forces [22]. Here, the collective variable is x, the position
of the center of mass of the cluster. Under the factoriza-
tion hypothesis [Eq. (10)] the GCM Hamiltonion matrix

element is

K jk = EK (1 − (q j − qk )2/2s2)N jk j (13)

with EK given by

EK = h̄2

2Ms2
(14)

and M denoting the mass of the particles [22]. We will treat a
possible potential energy V (q) in a similar way in Sec. IV B
below.

We make the same separable approximation for the imagi-
nary matrices �, centering their wave packets at the endpoints
of the chain. The resulting parametrization from Eq. (9) has
the separable function

gj (k) = Nk j (15)

and γ as an arbitrary real parameter. Here, we assume γ1 =
γN ≡ γ .

The resulting Green’s function to be evaluated is the in-
verse of the matrix

H jk − iγ N j1Nk1/2 − iγ N jN NkN/2 − N jkE . (16)

In summary, aside from the term V , the model presented
here has three dimensionless parameters: N , the number states
in channel; 	q/s, the spacing of the states in units of the
width of the collective wave packet; and γ /EK , the strength
of the imaginary decay width in units of the zero-point kinetic
energy. The energy scale is set by EK . The width of the
Gaussian packet s is also dimensionful and sets the scale for
the overlap distance between configurations [23].

A. A single flat channel

The first model we investigate is a flat chain composed
of N = 4 configurations with overlaps between them set to
	q/s = √

5. This choice was shown in Ref. [22] to give a
good compromise between accuracy and computational effort.
The channel is depicted as “A” in Fig. 1. The states indicated
by black circles are the ones included in the N = 4 model. We
will also examine the same model with seven states; the added
states are shown as the red circles. For the seven-state model
	q is reduced by a factor of 2 while s remains fixed. The diag-
onal energies of the GCM states EK are taken to be EK = 5/4
and the strengths of the absorption at the ends are γ = 1. With
these parameters the overlap between neighboring states is
fairly small, Nk,k+1 = 0.28. The resulting transmission factor
T (E ) calculated by Eq. (6) is shown in Fig. 2 as the black
solid line. One sees a structure of four peaks, each close to an
eigenvalue of the Hill-Wheeler Eq. (3). Physically, the peaked
structure arises from the wave reflection at the ends of the
channel. Note that the range of T (E ) satisfies 0 � T � 1 as
required by the unitarity of the S matrix. Note also that the
channel starts conducting near E ≈ 0, as would be the case
for a classical channel governed by a Hamiltonian without
any zero-point energy. The adequacy of the mesh spacing can
be assessed by shrinking it. Decreasing it by a factor of 2,
the same interval contains seven states instead of four. The
resulting transmission factor is shown as the dashed red line
in Fig. 2. One sees that in the low-energy region it is quite
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FIG. 1. Relationship between states in the models described in
Secs. IV A, B, and C. The states in the four-state and seven-state
channels are shown as black and black + red circles, respectively.
The real part of the Hamiltonian couples the states in the channel
or channels; the couplings to the reservoirs are parameterized by the
imaginary part of the Hamiltonian.

similar to the four-state approximation. However, it has three
additional peaks at higher energy, corresponding to the high-
energy eigenfunctions of the seven-dimensional (7D) model.
These peaks are much narrower than the lower ones and
can be neglected in calculating integrated transmission rates.
The same behavior would continue with finer mesh spacings;
there would remain four peaks in the energy region [0,2]

FIG. 2. Transmission factor for a chain of length QT = 3 com-
paring GCM calculations for four and seven states in the chain (solid
black and dashed red lines, respectively). Besides the peaks visible in
the figure, there are two extremely narrow peaks at somewhat higher
energy in the seven-state model. The parameters of the Hamiltonian
are (s, E0, γ ) = (1/

√
5, 5/4, 1). See the Supplemental Material [24]

for the computer scripts used to calculate the data presented here and
later in the figures.

FIG. 3. Transmission factor for a chain of length q = 4 compar-
ing GCM calculations for four and seven states in the chain (solid
black and dashed red lines, respectively). The difference from Fig. 2
is that the 7D space was truncated to four dimensions by the singular
value decomposition of the overlap matrix. The Hamiltonians are the
same as in Fig. 2.

and the additional narrow peaks would appear at higher and
higher energies. The qualitative aspects of this behavior can
be easily understood. With a finite mesh spacing of Gaussian
wave packets one can approximate plane wave with a good
fidelity for low momentum, but there is a momentum cutoff
controlled by the mesh spacing. In the transmission channel as
parametrized, the momentum at the injection and exit point is
controlled by the Gaussian width parameter s. The momentum
match to the channel parameters suppresses the transmission
to the high-momentum modes in the channel. We conclude
that fairly sparse meshes are adequate for representing the
overall conductivity of flat transmission channels.

As mentioned earlier, very fine mesh spacings often lead
to numerical instabilities in the spectroscopic applications of
the GCM. The usual fix is to make a singular value decom-
position of the overlap matrix, throwing out eigenfunctions
that have small norms. It is instructive to see what happens
when the same procedure is applied here. Figure 3 compares
the four-state model with the seven-state model truncated to
four states. That is, we diagonalize the norm matrix in the
seven-state model and project the Hamiltonian on the basis of
the four eigenfunctions having the highest eigenvalues of the
norm matrix. One sees that the resonance positions are rather
close and the widths are also very similar. There is no obvious
benefit from starting out with a larger space. Since there is no
need to truncate the space for reasons of numerical stability,
this aspect of the usual methodology can be dropped.

We next examine how T (E ) depends on the strength of the
absorption at the ends of the channel. Figure 4 shows T (E )
for a range of absorption strengths γ . Obviously, for small
γ the channel acts as a resonant cavity with sharply defined
resonances and the overall conductance is low. For the larger
γ ’s the reflection amplitude is small and the individual peak
broaden and merge together.
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FIG. 4. Transmission factors in the four-dimensional model for
several values of absorption strength: γ = 0.5 (solid black line); γ =
1.0 (red dashed line); γ = 2.0 (blue dotted line). All peak tops are
at T = 1, but may not be visible in the figure due the finite grid of
energies.

B. A parabolic channel

In this section we extend the model to include a poten-
tial barrier. We take the shape of the barrier as an inverted
parabola, as is often assumed in phenomenological treat-
ments.

Under the factorization Ansatz Eq. (10) the GCM matrix
elements of a potential depending only on the q coordinate
are given by

V jk = 1

sπ1/2

∫ ∞

−∞
dq V (q)e−(q−q j )2/2s2−(q−qk )2/2s2

. (17)

The V (q) is taken as the parabolic form

V (q) = V2(q − qb)2, (18)

where qb is at the center of the barrier. The resulting GCM
matrix elements are

V jk = V2

[(q j + qk

2
− qb

)2

+ s2

2

]
N jk . (19)

The matrix V of these elements are added to the Hamiltonian
defined in Eqs. (12) and (13). Note that the diagonal potential
matrix elements are slightly below the defining potential due
to the second term in Eq. (19). The diagonal energies are
indicated in the channel marked “B” in Fig. 1. For a numerical
example we take V2 = −1/2. The channel Hamiltonian has
four eigenenergies ranging from −0.4 to 3.3. Figure 5 shows
the transmission factor as a function of energy taking γ = 1.0.
Three peaks are visible. In terms of the channel eigenstates,
the two lowest are responsible for the broad peak at E ≈ 0. It
appears that the barrier suppresses the maximum conductance
since the peak height much less than one. At higher energies
the T can approach maximum value of one, but the coupling
is weaker and the peaks are narrower.

We believe this behavior is generic for channels that follow
the topography of the potential energy surface. This is the case

FIG. 5. Transmission factor in the 4D and 7D models with a
parabolic barrier. Solid black line: 4 × 4 model; red dashed line:
7 × 7 model. As in the previous figures, the narrow peaks extend
up to T = 1 in height.

when they are constructed using an adiabatic approximation.
To see that the results are not an artifact of the GCM mesh
spacing, we also show the transmission factor taking a finer
mesh with seven GCM configurations instead of four. One
sees that the low-energy conductance is almost the same. At
higher energies, the narrowing of the peaks is also similar,
although the peaks are somewhat shifted in energy.

C. Two crossing channels

To understand better the adiabatic approximation, we con-
sider a model in which the adiabatic channels arise from
coupling between diabatic ones. We start with two diabatic
channels that cross as depicted in graph “C” in Fig. 1. The
dashed black lines link configurations that have large matrix
elements in HF mean field theory; resulting chains are the di-
abatic paths in the dynamics. Adiabatic dynamics arise when
one first diagonalizes the Hamiltonian within the subspace at
fixed qk . These are indicated by the curved red dotted lines
in the figure. The picture of adiabatic channels peaking at
the barrier top is unavoidable in transition-state theory as
implemented in Eq. (1).

For the Hamiltonian model we add linear potentials to
generate the diabatic paths together with a constant interac-
tion between configurations states at the same positions qk .
The matrix elements for a potential having a constant slope
Va(q) = vaq are given by

V a j;ak = va

(q j + qk

2
− qb

)
N jkδaa′ . (20)

The label a applies to the upward-sloping diabatic channel;
the downward sloping one will be labeled b. The other term
to be added to the Hamiltonian is the coupling hc between
the configurations of the two diabatic channels. We take the
coupling as a constant independent of qk . Again invoking
factorization hypothesis, the nonzero matrix elements are

Ha j,bk = hcNjk . (21)

034618-5



G. F. BERTSCH AND K. HAGINO PHYSICAL REVIEW C 105, 034618 (2022)

FIG. 6. Transmission factor for the Hamiltonian “C8” depicted
in Fig. 1. Solid black line: all contributions to T ; red line: lowest
adiabatic contribution; blue line: both adiabatic contributions. Note
that the total transmission coefficient can be larger than one in the
cases where two channels contribute.

For the numerical example, we take va = 0.5, vb = −0.5, and
hc = 0.8.

As depicted in Fig. 1 there are now four decay matrices to
be added to the Hamiltonian. We assume that all final states
are orthogonal to each other, so we can apply the transmission
formula Eq. (6) with an incoherent sum over all four combi-
nations (a1, b1) → (aN, bN ).

In the adiabatic approximation only the transmission factor
from the two lowest states at the ends are included,

Tadiabatic ≈ Ta1,bN . (22)

It is shown as the red dashed line in Fig. 6. The dotted blue
line shows the combined transmission factor that includes the
upper adiabatic channel as well,

T ′
adiabatic ≈ Ta1,bN + Tb1,aN . (23)

These are to be compared to the full transmission factor (solid
black line) including all contributions,

T = Ta1,bN + Ta1,aN + Tb1,aN + Tb1,bN . (24)

One sees that the adiabatic approximation works well overall
when both channels are included. The second channel adds
hardly anything in the region where the lower channel is
open, but fills out the higher region 1.0 < E < 2.5. Another
interesting finding, not very visible in the figure, is that the
adiabatic approximation significantly underpredicts the trans-
mission factor at the lowest energies. This inadequacy of the
approximation was noted earlier in Refs. [25,26].

We have also calculated T without any coupling between
the diabatic channels. As expected, that treatment seriously
underpredicts the transmission coefficient.

V. GENERAL CONCLUSIONS

A few tentative conclusions may be drawn from the simple
models presented here. First of all, one does not need fine

TABLE I. Integrated channel properties of the models discussed
in the text. The model labels refer to the subsections in Sec. IV where
they were discussed. The subscript refers to the dimension of the
GCM space. The average energy 〈E〉 is computed with respect to the
Hamiltonian at the midpoint of the q interval omitting the zero-point
energy EK . In case C, the energy is the adiabatic one computed by
diagonalizing the 2 × 2 matrix mixing the two GCM states. The row
marked Ca

8 ignores the coupling between the adiabatic channels.

Model IT 〈E〉/EK σ (E/EK )

A4 1.69 1.17 0.81
A7 1.65 1.11 0.77
B4 0.61 0.80 0.84
B7 0.56 0.60 0.67
C8 3.12 1.28 1.15
Ca

8 2.54 1.31 1.09

collective-coordinate meshes in the GCM configuration space
to determine the transmission coefficient up to a scaling factor
in energy. A mesh spacing giving overlaps of 0.3 between
a configuration and its diabatic neighbor seems adequate;
smaller mesh spacings will produce narrow resonances at high
energy, but the coarse properties of the channel will remain
the same. The second conclusion is that momentum matching
is an important consideration in the channel coupling to the
reservoir states. It produces an effective energy cutoff in the
conductance of the channel. The energy scale for this effect
is given by the zero-point energy of the collective coordinate
in the mean-field wave function. To give a sense of that,
we present in Table I some characteristics of the transmis-
sion function T (E ) for the models discussed in the previous
section. The first characteristic is the integrated transmission
factor. This is reported in the table in units of EK ,

IT =
∫ ∞

−∞
dE T (E )/EK . (25)

Comparing the four-state models with the seven-state models
A and B, one sees less than a 10% change in the integrated
transmission.

A second finding is that the transmission is strong only in a
limited energy interval. To examine this point in a quantitative
way, we have computed the T -weighted average energy

〈E〉 =
∫

dE E T (E )

/ ∫
dE T (E ) (26)

and its standard deviation, σ (E ) = 〈E2〉 − 〈E〉2. These quan-
tities are shown in the last two columns of the table.

Both quantities exhibited in the table support our con-
clusion that one can safely use coarse meshes to define the
channels. The averages change by 25% or less in comparing
the four-state and seven-state models. The average energy is
comparable to the zero-point energy in the flat channel. In the
parabolic channel the average energy is somewhat lower; in
this case the finer mesh has a significant affect. However, it
may be seen from the σ (E/EK ) column that the spread of
energies is about the same.
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Model C8 simulating adiabatic transmission by two in-
teracting diabatic channels has about twice the integrated
transmission strength as model A, which is hardly surprising.
Note however that the coupling between the two diabatic

channels is significant: model Ca
8 ignores the coupling and its

IT is smaller by 20%. In present fission theory such couplings
are neglected, and this finding confirms that approximation in
phenomelogical models.
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