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Determining impact parameters of heavy-ion collisions at low-intermediate incident energies
using deep learning with convolutional neural networks
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A deep learning based method with the convolutional neural network (CNN) algorithm for determining the
impact parameters is developed by using constrained molecular-dynamics model simulations, focusing on the
heavy-ion collisions at the low-intermediate incident energies from several tens to one hundred MeV/nucleon
in which the emissions of heavy fragments with the charge numbers larger than three become crucial. To
make the CNN applicable in the task of the impact-parameter determination at the present energy range,
specific improvements are made in the input selection, the CNN construction, and the CNN training. It is
demonstrated from the comparisons of the deep CNN method and the conventional methods with the impact-
parameter-sensitive observables that the deep CNN method shows better performance for determining the impact
parameters, especially leading to the capability of providing better recognition of the central collision events.
With a proper consideration of the experimental filter effect in both training and testing processes to keep
consistency with the actual experiments, the good performance of the deep CNN method holds and performs
significantly better in terms of predicting the impact parameters and recognizing the central collision events
compared with conventional methods, demonstrating the superiority of the present deep CNN method. The deep
CNN method with the consideration of the filter effect is applied in the deduction of nuclear stopping power.
Higher accuracy for the stopping power deduction is achieved benefitting from the better impact-parameter
determination using the deep CNN method, compared with using conventional methods. This result reveals the
importance of selecting a reliable impact-parameter-determination method in the experimental deduction of the
nuclear stopping power as well as other observables.

DOI: 10.1103/PhysRevC.105.034611

I. INTRODUCTION

Investigations into heavy-ion collisions are motivated by
the unique opportunity to gain insights into the crucial infor-
mation in terrestrial experiments on hot and dense nuclear
matter, i.e., the behavior of the nuclear equation of state
(EOS) at high densities governing the compression, the inter-
nal structure, and many other basic properties in supernovae,
neutron stars, etc., and on nuclear reaction dynamics, i.e.,
the amount of dissipated energy, the amplitude of collec-
tive motion, and the competition between various dynamical
mechanisms [1–3]. Significant progresses in the investigations
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of heavy-ion collisions have been achieved in recent years
both in experimental and theoretical works. In general, the ex-
perimental investigations of the heavy-ion collisions involve
measuring effective observables, i.e., energy and angular dis-
tributions of ejectiles, isotopic yield ratios [4], neutron-proton
emission ratios [5], resonances [6–8], collective flow [9], and
isoscaling ratios [10–13]. Correspondingly, the theoretical in-
vestigations focus on making use of microscopic theories in
an attempt to constrain the key parameters and pursue the
reaction dynamical mechanisms in physics by comparing with
the measured observables. One of the main processes prior to
performing the comparisons between the experimental data
and the theoretical model predictions is the impact-parameter
determination for the measured events. The impact parame-
ter, being known primarily in theoretical simulations but not
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directly accessible experimentally, has a significant impact on
the final-state particle production, so that the experimental
observables can vary significantly depending on the impact
parameter, even for a collision system at a given incident
energy and with a given combination of projectile and target.

Various methods have been proposed to experimentally
determine the impact parameters of heavy-ion collisions in
an event-by-event basis based on impact-parameter-sensitive
observables obtained from collisions since 1990 [14,15], i.e.,
the charge (mass) of the largest fragment [16], the charged
particle multiplicity [17], the directivity [16], the total trans-
verse kinetic energy of all charged particles [18] or all light
charged particles [19], the ratio of transverse to longitudinal
energy in the center-of-mass frame [20], and the quadrupole
momentum tensor along the beam direction [21], as well as
the combinations of such observables [22,23]. However, it was
pointed out by Bass et al. [24] that all these methods have one
common drawback; that is, they are generally optimized at the
larger impact-parameter range and tend to break down for very
central collisions. Indeed, as demonstrated in Ref. [25], the
charged particle multiplicity, the quadrupole momentum ten-
sor along beam direction, and the total transverse momentum
from the collisions of 40Ca + 40Ca simulated by FREESCO are
less sensitive to the impact parameter at the smaller impact-
parameter range compared with the case at the larger range.

Recently, Li et al. carefully examined the validity of
impact-parameter estimation using the multiplicity of charged
particles from the 112Sn + 112Sn collisions at the incident
energies of 35, 50, 70, and 120 MeV/nucleon within the
framework of the improved quantum molecular-dynamics
model [26]. They found that the accuracy of the impact-
parameter estimation over the entire impact parameter range
with the multiplicity of charged particles decreases rapidly as
the incident energy decreases from 120 to 35 MeV/nucleon
[27]. In particular, the observed decrease of the accuracy
with the incident energy becomes more significant for cen-
tral collisions at incident energies below 70 MeV/nucleon,
resulting in even larger ambiguities in the comparisons be-
tween the experimental data and the theoretical simulations
[27]. As pointed out in Ref. [27], the influence on the ac-
curacy of impact-parameter estimation with the application
of impact-parameter-sensitive observables is attributed to the
impact-parameter smearing effect at the low-intermediate en-
ergy range from the Fermi energy to around one hundred
MeV/nucleon. More efforts are therefore required to develop
novel methods for impact-parameter estimation for heavy-ion
collisions at this incident-energy range and, of great interest,
to further apply the novel methods to extract the underlying
physics in the future [28].

In the past decades, a prodigious rise in machine-learning
techniques which have led to a range of numerous develop-
ments in the field of nuclear physics has been seen [29–33].
Bass et al. introduced the concept of machine learning to
determine the impact parameters of the heavy-ion colli-
sions at the relativistic energy range for the first time in
1994 [34]. In that work, they found that within the frame-
work of the quantum molecular dynamics with an explicit
inclusion of isospin and pion production via the delta reso-
nance [35], the predicted impact parameters with an artificial

neural network (ANN) show nearly one-to-one consistency
with the true impact parameters initially set in the model
[34], demonstrating the applicability of the machine-learning
method in the impact-parameter determination. Later, Bass
et al. improved the machine-learning method by using the
two-dimensional transverse and longitudinal momentum dis-
tributions of all emitted charged particles as the inputs. This
improvement yielded significantly better performance of the
impact-parameter prediction by a factor of two, revealing that
the more sophisticated inputs are chosen for training, the
better accuracy will be achieved [24].

In 2020, Li et al. introduced the deep learning technique,
which is a novel branch of machine learning that learns mul-
tiple levels of representations from data and is capable of
recognizing and characterizing more complex data sets [36],
in the task of impact-parameter determination. They applied
the deep learning technique with two commonly used al-
gorithms, the convolutional neural network (CNN) and the
light gradient boosting machine (LightGBM), to predict the
impact parameters using the two-dimensional transverse mo-
mentum versus rapidity distributions of protons from Au +
Au collision events at around 1 GeV/nucleon simulated by
ultrarelativistic quantum molecular dynamics [37]. The accu-
racy of the impact-parameter prediction is further improved
compared with that in the work of Bass et al., indicating a
superiority of the novel deep learning technique in the impact-
parameter prediction at relativistic energies. In particular, as
found in Ref. [37], the impact-parameter prediction for the
central collisions is well accomplished, similar to the case
for the peripheral ones. Later in 2021, Li et al. continued to
compare the performance of ANN, CNN, and LightGBM in
terms of predicting the impact parameters [38] in an attempt to
provide a reliable impact-parameter determination method for
the 132Sn + 124Sn experiment at 270 MeV/nucleon performed
at the Radioactive Isotope Beam Factory in RIKEN, Japan
[39]. It was found that higher prediction accuracy is achieved
when the deep CNN method is used [38]. Therefore based
on those works, it is expected that accurate impact-parameter
determination for the heavy-ion collisions, especially for the
central collisions, at the low-intermediate energies becomes
accessible by using the deep learning technique as well.

In this article, we focus on pursuing the feasibility of
applying deep learning with a CNN [37] to determine
the impact parameters of heavy-ion collisions at the low-
intermediate incident energies from several tens to one
hundred MeV/nucleon, using the events simulated by the
constrained molecular dynamics (CoMD) model [40,41]. Dif-
fering from the case at the high energies above several
hundreds MeV/nucleon, heavy fragments with charge num-
bers greater than three are copiously produced through the
complex multifragmentation process in the low-intermediate
energy heavy-ion collisions. CNN is a deep learning archi-
tecture inspired by the natural visual perception mechanism
of the living creatures [42] and is suitable to process tasks
such as image and video recognition and language pro-
cessing. To make the deep CNN method applicable in the
present task, specific considerations are made in terms of the
input selection, the architecture construction, and the train-
ing. The developed deep CNN method is compared with
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the conventional methods with the impact-parameter-sensitive
observables to establish its better performance for estimating
the impact parameters of heavy-ion collisions at the low-
intermediate incident energies in the entire impact-parameter
range. With the knowledge that incomplete experimental frag-
ment detection in an event-by-event basis is inevitable due to
the limitations of the detection systems, such as the angular
coverage and the energy threshold, we further investigate the
influence of the experimental filter on the performance of the
deep CNN method in the impact-parameter determination. As
an actual application, the deep CNN method with a proper
consideration of the experimental filter effect is used in the
study of nuclear stopping power.

The article is organized as follows. In Sec. II, an introduc-
tion on the event generation is given, followed by descriptions
of input selection, CNN architecture, and CNN training. In
Sec. III, the results are presented and discussed. Summary and
perspectives are given in Sec. IV.

II. DEEP LEARNING WITH CONVOLUTIONAL
NEURAL NETWORKS

A. Event generation

For this work, the CoMD [40,41] is applied as an event
generator. Two major reasons are considered for the selection
of the CoMD. One is that the fermionic nature of the N-body
system as a general condition ensures that the occupation
probability is smaller than 1 in the entire time evolution of the
wave packets. The other is that the CoMD is suitable for the
present studies involving a heavy collision system and requir-
ing large statistics, due to its capability of well reproducing the
experimental observables, and its fast performance in practical
computation [40,41].

Using the CoMD, 300 000 events of the 124Sn + 124Sn
collisions at the incident energies of 50, 70, and 100
MeV/nucleon are simulated, respectively. Concerning the fact
that the smaller the impact parameter is, the smaller the frac-
tion of collisions is in general simulations, the CoMD events
are simulated with a uniform impact-parameter distribution in
the interval of b = 0–12 fm to avoid the potential insufficient
training for the central collisions. Here, the maximum impact
parameter bmax = 12 fm is taken from the summation of the
radii of the projectile and the target nuclei, bmax = 1.2(A1/3

P +
A1/3

T ), where AP and AT are the masses of the projectile and
the target nuclei, respectively. For the CoMD simulations, a
Skyrme interaction with a 230 MeV incompressibility for the
effective interaction [43] and the free nucleon-nucleon (NN)
cross sections for the NN collisions [44,45] are used. As
fragments are formed in heavy-ion collisions at intermediate
energies, many of them are in excited states and undergo
sequential decays prior to being measured by detectors in
experiments. To take into account the sequential decay effect,
the time evolution of the wave packets is computed up to 2000
fm/c, permitting the excited primary fragments to deexcite
within the framework of the CoMD [45]. The cold fragments
at 2000 fm/c are recognized by using a coalescence technique
with a coalescence radius of 2.4 fm in coordinate space. Of the
simulated 300 000 CoMD events at the given incident energy,

80% serve as training samples, and the remaining 20% serve
as validation samples. The training and validation data sets are
used to optimize the parameters of the CNN (see Sec. II C).

To unbiasedly analyze the trained CNN performance
in the actual impact-parameter determination, additional
100 000 CoMD events for 124Sn + 124Sn at 50, 70, and 100
MeV/nucleon, called the testing samples being independent
of the training and validation samples, are, respectively, simu-
lated. For these testing samples, a bdb distribution is taken as
such that the probability of an impact parameter b is propor-
tional to b in the interval of b = 0–12 fm to keep consistency
with the natural case. Other conditions in the CoMD simu-
lations are set to be identical to those for the training and
validation samples.

B. Input selection

To ensure the accuracy of the impact-parameter determina-
tion using deep learning with CNN, one of the most important
steps is to select proper inputs for the training. For this pur-
pose, complex two-dimensional “images” in the momentum
space are adopted. This input selection was originally pro-
posed by Bass et al. [24]. To visualize the input dependence
on the impact parameter learned by the CNN, the center-of-
mass two-dimensional absolute transverse and longitudinal
momentum per nucleon (|Pz|/A versus |Pt |/A) distributions
for all available charged particles from the CoMD events of
124Sn + 124Sn at 50, 70, and 100 MeV/nucleon are plotted in
Fig. 1. In each panel, the results from the impact-parameter
windows of 0–2 fm, 5–7 fm, and 10–12 fm are shown from top
to bottom, respectively, and those from light charged particles
with Z � 2 and from heavy charged particles with Z > 2 are
shown on the left and on the right, respectively.

From the figure, one can observe that the |Pz|/A versus
|Pt |/A distributions change significantly with the change of
impact-parameter selection for all three incident energies.
This can be attributed to the change of the reaction dynamics
depending on the impact parameter. For the central collisions,
more NN collisions occur due to the larger overlap between
the projectile and the target, so that more kinetic energy in
the longitudinal direction transfers to that in the transverse
direction, resulting in larger |Pt |/A and smaller |Pz|/A for
both light and heavy charged particles. As the impact pa-
rameter increases, the energy transfer decreases due to the
decrease of the collision violence. Therefore, |Pt |/A becomes
smaller, whereas |Pz|/A becomes larger, for both light and
heavy charged particles. This significant dependence of the
observed |Pz|/A versus |Pt |/A feature on the impact parameter
provides strong support for making use of the |Pz|/A versus
|Pt |/A distributions of the light and heavy charged particles to
train the CNN.

As reflected by the color evolution in the figure, the ab-
solute yields of light charged particles also decrease rapidly,
whereas those of heavy charged particles increase rapidly, as
the impact parameter increases for all three incident energies.
This may cause a problem of reducing the quality of the CNN
training if one only uses the |Pz|/A versus |Pt |/A distributions
from either light or heavy charged particles due to the small
yields for light charged particles at large impact parameters
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FIG. 1. Two-dimensional center-of-mass absolute transverse and longitudinal momentum per nucleon (|Pz|/A versus |Pt |/A) distributions
of all available charged particles from the CoMD events of 124Sn + 124Sn collisions at 50, 70, and 100 MeV/nucleon. In each panel, the results
from the impact-parameter windows of 0–2 fm, 5–7 fm, and 10–12 fm are shown from top to bottom, respectively, and those from light charged
particles with Z � 2 and from heavy charged particles with Z > 2 are shown on the left and on the right, respectively.

and for heavy charged particle yields at small impact param-
eters in an event-by-event basis. To avoid this problem, the
momentum information from both light and heavy charged
particles is used to generate the inputs for the present CNN

training. It is worth emphasizing that the problem was un-
realized in the previous works of Refs. [37,38], where only
the momentum information of protons was used. However,
it is less problematic for those works, since, unlike at the
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FIG. 2. Two-dimensional |Pz|/A versus |Pt |/A histogram with
50 × 50 pixels for one event with b = 3 fm at 70 MeV/nucleon.
The upper 50 × 25 pixels with the scales of 0–300 MeV/c along
both the x axis and the y axis are used for light charged particles
with Z � 2, and the lower 50 × 25 pixels with the scales of 0–200
MeV/c along the x axis and 0–150 MeV/c along the y axis are used
for heavy charged particles with Z > 2. Each square shown in the
figure represents one pixel with at least one fragment entry. The
number inside each square represents the summation of nucleons
incremented in the pixel.

low-intermediate energies for the present case, the yields of
light charged particles (such as protons used therein) from
one collision event around the relativistic energy range are the
dominant ejectiles in the entire impact-parameter range and
are sufficient to train the CNN.

In addition, one may notice that the |Pt |/A and |Pz|/A val-
ues for light charged particles both distribute in the ranges up
to ≈ ± 300 MeV/c, much larger than those of heavy charged
particles. To avoid the possible information missing due to
the overlap of the momentum distributions from the light and
heavy charged particles, an improvement is made by assigning
the |Pz|/A and |Pt |/A values of the light and heavy charged
particles from one event into two “images” with different
scales, and then combing the two “images” together as one
input for CNN training.

In Fig. 2, a typical two-dimensional histogram of |Pz|/A
versus |Pt |/A is presented as the input from an event with b =
3 fm at 70 MeV/nucleon for example. The two-dimensional
histogram is set to be with 50 × 50 pixels in total, according
to the previous study of Li et al. [37]. In that work, the
impact-parameter prediction accuracy from the deep learning
with CNN becomes saturated when the input grids are taken
to be larger than 40 × 40. Using the slightly larger number
of pixels is also considered to account, to some extent, for
including the yield information of charged particles. As found

below, the 50 × 50 pixels are large enough to stabilize the
impact-parameter prediction accuracy for this work. Of the
total 50 × 50 pixels, the upper 50 × 25 pixels with the scales
of 0–300 MeV/c along both the x axis and the y axis are
used for light charged particles with Z � 2, and the lower
50 × 25 pixels with the scales of 0–200 MeV/c along the x
axis and 0–150 MeV/c along the y axis are used for heavy
charged particles with Z > 2, according to Fig. 1. Note that
the different ranges along the x and y axes for both light
and heavy charged particles for the incident energies of 50
and 100 MeV/nucleon are set accordingly. To further include
the particle-type information into the input, the histogram is
incremented with a weight being the mass number of the given
charged particle. Each square shown in the figure represents
one pixel with at least one entry, and the number inside rep-
resents the summation of nucleons incremented in the pixel.
Taking all pixel contents of the histogram and zero padding for
those with no entry, one can obtain a 50 × 50 square matrix,
namely, the CNN input generated from a given event.

C. CNN architecture

There are numerous variants of CNN architectures in the
literature, but their basic components are similar, including
convolutional layer, pooling layer and fully connected layer in
general. Figure 3 shows the architecture of the CNN adopted
in this work. As shown in the figure, two convolutional layers
are set for learning feature representations of the inputs. Each
convolutional layer is composed of 32 convolutional kernels
with size 5 × 5. Details about the selection of the number of
convolutional layers and the number of kernels are described
in the next section. Importing one input to the CNN for exam-
ple, feature maps are generated from the convolutional layers
by first convolving the input with the learned kernels and then
applying a nonlinear activation function, batch normalization,
and regularization on the convolved results. Here, the recti-
fied linear unit (ReLU), known as one of the most notable
nonsaturated activation functions [46], is taken to introduce
nonlinearities into the CNN. Batch normalization proposed by
Ioffe et al. [47] is applied to transform the matrix elements in
feature maps to have zero mean and unit variance. Regulariza-
tion is performed using the algorithm of the dropout function
(with rate 0.2) by Hinton et al. [48] to effectively reduce
the over-training which leads to model-dependent features
and is an un-neglectable problem in deep learning with the
CNN algorithm. From the first convolutional layer, 32 feature
maps are obtained corresponding to the 32 kernels. Then, the
32 feature maps are imported to the second convolutional
layer and are processed following the similar procedures to
generate 32 new feature maps (and so on if there are any
more convolutional layers in specific tasks). One pooling layer
with the max pooling function is set between the two con-
volutional layers. The functionality of the pooling layer is to
shorten the computational time by reducing the resolution of
the feature maps. As found in the figure, the dimension of the
feature maps is reduced by a factor of two from 50 × 50 to
25 × 25 after being processed by the max pooling function.
In the end, the two-dimensional feature maps are flattened
to be one-dimensional and are imported to a fully connected
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FIG. 3. CNN architecture. See details in the text.

layer [Dense(1)] following a dropout function with rate 0.4 to
transform the extracted features from the convolution into the
impact-parameter value.

D. CNN training

The training of a CNN is a process of searching for the
deep correlation between the input feature representations
and the output impact parameter by optimizing the “model
parameters” in the CNN, i.e., the kernel weights and biases.
The model parameter optimization is always composed of a
certain number of epochs, where one epoch is defined as a
single training pass through the entire training data set. This
training termination at a certain epoch is a general remedy
to over-training (if any) in computer science [42]. See the
selection for the number of epochs below. The measure of
how well the CNN has learned the input features during each
training epoch is provided by the loss function. Here, we
adopt the mean square error (MSE) as the loss function, since
the MSE loss function performs good and fast, as found by
Mallick et al. [49]. The MSE value at a given training epoch
(MSEt ) is calculated by

MSEt = 1

Ntrain

Ntrain∑
i=1

(btrue,i − bpred.,i )
2, (1)

where btrue,i is the true impact parameter value for the ith
training event in the CoMD simulation, and bpred.,i is the corre-
sponding predicted value from the CNN at the given training
epoch. The summation runs over the entire training data set
with the Ntrain events. By minimizing the MSEt value epoch-
by-epoch, the optimum model parameters can be obtained.
One can expect that the training performance increases as the
number of the CNN training events increases, since the CNN
is able to gain more information from more training data.

However, the computational time increases significantly as the
number of the training events increases simultaneously. We
have examined the data size dependence of the CNN training
and found that the training performance becomes saturated
when the training event number reaches around 150 000.
Therefore, for a given incident energy, the 240 000 events used
for the CNN training in the present work are enough to ensure
reasonable performance.

Note that, in the CNN training, there are also several
key hyperparameters that are nontrainable but require manual
tuning, i.e., the number of convolutional layers, the num-
ber of kernels, and the epoch number for the CNN training,
as mentioned above. Keeping them in mind, we proceed to
discuss the selection of these key hyperparameters based on
the validation data set, which is able to provide an unbiased
evaluation of a model “fit” on the training data set while tuning
the hyperparameters.

In Refs. [37,38], the architecture with two convolutional
layers and 64 kernels in each convolutional layer (denoted as
two layers ×64 kernels, and similarly hereinafter) has been
used to establish the CNN to estimate the impact parameters
of the heavy-ion collisions at high energies from several hun-
dreds of MeV/nucleon to 1 GeV/nucleon. Extending their
method, six types of CNNs, consisting of one layer ×32
kernels, two layers ×32 kernels, four layers ×32 kernels, one
layer ×64 kernels, two layers ×64 kernels, and four layers
×64 kernels, are studied as possible candidates. To indicate
the complexity of the six CNN architectures, the number of
their trainable model parameters are tabulated in the third
column of Table I.

The training for the six types of CNNs is performed indi-
vidually using the training data sets at three incident energies
(18 training trials in total) and is commonly computed up to
the 50th epoch. Eighteen sets of CNN model parameters are
obtained from the 18 training trials. The training termination
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TABLE I. Main features of the six types of CNNs at the inci-
dent energies of 50, 70 and 100 MeV/nucleon. The numbers of the
trainable model parameters in the six types of CNNs, which can
reflect their complexity, are tabulated in the third column. The MSE
values from the validation data sets at the 50th epoch [MSEv (50)]
are tabulated in the fourth column. The mean parallel computational
time per epoch on the same Intel i9-10980XE CPU with 18 cores (36
threads) is tabulated in the fifth column.

Einc Convolutional MSEv Computational
(MeV/ layer num.× Model (50) time per
nucleon) kernel num. param. num. (fm2) epoch (s)

50 1 × 32 20933 0.76 147
2 × 32 46615 0.58 333
4 × 32 82561 0.53 553
1 × 64 41756 0.75 365
2 × 64 144279 0.59 696
4 × 64 318497 0.52 1097

70 1 × 32 20933 0.53 147
2 × 32 46615 0.43 332
4 × 32 82561 0.37 554
1 × 64 41756 0.55 366
2 × 64 144279 0.40 696
4 × 64 318497 0.37 1098

100 1 × 32 20933 0.46 147
2 × 32 46615 0.30 332
4 × 32 82561 0.29 554
1 × 64 41756 0.46 366
2 × 64 144279 0.30 696
4 × 64 318497 0.29 1096

at the 50 epoch for the present CNN training is selected
following two considerations. One is that, after each training
epoch for a given type of CNN at a given incident energy,
the obtained CNN is applied to the corresponding validation
data set, and the MSE value for the validation data set (MSEv)
is calculated following the definition (1). The obtained MSEv

values are monitored epoch-by-epoch together with the MSEt

values. Sufficient training for all six types of CNNs at the
three energies is evinced by the fact that, for all training trials,
both MSEv and MSEt decrease epoch-by-epoch, and their
decreasing trends show saturation simultaneously at the 50th
epoch. The other is that no cross point is observed between
the MSEv values and the MSEt values as a function of the
epoch number, indicating no over-training in the present CNN
training up to the 50th epoch [42].

The obtained MSEv values at the 50th epoch for the six
types of CNNs for the three incident energies are labeled by
MSEv (50) and are tabulated in the fourth column of Table I.
The MSEv (50) values show rather small ranging from 0.29 to
0.76, indicating that the CNN training is well performed for
all 18 trials. In particular, the MSEv (50) values from the two
types of CNNs with one convolutional layer are systematically
≈30% larger compared with those from the other four types
for all three incident energies. Concerning the accuracy point
of view, one is able to rule out the application of the two types
of CNNs with 1 convolutional layer from the present work,
due to their larger MSEv (50) values.

To select the suitable one from the remaining four types of
CNNs giving similar MSEv (50) values, the computational ef-
ficiency is considered as another factor. In the fifth column of
Table I, the parallel computational time per epoch for training
the six types of CNNs at the three energies on the same Intel
i9-10980XE CPU with 18 cores (36 threads) is also tabulated.
One can find that the computational time per epoch increases
significantly as the complexity of the CNN architecture in-
creases, where the complexity of the CNN architecture can be
reflected by the number of trainable model parameters. On the
other hand, however, the training performance stays more or
less the same for the remaining four types of CNNs. This con-
trast indicates that the saturation of the training performance
shows up as the complexity of the CNN architecture reaches to
two layers ×32 kernels. Therefore, the CNN architecture with
two layers ×32 kernels (see Fig. 3), being the simplest and
demanding the shortest computational time on average, is se-
lected for this work. The three corresponding model parameter
sets for the incident energies of 50, 70, and 100 MeV/nucleon
are saved, respectively, for the following analyses.

III. RESULTS AND DISCUSSION

A. Performance of impact-parameter prediction
using deep CNN method

To unbiasedly examine the performance of the impact-
parameter prediction using the CNN from the above training
process, we import the inputs generated from the testing data
set at each given incident energy to the trained CNN and
deduce the predicted impact-parameter values (bpred.) in an
event-by-event basis. Figure 4 shows the correlations between
the deduced bpred. values from the deep CNN method and the
true impact-parameter values (btrue) set in the CoMD sim-
ulations, where the results for the incident energies of 50,
70, and 100 MeV/nucleon are shown in the panels from top
to bottom, respectively. The y = x line in each panel is for
guiding the eyes. Most strikingly, as observed in the figure,
the data points form narrow bands along the y = x lines in
the entire impact-parameter range for all the three energies,
reflecting a good one-to-one linear relation between bpred. and
btrue.

To evaluate the accuracy of the impact-parameter predic-
tion using the deep CNN method, the mean absolute error
(�bCNN ) is adopted following Refs. [24,34,37,38], where
�bCNN is deduced by

�bCNN = 1

Ntest

Ntest∑
i=1

|btrue,i − bpred.,i|. (2)

The summation in the equation runs over the Ntest samples in
the testing data set at each given energy. The �bCNN values
for the three incident energies are deduced using the bpred.

and btrue pairs shown in Fig. 4, respectively, and are plotted
as a function of the incident energy by solid circles in Fig. 5.
The obtained �bCNN values, ranging from 0.37 to 0.45 fm,
are rather small in magnitude, and these results demonstrate
our conjecture that the impact parameters of the heavy-ion
collisions at the incident energies from several tens to one
hundred MeV/nucleon can be determined with reasonable
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FIG. 4. Two-dimensional correlations between the predicted val-
ues of impact parameter using the deep CNN method (bpred.) and
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collisions at 50, 70, and 100 MeV/nucleon. The y = x line in each
panel is for guiding the eyes.

accuracy using the deep CNN method, similar to the case
for high energies from several hundreds of MeV/nucleon to
1 GeV/nucleon [37,38].

As also observed in Fig. 4, the linear relation between bpred.

and btrue tends to deviate from the y = x line, as btrue decreases
commonly for all the three energies. To gain insights into the
dependence of the impact-parameter prediction accuracy on
btrue, the �bCNN values are deduced as a function of btrue for
the three energies, respectively. The results are shown by solid
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FIG. 5. Mean absolute errors defined by Eq. (2) as a function of
incident energy. Solid symbols represent the results obtained using
the deep CNN method, whereas the open symbols represent those
obtained using the conventional methods with the impact-parameter-
sensitive observables Zmax, Nch, Dir, and Et . See details in the text.

circles in the panels from top to bottom in Fig. 6, respectively.
In the figure, the decreases of �bCNN as btrue increases are
more clearly observed for all the three energies, although there
is a hint of a slightly weaker dependence for those at the 100
MeV/nucleon incident energy.

The �bCNN dependence on btrue is related to the complex
reaction mechanisms at the low-intermediate energy range.
That is, the low-intermediate energy range is a transition
energy range at which the reaction dynamics is dominated
by a mixture effect of the mean field and NN collisions.
The interplay of the “attractive” mean field and the “re-
pulsive” NN collisions imposes large fluctuations in both
coordinate and momentum spaces during the time evolution of
the nucleus-nucleus collisions. The large fluctuations enhance
the characteristic feature similarities among the collisions
with different btrue values in terms of the emitted particle
yield, energy and momentum, etc., and further disturb the
CNN to learn the characteristic feature representations of
the inputs defined using the charged particle center-of-mass
transverse and longitudinal momenta in this work. In partic-
ular, as btrue becomes smaller, the fluctuations become larger
with the increase of the projectile-target overlap, resulting in
more difficulties to distinguish the collisions with smaller btrue

using the deep CNN method. Therefore, larger uncertainties
are caused in the impact-parameter prediction at smaller btrue

values, as found in Fig. 6. It should be mentioned that, since
the btrue values of the testing events are sampled using the
bdb distribution, the large uncertainties at smaller btrue values
lead to small contribution to the “global” �bCNN presented in
Fig. 5.
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Moreover, one may notice that the �bCNN values in Fig. 5,
as well as those obtained in given btrue intervals in Fig. 6, show
a slightly decreasing trend with the increase of the incident
energy from 50 to 100 MeV/nucleon. This can be attributed
to the simplification of the reaction mechanisms from being
dominated by both the mean field and the NN collisions to
being dominated by the NN collisions as the incident energy
increases. Smaller fluctuations originating from the interplay
between the mean field and the NN collisions with the in-
crease of the incident energy lead to better CNN training
performance, as indicated by the decrease of MSEv (50) with
the incident energy in the fourth column of Table I. Therefore,

higher accuracy of the impact-parameter prediction using the
deep CNN method is expected at higher incident energies.

B. Impact-parameter prediction for central collisions
using deep CNN method

As highlighted in Ref. [27], difficulties exist in determining
the impact parameters of central collisions at low-intermediate
incident energies using conventional methods, it is worth
studying how well it can be done using the deep CNN method.
In this section, we focus on examining the performance of the
impact-parameter prediction for the central collisions using
the deep CNN method. In the literature [20,50–52], the central
collisions are defined by the interval either with the smallest b
or with the smallest reduced impact parameter (b/bmax), rather
than by b = 0 or b/bmax = 0, since in the strict sense, the
collision with b = 0 fm or b/bmax = 0 has no cross section in
nature. In this work, we adopt the latter and refer to the col-
lisions with b/bmax < 0.2 as the central collisions following
Ref. [27].

Two quantities, the mean absolute error for the central
collisions (�bcent.

CNN ) and the central collision recognition rate
(ηCNN ), are used to evaluate the impact-parameter prediction
performance for the central collisions using the deep CNN
method. �bcent.

CNN is calculated according to Eq. (2), but simply
limiting the summation up to btrue/bmax = 0.2. ηCNN quanti-
fies the central collision recognition capability and is defined
as

ηCNN = Nt

Nt + Nf + + Nf −
, (3)

where Nt is the event number of the properly recognized cen-
tral events with btrue/bmax and bpred./bmax being both smaller
than 0.2. Nf + is the number of false positive events with
btrue/bmax > 0.2 and bpred./bmax < 0.2, whereas Nf − is the
number of false negative events with btrue/bmax < 0.2 and
bpred./bmax > 0.2.

In Figs. 7(a) and 7(b), the deduced �bcent.
CNN and ηCNN values

from the three testing data sets are presented by solid circles
as a function of the incident energy, respectively. Of little sur-
prise is to find in Fig. 7(a) that �bcent.

CNN is larger in magnitude
but similar in trend as a function of the incident energy, as
compared with �bCNN from the entire testing data sets in
Fig. 5. As also found in Fig. 7(b), of the Nt + Nf + + Nf −
events with btrue/bmax < 0.2 or bpred./bmax < 0.2, more than
half can be correctly recognized to be central collision events
using the deep CNN method, and the recognition accuracy
reaches up to around two thirds at 100 MeV/nucleon. The
increase of ηCNN as the incident energy increases can be also
attributed to the simpler reaction mechanisms at the higher
incident energies.

C. Comparisons between deep CNN method and conventional
methods with impact-parameter-sensitive observables

To demonstrate the superiority of the deep CNN method
at the present low-intermediate incident energy range, we
compare the performance of the impact-parameter deter-
mination between using the deep CNN method and using
the conventional methods with impact-parameter-sensitive
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observables in this section. Here, four observables commonly
used for experimentally determining the impact parameters
of the heavy-ion collisions are taken for comparison, i.e., the
charge of the largest fragment (Zmax) [16], the charged particle
multiplicity (Nch) [17], the directivity (Dir) [16], and the total
transverse kinetic energy (Et ) [18]. Having trivial knowledge
of Zmax, Nch, and Et , the definition of Dir is given following
Ref. [16] as

Dir =
∣∣∣∣∣

Nch∑
i

�Pt,i

∣∣∣∣∣
/

Nch∑
i

∣∣ �Pt,i

∣∣ , (4)

where �Pt,i is the transverse momentum of the ith charged
particle, and the summation is taken over the charged particles
in the given event.

Figure 8 shows the two-dimensional correlations between
the four observables and btrue from the testing data sets at the
incident energies of 50, 70, and 100 MeV/nucleon from left
to right, respectively, where the curves with the open circles
represent the mean values of the distributions at the given btrue.
In the figure, in spite of having significantly large fluctuations,
all the four observables show a monotonic dependence on
btrue in the entire impact-parameter range. Making use of the

monotonic dependence of the four observables on btrue, one
is able to estimate the impact parameters directly using the
relations below, respectively,

bobs.(Zmax) = bmax

[∫ Zmax

0 N (Zmax)dZmax∫ ∞
0 N (Zmax)dZmax

]γ

, (5)

bobs.(Nch) = bmax

[∫ ∞
Nch

N (Nch)dNch∫ ∞
0 N (Nch)dNch

]γ

, (6)

bobs.(Dir) = bmax

[∫ Dir
0 N (Dir)dDir∫ ∞
0 N (Dir)dDir

]γ

, (7)

bobs.(Et ) = bmax

[∫ ∞
Et

N (Et )dEt∫ ∞
0 N (Et )dEt

]γ

. (8)

In Eqs. (5)–(8), N (X ) (X ∈ [Zmax, Nch, Dir, Et ]) represents the
event number at the given X value. The exponent γ is related
to the impact-parameter distribution. For the present analysis,
the impact parameters of the collision events in the testing data
sets follow the bdb distribution, same as the natural case, so
that γ is taken to be 1/2 [17,22,45].

In each panel of Fig. 9, the impact-parameter values de-
duced from Fig. 8 using Eqs. (5)–(8) (bobs.) are plotted as
a function of Zmax, Nch, Dir, and Et from left to right, re-
spectively. The relation between the given observable and the
corresponding bobs. at a given incident energy can be deduced
via the polynomial fits, and the fitting results are shown by
curves in the figure. Using the obtained bobs. versus Zmax, Nch,
Dir, and Et relations, we reconstruct the bobs. values of the
testing events on an event-by-event basis and plot the correla-
tions between the obtained bobs. values and the btrue values in
Fig. 10, where the results for 50, 70, and 100 MeV/nucleon
are, respectively, shown from left to right with the y = x lines
for guiding the eyes. The impact parameters deduced using the
observables Zmax, Nch, Dir, and Et are labeled by bZmax , bNch ,
bDir, and bEt on the y axes, respectively. Note that the jagged
structures in Figs. 10(a) and 10(b) are due to the discreteness
of the Zmax and Nch observables. As found in the figure, the
data points from the four observables distribute round the y =
x lines, but with noticeably wider distributions compared with
those of Fig. 4, for all the three incident energies, indicating
poorer accuracy of these conventional methods.

To compare the accuracy of the impact-parameter determi-
nation using the conventional methods with that of the deep
CNN method, we further deduce the quantities, �b, �bcent.,
and η following Eqs. (2) and (3), using the data points pre-
sented in Fig. 10. The results are plotted in a similar fashion
to those deduced by using the deep CNN method in Figs. 5–
7, respectively. To distinguish from those of the deep CNN
method, the results from the four observables are presented
by open symbols (see the legends in each figure). In Figs. 5
and 6, one can find that the �bCNN values as a function of
the incident energy and the �bCNN values as a function of
btrue both show significantly smaller in magnitude compared
with those deduced using the conventional methods. This
comparison strongly suggests the deep CNN method has more
reliable performance for determining the impact parameters
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FIG. 8. Two-dimensional correlations between the four commonly used the impact parameter-sensitive observables, Zmax, Nch, Dir, and Et ,
and the btrue values from the testing data sets at 50, 70, and 100 MeV/nucleon. The curves with the open circles represent the mean values of
the distributions at the given btrue.

of the heavy-ion collisions at the low-intermediate incident
energies than the conventional method with any one of the
four impact-parameter-sensitive observables. In particular, as
found in Fig. 7, the �bcent.

CNN values are only half to two-thirds
of the smallest ones obtained from the four conventional ob-
servables, and the ηcent.

CNN values are overall significantly larger
than the largest ones from the observables at the present
energies, clearly demonstrating that the deep CNN method
has the capability of providing much higher accuracy for the
impact-parameter determination for central collisions at the
low-intermediate energy range compared with the conven-
tional methods.

D. Effect of experimental filter on the performance of
impact-parameter prediction when using deep CNN method

In the following two sections, we focus on discussing the
application of the deep CNN method for determining the

impact parameters from the actual experimental data sets,
due to its better performance as evinced by the quantitative
comparisons with that of the conventional methods in the
above section. However, in the actual experiments, complete
measurement of all the fragments in one event is very difficult,
due to the experimental limitations, i.e., the angular accep-
tance of the detector array, and the energy thresholds for the
particle detection and identification, etc. It is therefore of great
importance to investigate the influence of the experimental
filter effect on the performance of the deep CNN method in
prior to applying them to determine the impact parameters of
the measured events.

Several 4π detector arrays have been built for the inves-
tigation on the heavy-ion collisions, e.g., the 4π array at
Michigan State University [53], the Miniball/Miniwall array
at Laboratoire National SATURNE [54], the INDRA detector
array at GANIL in Caen [55], and the NIMROD-ISiS array at
the Cyclotron Institute, Texas A&M University [56]. Since the
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FIG. 9. Impact-parameter values deduced by using Eqs. (5)–(8) (bobs.) as a function of Zmax, Nch, Dir, and Et for the incident energies of
50, 70, and 100 MeV/nucleon. The curves are the polynomial fits to the data points.

three incident energies studied in this work are exactly within
the INDRA energy range, we take INDRA as an example to
investigate the effect of the experimental filter on the perfor-
mance of the deep CNN method here.

INDRA is composed of 336 detection modules arranged
in 17 concentric rings covering 2◦ to 88◦, and 92◦ to 176◦ in
the laboratory frame. 0◦ to 2◦ and 176◦ to 180◦ are reserved
for the beam pipe, and 88◦ to 92◦ is shadowed by the tar-
get frame. The detection thresholds by the �E − E method
for the particle identification are given by the punch-through
energies of the front ionization chambers operated at low
pressure to be ≈1 MeV/nucleon for various charged parti-
cles. The charge identification is achieved from hydrogen to

uranium, and the isotopic resolution is achieved up to oxygen,
using the �E − E discrimination method [57]. The masses
for the heavier fragments with Z > 8 are estimated from a
parametrization of the β-stability valley. In the identification,
the pileups of proton-proton, proton-α, and α-α due to the
acceptance of the single detector module are discriminated
by the given CsI(TI) detector as two protons equally sharing
the proton-proton summation energy, one α with the proton-α
summation energy, and two α particles equally sharing the
α-α summation energy, respectively [55,58]. Other pileups
such as proton-IMF and α-IMF have small contributions and
are treated as background from the �E − E discrimination,
if any. See details about the facility and basic observables
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FIG. 10. Two-dimensional correlations between the impact-parameter values deduced using the four observables (labeled bZmax , bNch , bDir ,
and bEt on the y axes) and the btrue values from the testing data sets of the 124Sn + 124Sn collisions at 50, 70, and 100 MeV/nucleon. The y = x
lines are for guiding the eyes.

measured using INDRA in Refs. [50,51,55,57]. Here, for
keeping consistency with the actual INDRA experiments, the
charged particles in the testing events simulated by CoMD are
filtered by using the angular acceptance of the detector array,
the detection energy threshold, and the limitation in the charge
identification and the isotopic resolution. Note that the energy
threshold filters for the individual detectors are not considered
in this analysis, since their effects are negligible compared
with those for the particle identification. In addition, since

INDRA only provides charged-product information, the neu-
trons are excluded from the testing data sets.

The CNN inputs are regenerated from the three filtered
testing data sets and are imported to the previously trained
CNN at the corresponding energies to perform the impact-
parameter prediction. The correlations between the obtained
bpred. values and the btrue values are plotted in Fig. 11. It
is of great surprise to find in the figure that, after introduc-
ing the filters in the testing data sets, the bpred. values are
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FIG. 11. Same as Fig. 4, but from the filtered testing data sets
using the deep CNN method without considering the effect of the
experimental filter.

underpredicted overall with the deep CNN method in the en-
tire btrue range for all the three incident energies. Even worse
is that two branches of bpred. versus btrue data points appear
above a certain btrue value at the given energy, indicating that
the deep CNN method starts breaking down at the btrue value.
As btrue increases to be greater than ≈10 fm, the deep CNN
method almost completely loses the impact-parameter pre-
diction accuracy, because it hardly provides the bpred. values
greater than ≈10 fm.

These observations can be interpreted by the inconsistency
between the input features in the previous training stage and

those in the present testing stage, due to the filter limitations
in the particle “measurement” (mostly for the heavy charged
particles). After considering the filter effect in the testing
data sets, the collisions with larger btrue values, which are
supposed to produce abundant heavy charged particles, appear
to produce fewer heavy charged particles, similar to the colli-
sions with smaller btrue values. The trained CNN improperly
identifies the filtered collision events with larger btrue values
to be those with smaller bpred. values in the entire impact-
parameter range as a consequence. As btrue increases close
to the bmax, the reaction dynamics tends to be binary. One
collision event favors producing two large charged particles
with masses similar to those of projectile and target, namely,
a projectile-like fragment and target-like fragment, as well as
a small number of light charged particles. The projectile-like
fragment carries large longitudinal kinetic energy close to that
of the incident projectile in the laboratory frame and escapes
along the beam pipe. The kinetic energy of the target-like
fragment is nearly zero in the laboratory frame and is filtered
out by the detection threshold. In such a scenario, the key
reaction features of the collisions are mostly erased by the
filters. Therefore, the bpred. values for some filtered collision
events with the large btrue values are even more significantly
underpredicted compared with those of the others with the
same btrue values, leading to the two branches of bpred. versus
btrue data points in Fig. 11. We have cross-checked with the
filtered testing data events and found that few light charged
particles remained in the filtered events with btrue > 10 fm,
commonly for all the three incident energies. This fact can
explain why the deep CNN method fails to provide reasonable
bpred. values at the extremely large btrue, btrue > 10 fm for the
presently studied system of 124Sn + 124Sn.

E. Performance of deep CNN method considering effect
of experimental filter

Since the experimental filter effect is far from negligible
due to its significant influence on the performance of the
deep CNN method, one cannot directly apply the presently
established deep CNN method for determining the impact
parameters of the experimental events, unless one eliminates
the input feature mismatch in training and testing the CNN.
For this purpose, an improvement is made by retraining the
CNN using the training and validation data sets filtered by
the same experimental filters of INDRA. Additionally, as dis-
cussed above, the collision events with extremely large btrue

values at the present studied incident energies are not properly
measured by INDRA. To avoid the potential uncertainties in
the CNN training and testing processes caused by this limita-
tion of the INDRA array, we further exclude the events with
btrue > 10 fm in both processes. This treatment is reasonable,
since these events with btrue > 10 fm are easily filtered out by
using the total detected charge window in the off-line software
[59].

Three new model parameter sets for the deep CNN with
the experimental filter effect explicitly taken into account are
obtained, following the same training procedures presented in
Sec. II but replacing the original training and validation data
sets with the filtered ones at the given energy. The bpred. values
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FIG. 12. Same as Fig. 4, but obtained from the filtered testing
data sets using the deep CNN method with the explicit consideration
of the experimental filter effect.

are re-deduced using the deep CNN method with the consid-
eration of the filter effect, and the correlations between the
obtained bpred. values and the btrue values for 50, 70, and 100
MeV/nucleon are plotted with the y = x lines in the panels
from top to bottom in Fig. 12, respectively. One can find that
the overall bpred. underpredictions as well as the two-branch
features at the large btrue disappear, in contrast with the results
shown in Fig. 11, indicating a fix of the problem in Fig. 11.
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FIG. 13. Comparisons of �bCNN , and �bcent.
CNN , and ηCNN as a

function of the incident energy deduced using the deep CNN method
with and without the consideration of the experimental filter effect.
Solid squares and solid circles represent the results deduced from
the filtered testing data sets using the deep CNN method with the
consideration of the experimental filter effect, and those the unfil-
tered testing data sets deduced using the deep CNN method without
consideration of the filter effect [having been shown by solid circles
in Figs. 5(a), 5(b), 7(a), and 7(b), respectively].

To further examine whether the accuracy of the deep CNN
method in the impact-parameter prediction holds after con-
sidering the experimental filter effect, we deduce �bCNN ,
�bcent.

CNN , and ηCNN at the three energies, respectively. The
results are plotted as a function of the incident energy in
Figs. 13(a)–13(c), together with those from the unfiltered
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testing data sets deduced using the deep CNN method without
considering the effect of filters [shown by solid circles in
Figs. 5, 7(a), and 7(b)]. From the comparisons, it is found that
the results both with and without the consideration of the filter
effect are rather consistent with each other both in magnitude
and in energy-dependent trend, in spite of being with a tiny
deviation in magnitude which indicates a tiny degradation of
the accuracy after considering the filter effect, leading to par-
tial loss of fragment information. This fact confirms that the
accuracy of the deep CNN method for predicting the impact
parameters and that recognizing the central collision events
holds consistently after considering the filter effect.

For completeness, we deduce �b, �bcent., and η values
from the filtered testing data sets using the conventional meth-
ods following the same procedures in Sec. III C, and compare
the results in Fig. 14 with those from the deep CNN method
with the consideration of the filter effect (shown by solid
squares in Fig. 13). Note that the results from the method with
the Zmax observable are absent from the figure. This is due
to its nonmonotonic dependence on btrue after considering the
filter effect differing from those of the other three as shown
in the top panel of Fig. 15, where similar plots to those in
Fig. 10 are plotted using the filtered testing events, but only for
the 70 MeV/nucleon as an example. As indicated in Fig. 14,
the newly trained deep CNN with the consideration of the
filter effect reduces both �b and �bcent. by ≈30% to 50% and
increases η by ≈20% to 40% compared with the best values
achieved by the conventional methods. These comparisons
show that, after taking the experimental filter effect in both
training and testing processes, the deep CNN method still
shows overwhelmingly better performance for predicting the
impact parameters compared with the conventional methods.
It is a clear demonstration for the superiority of the deep CNN
method with a proper consideration of the filter effect in the
impact-parameter determination for the heavy-ion collisions
at the low-intermediate incident-energy range, and a strong
suggestion for the possibility of its future application in ex-
perimental data analyses.

F. Application of deep CNN method in the study
of nuclear stopping power

As one of the key observables in the heavy-ion collisions
at intermediate energies, the nuclear stopping power provides
constraints on the key parameters in nuclear physics, i.e., the
nuclear EOS, effective NN interaction, and the in-medium
NN cross sections, and helps to elucidate the mechanism of
reaction dynamics [59–65]. Since experimental studies of the
nuclear stopping power are often performed for the central
collisions [59,60,63,65], the precise impact parameter deter-
mination for the central collisions is of great importance. In
this section, we apply the deep CNN method with the explicit
consideration of the experimental filter effect in the deduction
of the nuclear stopping power from the filtered testing events.

To quantify the nuclear stopping power, the energy-based
isotropy ratio for protons (Rp

E ) of Henri et al. [65] is adopted,

Rp
E = 1

2

E c.m.
⊥

E c.m.
‖

, (9)
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FIG. 14. Comparisons of �b, �bcent., and η as a function of the
incident energy deduced using the deep CNN method and using the
conventional methods with the impact-parameter-sensitive observ-
ables Nch, Dir, and Et with consideration of the experimental filter
effect. Symbols are same as those in Fig. 5.

where E c.m.
⊥ and E c.m.

‖ are the total center-of-mass trans-
verse and longitudinal energies of the protons from all the
selected events. As indicated in Sec. II, to accomplish the
impact-parameter prediction using the deep CNN method, the
event-by-event information about the masses, yields, and the
momenta for all charged particles is sufficiently proceeded
by the complex trained CNN. Therefore, the autocorrelation
between the predicted impact parameters, and E c.m.

⊥ and E c.m.
‖

for constructing Rp
E (if any) is minimized.
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sets at the incident energy of 70 MeV/nucleon.

The Rp
E values are deduced from the filtered “central”

collision events with reduced impact parameters smaller than
0.2 estimated using the deep CNN method with the consid-
eration of the filter effect in Fig. 12 as well as from those
selected using the conventional methods with Nch, Dir, and
Et , individually. The results are plotted by different symbols
in Figs. 16(a)–16(c) for the incident energies of 50, 70, and

100 MeV/nucleon, respectively. As references, the Rp
E values

for the true central events with btrue/bmax < 0.2 at the three
energies, namely, the true Rp

E values, are deduced, and are
plotted by dashed lines together in each panel. Note that the
statistical errors involved here are rather tiny and are neglected
in the figure. As found from the comparison, the Rp

E values
deduced from the central collision events selected using the
deep CNN method with the filter effect show more consistent
in magnitude with the corresponding true Rp

E values for all
the three energies. To show the Rp

E deduction dependence on
the accuracy of the impact-parameter estimation, we plot the
absolute difference between the deduced Rp

E values for the
four methods and the true Rp

E values (�Rp
E ) as a function

of corresponding �bcent. for the three energies in Fig. 16(d).
A general increasing trend as �bcent. increases is obtained,
that the poorer the accuracy of the impact-parameter estima-
tion is, the larger �Rp

E is. It reveals the importance for the
selection of the impact-parameter determination method in
future experimental investigations on other observables such
as fragment energy and angular distributions, isotopic yield
ratios, neutron-proton emission ratios, resonances, collective
flow, and isoscaling ratios.

The present analysis stops here before a further quantitative
comparison between the experimental nuclear stopping power
and the model simulations, as the experimental nuclear stop-
ping power values are deduced based on the impact-parameter
determination using the conventional method with Nch only
[65]. Ever since 1993, a large amount of data have been mea-
sured using INDRA at the low-intermediate incident energy
range [55]. We recently started to collaborate with the INDRA
group, and the experimental investigation on the nuclear stop-
ping power with the combination of the presently established
deep CNN method and the INDRA data is in progress at
present.

IV. SUMMARY AND PERSPECTIVES

In this article, we develop a deep learning based method
with the CNN algorithm for the purpose of determining the
impact parameters of the heavy-ion collisions with a reason-
able accuracy, especially those of the central collisions, at
the low-intermediate incident energies ranging from several
tens to one hundred MeV/nucleon. The collision events of
124Sn + 124Sn at 50, 70, and 100 MeV/nucleon simulated
using the CoMD are applied, and specific improvements are
made in the input selection, the CNN construction, and the
CNN training. The performance of the established deep CNN
method is unbiasedly examined, using the testing data sets in-
dependent of the training and validation data sets for training.
The conclusions are summarized as follows:

(i) The impact-parameter prediction accuracy of the deep
CNN method in the entire impact-parameter range
is found to be rather good, with �bCNN ranging
from 0.37 to 0.45 fm for the three incident ener-
gies which are comparable to those achieved at the
higher energies above several hundreds MeV/nucleon
in Refs. [37,38], demonstrating the feasibility for
determining the impact parameters of the heavy-ion
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FIG. 16. (a)–(c) Energy-based isotropy ratios for protons (Rp
E ) deduced from the filtered “central” collision events selected using the deep

CNN method with the filter effect (solid squares) as well as using the conventional methods with Nch, Dir, and Et (open squares), and their true
values from the central events with btrue/bmax < 0.2 (dashed lines) as references. The results in the panels (a)–(c) are for the incident energies
of 50, 70, and 100 MeV/nucleon, respectively. (d) Absolute difference between the deduced Rp

E values for the four methods and the true Rp
E

values (�Rp
E ) as a function of corresponding �bcent. for the three energies.

collisions at the low-intermediate incident energy
range using the deep CNN method.

(ii) The systematic comparisons between the perfor-
mance of the deep CNN method and that of the
conventional methods with the impact-parameter-
sensitive observables, Zmax, Nch, Dir, and Et , reveal
that the present deep CNN method has capability of
providing better accuracy for determining the impact
parameters in the entire impact-parameter range (for
the central collisions in particular), compared with the
conventional methods.

(iii) The impact of the experimental filters on the per-
formance of the deep CNN method is carefully
investigated using the INDRA detector array as ref-
erence and is found to be rather significant. After
properly considering the experimental filter effect
in both training stage and testing stage for keeping
consistency with the actual experiments, the good
performance of the deep CNN method holds and
performs significantly better in terms of predicting
the impact parameters and recognizing the central
collision events compared with that of the conven-
tional methods. These comparisons demonstrate the
superiority of the deep CNN method with proper
consideration of the filter effect for determining the
impact parameters of the heavy-ion collisions at the
low-intermediate incident energy range, and leads to
a possibility of its application in the further experi-
mental analyses.

(iv) The deep CNN method with a proper consideration of
the filter effect is applied in the deduction of nuclear
stopping power using the CoMD simulated events.
Higher accuracy for the stopping power deduction us-
ing the deep CNN method for determining the impact
parameters is achieved, compared with those using
the conventional methods. The importance to select
a reliable impact-parameter determination method in
the experimental deduction of the nuclear stopping
power as well as other observables is suggested.

As a final remark, the application of the machine-learning
technique in the impact-parameter determination is in the
stage of exploration at present. Significant improvements in
accuracy and in computational efficiency are expected to be
achieved via the algorithm optimization and the novel algo-
rithm application, etc. For example, typical tentative works
have been conducted by Sanctis et al. [66,67], where a
machine learning method based on a novel support vector
machine algorithm was first proposed fully independent of
those based on the neural networks, and good performance
in the impact-parameter classification has been achieved as
well. Another crucial issue we should face is that the ma-
chine learning requires the aid of theoretical models, so that
the model-dependent effect is inevitable in the deep learning
process. Recently, the transport model comparison project has
been proceeded by the researchers around the world in attempt
to pursue the “ideal” transport model, and great progress
has been achieved with their concerted efforts [68–70]. It
is expectable that the model-dependent effect can be almost
eliminated, adopting the “ideal” transport model in the deep
learning in the future.

Most recently, a model-independent method has been
adopted from an approach for ultrarelativistic heavy-ion
collisions by Frankland et al. to estimate the impact pa-
rameters of experimental events for heavy-ion collisions at
low-intermediate incident energy range [71]. As demon-
strated using the AMD transport model [72] coupled with the
GEMINI++ statistical decay code [73], the model-independent
method has significantly better performance for estimat-
ing the impact parameters at this energy range compared
with the conventional methods with the impact-parameter-
sensitive observables. The novel model-independent method
can be applied as a good criterion to benchmark the existing
machine-learning methods by systematically comparing their
performance in the frameworks of various models. This work
is of great importance, since it would help to rule out the
machine-learning methods with poor accuracy for the first
step, and select out the potentially good ones, prior to further
developing them.
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