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Deblurring for nuclei: 3D characteristics of heavy-ion collisions
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Observables from nuclear and high-energy experiments can be degraded by detector performance and/or
methodology in extracting the observables, such as of the final-state characteristics of heavy-ion collisions in
relation to a coarsely estimated reaction-plane direction. We propose the use of deblurring methods, such as
in optics, to correct for observable degradation. Our main focus is the restoration of triple-differential particle
distributions in heavy-ion collisions. We demonstrate that these could be extracted from collision measurements
following the Richardson-Lucy deblurring method from optics. We illustrate basic features of the restoration
methodology in a schematic model assuming either ideal or more realistic particle detection. The inferred
three-dimensional (3D) distributions for collisions may be easier to interpret in terms of collision dynamics
and sought properties of bulk matter than the currently employed Fourier coefficients, that combine information
from different azimuthal angles relative to the reaction plane.
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I. INTRODUCTION

Observables from nuclear and high-energy experiments
can be degraded by detector performance and/or methodol-
ogy in extracting the observables, such as those tied to limited
control over the initial state of a reaction. With respect to
the latter, the three-dimensional (3D) particle distributions
relative to the reaction plane in heavy-ion collisions are of
much interest, but the reaction plane direction can be only
coarsely assessed, so effectively only blurred distributions can
be directly determined. The characteristics at a fixed impact
parameter are of interest for heavy-ion collisions, but again
the impact parameter can be assessed only coarsely. Direct
reactions of fast rare isotopes are of much interest, but fast rare
isotopes are produced in flight with their beam consequently
spread out in space, angle, and energy, potentially erasing
details in observables. There may be different strategies to
deal with such situations, such as to regress in the choice of
observables, particularly choosing those that are less degraded
by experimental limitations or are easier to correct. Otherwise,
one can resort to theory and filter the theoretical predictions
through the features of the experimental setup and method-
ology. The problem there is that nuclear theory is usually
approximate at one level or another. With observables being
degraded and being compared against uncertain references,
important insights might get lost. As an alternative to the
practice so far, we propose the use of deblurring techniques
to cope with any degraded observables. Deblurring has a
long record in optics, being employed there to correct images
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for flaws of optical apparatus. With deblurring as an option,
one may have a wider range of observables to choose from
and may let those observables stand on their own, prior to
any theory comparisons, inspiring the latter rather than being
resigned to them. Of our primary interest is the inference of
3D characteristics of the final states of heavy-ion collisions.
However, different strategy details may be relevant for other
contexts in nuclear physics and potentially in high-energy
physics.

In heavy-ion collisions, any directional aspects of observ-
ables have been primarily tied to the incident beam direction,
as evidenced in particular by the use of rapidity along the
beam and/or transverse momentum magnitude in presenting
data. However, the symmetry around the beam direction is
broken in the initial state by the relative displacement of
the nuclear centers, i.e., by impact parameter. The transverse
displacement and the beam axis define the reaction plane for
the collision. The symmetry breaking has important conse-
quences for the collisions, such as in setting the preferred
direction of transverse momentum transfer in the system and
in the emergence of participant and spectator products in more
energetic collisions. At lower energies, heavy projectile and
target residues emerge from a collision largely aligned with
the reaction plane, and other characteristics of the final state
tend to be related to these. At higher energies, much could be
learned upon reaction of strongly interacting matter to com-
pression, from product emission in correlation to the reaction
plane. However, at the same time, estimating the reaction
plane becomes a challenge at those higher energies since the
system largely vaporizes. Our considerations here will largely
refer to the latter situation. At still higher energies, Lorentz
dilation freezes fluctuations present the initial state, that can
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then compete with the breaking of the symmetry around the
beam axis by the reaction plane. Even there our proposed
methodology may have applications, though it might not pro-
vide the most interesting information one may seek in the
context.

Importantly, the way in which the symmetry breaking in
the initial state gets reflected in transverse anisotropies in par-
ticle emission, that may represent transverse collective motion
and shadowing, can provide significant information about the
colliding system, including temporal progress of the collision
and bulk properties of the matter such as equation of state
and viscosity. For that reason, strategies not only to identify
the reaction plane direction but also quantify the azimuthal
anisotropies have been intensely pursued over decades, start-
ing with determining whether the transverse collective motion
is there at all [1,2], through estimation of the reaction plane
direction and its uncertainty [3,4], to detailed quantification of
anisotropies in terms of Cartesian moments [3,5] and eventu-
ally Fourier coefficients [6–10]. Importance of correcting for
detector inefficiencies and circumventing correlations unre-
lated to spatial anisotropies, that could distort inferences, was
recognized [5,9,10].

We will be connecting to those prior developments here
at different level, whether directly, when addressing heavy-
ion collisions, or as inspiration behind the consideration of
a simplified model. Of specific importance is that correlation
of the particle emission pattern with the reaction plane can
be exploited to estimate the direction of the reaction plane
[3]. For low event statistics, transverse Cartesian moments of
the distributions can be evaluated. Because of the uncertainty
in the reaction plane determination, values of the moments,
Cartesian or Fourier, need to be renormalized, on a moment-
by-moment basis, and this may be done in a self-consistent
manner [3,6–8]. However, for high event statistics, the whole
distribution associated with the reaction plane could be ad-
dressed with the Fourier coefficients [11]. Taking another
look, if such a distribution were evaluated directly using esti-
mated directions for the reaction plane in collision events, the
distribution would come out blurred, because the estimated
direction of the plane fluctuates around the true direction from
one event to another. This brings up an analogy to the situation
in optics where a photo is taken with a camera that shakes. For
such situations and others, where distortions of image occur
due to understood distortions of light intensity, deblurring
techniques have been developed in the optical contexts [12].
We propose to use such techniques in the context of central
heavy-ion collisions to arrive at three-dimensional (3D) dis-
tributions tied to the reaction plane. The interpretations of
the latter distributions may be easier than those of Fourier
coefficients, especially those of high order, given that these
coefficients tend to quantify information incidentally lumped
together, through the reference to the same value of trans-
verse momentum magnitude. We moreover envision the use of
such techniques in other situations in nuclear or high-energy
physics where observables are distorted due to limitations of
methodology or detector performance.

We start out by reviewing the Richardson-Lucy (RL) de-
blurring algorithm [13,14], that is popular in optics, based on
Bayesian considerations, and is well suited, in our opinion,

for nuclear applications including heavy-ion collisions. We
then turn to a schematic one-dimensional (1D) model, where
a system moving at unknown velocity emits particles accord-
ing to a single-particle distribution that is forward-backward
symmetric in the center-of-mass (c.m.) frame. A number of
particles is measured and the goal is to determine the velocity
distribution of particles relative to the center of mass, even
though the center of mass is not known on a case-by-case
basis. The center-of-mass velocity may be estimated from the
emitted particles, but it straggles relative to the true veloc-
ity. With this, the distribution relative to the center of mass
evaluated from the emitted particles alone is smeared out
compared to the true distribution. We demonstrate that the
original distribution may be restored from simulated obser-
vations by combining the central-limit theorem with the RL
deblurring algorithm. Next we repeat the model assuming that
particles are measured with a detector for which the detection
window is comparable with the spread of the particle distri-
bution. In this case, the central-limit theorem cannot be easily
employed and the restoration problem becomes significantly
nonlinear. We demonstrate that, in that more involved situ-
ation, the original velocity distribution may be still restored
from the measured distribution following a self-consistent RL
algorithm. We thereafter turn to simulated distributions for
heavy-ion collisions. We assume a typical situation recog-
nized as a good representation of the final-state emission for
semicentral collisions at few hundred MeV/nucleon, with a
local equilibrium combined with sideward, radial, and elliptic
flows. With a moderate number of light charged particles
registered, with mass A � 4, it is possible to deblur their
distributions associated with the reaction plane, even when
these distributions vary by an order of magnitude or more in
the transverse directions. We complement the outline of the
strategy for data analysis with results from transport theory,
illustrating what kind of information could be accessed in the
deblurred distributions, that might not be easily seen in the
azimuthal moments for the distributions.

II. DEBLURRING

The blurring problem may be stated in the form of the
equation

n(ζ ) =
∫

dξ P(ζ |ξ )N (ξ ). (1)

Here, N (ξ ) is the distribution in coordinates ξ that faithfully
characterizes the measured system and P(ζ |ξ ) is the proba-
bility density that the system is measured around ζ when it is
actually at ξ . Finally, n(ζ ) is the distribution attributed to the
system through direct measurements. The goal of deblurring
is to determine N (ξ ) from the measured n(ζ ), given knowl-
edge about P. While the problem appears to be stated as linear,
in practical situations P may have a dependence on N , too.

In the reaction-plane problem, the blurring is due to the
fact that the azimuthal angle relative to the estimated reaction
plane is not equal to the angle relative to the true reaction
plane. The deviation may vary from one collision event to
another and even particle to particle, within the strategy of
estimating the reaction plane orientation [3,6]. In detector
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efficiency problems, P might account for a particle being
misidentified or missed or a whole event disregarded con-
sequently under a trigger. Depending on the situation, the
probability density integrates to 1 or not,

∫
Z dζ P(ζ |ξ ) =

PZ (ξ ) � 1. For generality further on, we will consider the
possibility of weighing the domain Z with a function W (ζ ),
with the net weighted probability being then PW Z (ξ ) =∫

Z dζ W (ζ ) P(ζ |ξ ). The function W may be then used to
effectively shrink Z such as when disregarding inferior quality
events.

For inferring N directly from measured n, it might be
tempting to invert (1) directly, but that strategy is likely to
amplify short-wavelength noise always present in n. In optical
contexts alternative methods have been developed, of which
the Richardson-Lucy (RL) deconvolution algorithm [13,14],
based on Bayesian considerations that we next lay out, is
particularly popular.

Let Q(ξ |ζ ) denote complementary probability density to
P, that the system is at ξ when it is measured at ζ . Then the
probability that the system is within dξ while measured within
dζ can be expressed in two different ways:

Q(ξ |ζ ) n(ζ ) dζ dξ = P(ζ |ξ )N (ξ ) dξ dζ . (2)

This yields

Q(ξ |ζ ) = P(ζ |ξ )N (ξ )∫
dξ ′ P(ζ |ξ ′)N (ξ ′)

(3)

and

N (ξ ) =
∫

dζ Q(ξ |ζ )W (ζ ) n(ζ )

PW Z (ξ )
. (4)

The RL method solves the last two equations iteratively:

Q(r)(ξ |ζ ) = P(ζ |ξ )N (r)(ξ )∫
dξ ′ P(ζ |ξ ′)N (r)(ξ ′)

, (5)

N (r+1)(ξ ) =
∫

dζ Q(r)(ξ |ζ )W (ζ ) n(ζ )

PW Z (ξ )
, (6)

where r is iteration step index. Any implicit dependence of P
on N may be handled in the equations iteratively. One notable
feature of the equations is that distributions that start as non-
negative stay that way during the iterations. Combination of
the equations above yields

N (r+1)(ξ ) = A(r)(ξ ) N (r)(ξ ), (7)

where

A(r)(ξ ) =
∫

dζ
n(ζ )

n(r) (ζ ) W (ζ ) P(ζ |ξ )∫
dζ ′ W (ζ ′) P(ζ ′|ξ )

, (8)

and

n(r)(ζ ) =
∫

dξ P(ζ |ξ )N (r)(ξ ). (9)

If the variable space is discretized, then the equations become

N (r+1)
i = A(r)

i N (r)
i , (10)

A(r)
i =

∑
j

n j

n(r)
j

Tji, (11)

with

n(r)
j =

∑
i

Pji N (r)
i (12)

and

Tji = Wj Pji

/ ∑
j′

Wj′ Pj′i. (13)

To provide more discussion of the conventions and math-
ematics here, in the standard RL method, the variation of
emphasis over the Z domain is not employed, i.e., W ≡ 1. We
underscore the possibility of a different emphasis across Z for
the sake of flexibility when the certainty in n(ζ ) varies across
the domain. The variation in W might also be used to test the
robustness of conclusions. Further on in this work we employ
Wj = 1, except for rare cases of n(r)

j = 0 when we put Wj = 0.
Within the equations behind the RL method, Eq. (1) represents
forward mapping, while (4) represents backward. Depending
on the context, the matrix Pji acting on a vector from the left
in (12) may be called a blurring matrix or forward transfer
matrix. The sum of elements in a column is bounded by 1,∑

j Pji � 1, with the sum being exactly 1 when the probability
is preserved. The matrix Tji acting on a vector from the right
in (11) may be called a backward transfer matrix. The sum of
elements in a column of that matrix is exactly 1,

∑
j Tji = 1.

When n and N extend over the same domain, it is common
to use n to start the iterations for N . It is common for the
iterations to progress quickly first, but then gradually stall,
with seesaw instabilities developing over many iterations.
Remedies include an acceleration [15] by using a power ν > 1
for the amplification factor A, terminating the iterations after a
moderate number of steps, and/or using a regularization factor
[15,16]:

I (r) = 1

1 − λH · ∇ (∇N (r)/|∇N (r)|) . (14)

Here, H is the discretization vector within the domain of N
and λ is a small factor that prevents buildup of any seesaw
pattern in effect of the iterations. That is, Eq. (10) can be
replaced with

N (r+1)
i (ξ ) = [

A(r)
i (ξ )

]ν
I (r)
i N (r)

i (ξ ), (15)

in an accelerated regularized RL scheme. Excessive accelera-
tion powers, ν > 2, have been show to lead to an instability in
the iterations.

Obviously other methods of inferring n from N are pos-
sible, such as in decomposing them in orthogonal functions,
including harmonics [7,11]. The danger in the latter case
is of combining functions with varying sign where noise is
handled independently. In the case of functions that change
by orders of magnitude, the danger is of arriving at a poorer
representation for N in the regions of low values than even
provided by n.

III. 1D MODEL

We next present a schematic and thus potentially transpar-
ent 1D model. It may at first seem disconnected from the issue
of reaction-plane deblurring. In reality, it is closely related.
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FIG. 1. Probability density for system velocity V ′, estimated
with the average velocity for N − 1 = 9 particles sampled from a
symmetric uniform velocity distribution centered around the true
velocity V . The solid (red) line shows the distribution from a direct
simulation, calculated with H = 0.1 binning, and the dashed (blue)
line shows the distribution estimated with the central-limit theorem.

We consider a projectile moving at an unknown velocity V
that varies from an event to an event. The projectile deexcites,
emitting N = 10 identical particles sampled from a uniform
velocity distribution from −1 to +1 relative to V , in some
arbitrary velocity units. The particle velocities are measured
and the goal is to determine, from event statistics, the distri-
bution of particles in the projectile frame. For uncorrelated
emission, the rms of the sought distribution is obviously easy
to estimate from the average difference of velocities between
any two particles squared:〈(

vlab
1 − vlab

2

)2〉 = 〈(v1 − v2)2〉 = 2〈v2〉. (16)

Here, v are velocities relative to the projectile and vlab are in
the laboratory system: vlab = v + V .

In assessing velocity of a particle relative to the projectile,
the velocity of the projectile can be estimated with the average
velocity of N − 1 = 9 remaining particles, in a similar manner
as when the reaction plane is estimated from remaining par-
ticles in an event [3]. The so assessed velocity V ′ fluctuates,
though around the true velocity V . The probability distribu-
tion from 10 000 simulated events is shown as a solid curve
in Fig. 1. The central-limit theorem states that for a large
particle number in one event such a distribution approaches
a Gaussian,

dP

dV ′ �
√

(N − 1)

2π〈v2〉 exp

[
− (N − 1)(V ′ − V )2

2〈v2〉
]
. (17)

We compare that Gaussian distribution to the one from simu-
lations and it is apparent that the two distributions are nearly
indistinguishable in the region where they are significant.

Because of the fluctuations of the reference V ′ around
the true velocity V , the inferred velocities v′ relative to the
projectile are inaccurate, v′ = v + V − V ′, and the inferred

FIG. 2. Distribution of particles in velocity within the projectile
frame for a 1D model: original is represented by the solid (red)
line, inferred from measurements is represented by the dashed (blue)
line, and restored through deblurring is represented by the dash-dot
(green) line. In the simulation, 10 000 events with N = 10 particles
each were generated. A binning of H = 0.1 was used for the distri-
butions. The restoration was done assuming the central-limit blurring
function.

distribution in velocity gets smeared out:

dN

dv′ (v′) =
∫

dV ′ dP

dV ′ (V ′ − V )
dN

dv
(v). (18)

In Fig. 2, we show the original distribution of particles rel-
ative to the projectile in the simulations, together with that
from simulated measurements, and the smearing is evident.
In collecting the statistics, we use H = 0.1 bin size. The
third distribution represented in Fig. 2 is one from deblurring
using the regularized and accelerated RL algorithm. In 1D, the
regularization factor is

I (r)
i =

⎧⎪⎨
⎪⎩

1
1−λ

if N (r)
i < N (r)

i−1,i+1,
1

1+λ
if N (r)

i > N (r)
i−1,i+1,

1 otherwise.

(19)

We employ λ = 0.01 and accelerating power ν = 1.99 and
start with N (1) = n. Moreover, we carry out the iterations
in (15) by using the central-limit blurring function (17) with
(16). In principle, it could be possible to update the blurring
functions during iterations to make them consistent with the
inferred dN/dv, for finite N , if desired accuracy of restoration
called for that. At the level of the statistics we employ, the
iterations that employ our more basic procedure stabilize at a
distribution that is largely consistent with the original.

IV. MODEL WITH DETECTION INEFFICIENCIES

Here, we expand the 1D model of the previous section
assuming detection inefficiencies. This continues a connection
to the reaction-plane deblurring, though maybe the particular
challenges are overemphasized compared to a typical case of
the reaction-plane determination. The overemphasis tests the
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FIG. 3. Detection efficiency E (solid line) as a function of par-
ticle laboratory velocity vlab, in the 1D model with inefficiencies,
with superimposed particle distribution dN/dvlab (dotted line) for a
projectile moving at velocity V = 0.5 (short vertical dashed line).

robustness of the restoration procedures, which can be useful
for other applications in nuclear physics.

Again in the model we assume that a projectile moves
at unknown velocity V that varies from event to event. The
projectile deexcites emitting N identical particles sampled
from a uniform velocity distribution from −1 to +1 relative
to V , in the arbitrary velocity units. The particle velocities are
measured and the goal is to determine, from event statistics,
the distribution of particles in the projectile frame. Now, how-
ever, we assume that the particles are detected using a detector
with efficiency E (vlab) varying across the detection window
|vlab| < vlab

max = 2:

E (vlab) =
{

1
2 + 1

2 cos
(
π vlab/vlab

max

)
if |vlab| < vlab

max,

0 otherwise.
(20)

The efficiency is illustrated in Fig. 3 with the superimposed
distribution of emitted particles for an exemplary projectile
velocity V = 0.5. Given that the number n of detected par-
ticles is generally reduced compared to the number N of
emitted, n � N , we assume now N = 30 particles and demand
that a minimum nmin = 10, n � nmin is detected for the events
to be analyzed with the goal of finding dN/dv in the projectile
frame.

In the sampling of the events, we distribute the projectile
velocity V uniformly in the laboratory frame over the range
|V | < Vmax = vmax + vlab

max + H/2. Here, H = 0.1 continues
to be our bin size employed in discretizing distributions. The
precise value of Vmax is ultimately of minor importance, as
the probability of accepting an event for analysis becomes
very small when |V | gets close to vlab

max, terminating the de-
tector acceptance. Varying Vmax in some range above then
largely amounts to adding or subtracting events that do not get
analyzed. Average distribution of particles relative to the pro-
jectile velocity, for the original events and for the simulated
measurements, is illustrated in Fig. 4. Note that the average
in Fig. 4 is over the simulated events, that may or may not
be analyzed. Any extra events that do not get analyzed, due
to n < nmin, contribute a drop in the overall normalization

FIG. 4. Distribution of particles in velocity within the projec-
tile frame for 1D model with inefficiencies: original represented
by the solid (red) line, inferred from measurements represented by
the dashed (blue) line and restored through deblurring and repre-
sented by the dash-dot (green) line. The simulated events originally
contained N = 30 particles. In the measurement the particles were
assumed to be accepted with the efficiency of Fig. 3 and the events
were processed if the number of accepted particles exceeded a
minimum: n � nmin = 10. A binning of H = 0.1 was used for the
distributions and in the restoration matrices.

of dn/dv′ distribution found in analyzing the events, with-
out altering the shape of that distribution. That normalization
eventually drops out in the restoration.

In determining a contribution to dn/dv′ from each an-
alyzed event, we progress as before and for any particular
particle we estimate the projectile velocity V ′ as the average
velocity of the remaining n − 1 particles in an event. In spite
of the starting particle number being significantly higher than
before and only the low cutoff for observed particle number
nmin coinciding with the prior starting number, the shape of the
measured distribution in Fig. 4 is now much more degraded,
compared to the original, than in the previous model consider-
ation of Fig. 2. The impact of the significant, rapidly changing
inefficiency on the measurement, that can be expressed
with conditional probabilities, and on restoration, is discussed
below.

On the technical side, the probability densities for deter-
mining the system velocity to be V ′, while the original is V ,
and for the particle velocity to be v′ in the system frame, when
the original is v, do not depend anymore on just difference of
density arguments, as in the previous example, but on each
argument separately, and these densities are not identical to
each other anymore. In the measurement, when the projec-
tile velocity V pushes against a region of reduced detection
efficiency, one can expect the velocity V ′, determined from
decay products, to be biased towards the region of higher
efficiency. This is indeed seen in terms of conditional prob-
ability density dP

dV ′ (V ′|V ), the examples of which are shown
in Fig. 5. Also the expected drop in the overall probability of
an event getting accepted for the analysis can be seen as V
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FIG. 5. Conditional probability density for determining velocity
V ′, from decay products in the 1D model with inefficiencies, at three
indicated velocities V of the projectile. Those original velocities
V are marked with the short vertical dashed lines by the abscissa.
Following the strategy of using the remainder of the system as a
reference for any single particle, in generating the illustrated density,
N − 1 = 29 particles can be sampled for an incomplete event and
the set analysed if at least nmin − 1 = 9 particles pass the detector
acceptance.

gets closer to the particle detection limits. As far as the width
of the distributions for a given V is concerned, the quickly
changing inefficiency has a dual effect of increasing the width
due to a reduced accepted particle number and decreasing due
to shrinking of the accepted particle distribution. In the end,
the width is only modestly changing with V and it is actually
shrunk compared to the previous case with 100% detection
but fewer particles at the start.

The conditional probability for the velocity relative to pro-
jectile frame, dP

dv′ (v′|v), can be represented as a convolution of
the efficiency function E with the conditional probability for
the projectile velocity, dP

dV ′ (V ′|V ):

dP

dv′ (v′|v) = 1

2Vmax

∫ Vmax

−Vmax

dV E (V + v)
dP

dV ′ (V + v − v′|V ).

(21)

The conditional probability density at exemplary values of the
original velocity v, from the model simulations, is illustrated
in Fig. 6. To underscore, that density is established no matter
what the value of dN/dv at v is, even when that value is zero.
Although that last distribution might seem to disappear from
ongoing consideration, it is obviously there in dP

dv′ (v′|v), as the
estimation of the projectile velocity V ′ depends on the overall
dN/dv, within dP

dV ′ (V ′|V ) in (21). In the model in the previous
section, that inherent dependence could be largely described
in terms of the easily estimated dispersion for the distribution,
but here this dependence is generally more complex. The
measured distribution of particles in relative velocity, dn/dv′,

FIG. 6. Conditional probability density for finding velocity v′

relative to the projectile, for a particle measured in an event in the 1D
model with inefficiencies, at three indicated true velocities v relative
to the projectile. Those original velocities v are marked with the short
vertical dashed lines by the abscissa.

is related to the original distribution dN/dv as [cf. Eq. (1)]

dn

dv′ =
∫

dv
dP

dv′ (v′|v)
dN

dv
. (22)

In comparing the conditional probability density for rela-
tive velocity dP

dv′ (v′|v), of Fig. 6, to the density for projectile
velocity dP

dV ′ (V ′|V ), of Fig. 5, we can see that the density for
the relative velocity is much wider, exhibits nearly as much
bias as the other for finite velocity values, and it more clearly
exhibits skewness. The width and bias in the conditional
dP
dv′ (v′|v) have their origin in the widths and biases of the
contributing conditional dP

dV ′ (V ′|V ) in Eq. (21). The strong in-
crease in the widths for dP

dv′ (v′|v) can be attributed to the range
of dP

dV ′ (V ′|V ) contributions, with different V and changing
bias. Regarding the bias, it may be observed in Eq. (21) and
elsewhere that v′ − v = −(V − V ′), so the bias contributed
to dP

dv′ (v′|v) by events is opposite to the bias contributed to
dP
dV ′ (V ′|V ). The fact that the bias is primarily negative in the
forward direction for dP

dv′ (v′|v) in Fig. 6 means that the forward
relative velocity will be primarily measured for events where
the projectile velocity is in the negative direction, and vice
versa. This is consistent with the singled out velocity and
reference particle set fitting in an optimal manner within the
detector acceptance window, one pushing the front and the
other the rear of that window. The skewness can be tied to the
fact that large widths become comparable to the pace at which
efficiency is changing. Both the probability for analyzing an
instance of a given relative velocity v, P(v) = ∫

dv′ dP
dv′ (v′|v),

and net velocity V , P(V ) = ∫
dV ′ dP

dV ′ (V ′|V ), fall with in-
crease in magnitude of the respective velocity; see Figs. 5
and 6. Overall, the large width of the conditional probability
density dP

dv′ (v′|v), larger for central v than in the model of the
preceding section, the bias, not there before in the model, and
the fall of the analysis probability with |v|, again not there
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before, all contribute to much stronger deterioration of the
shape of distribution in relative velocity in the measurements
compared to the original shape; cf. Figs. 2 and 4.

For restoration of dN/dv, Eq. (22) is discretized. The
difficulty now is that the conditional probability density at
iteration r, dP(r)

dv′ (v′|v), depends in a nontrivial manner on
dN (r)/dv. We start the iterations of Sec. II with dN (1)/dv =
〈E〉−1 dn/dv′, at v′ = v, and we compute dP(1)

dv′ (v′|v) through
a simulation. Here, 〈E〉 is the typical detector acceptance
that we conservatively take as average efficiency over the
detection window, i.e., 〈E〉 = 0.5. Simulations for determin-
ing dP(r)

dv′ (v′|v) are numerically costly compared to the matrix
multiplications in the RL algorithm and this is likely to be the
case in similar situations of restoration. We tame increase in
the cost by updating dP(r)

dv′ (v′|v) only once in a while during the
iterations, infrequently enough for the RL iterations on their
own to converge in between. As is illustrated in Fig. 4, despite
the strong detector inefficiencies, strongly distorted measured
distribution, and greater complexity in the restoration, the
procedure can restore the original single-particle distribution
sufficiently well for typical practical applications.

V. REACTION-PLANE DEBLURRING

The problem of the blurring of particle distributions and
other characteristics of heavy-ion collisions lies in attributing
azimuthal angle �′ to the reaction plane that is actually di-
rected at angle �. With this, the angles relative to the reaction
plane attributed to the particles are inaccurate, φ′ = φ + � −
�′, and measured distributions are going to be smeared out:

d3 N

p⊥ d p⊥ dy dφ′ =
∫

d�′ dP

d�′ (�′ − �)
d3 N

p⊥ d p⊥ dy dφ
(φ).

(23)

Owing to the asymmetries in emission tied with the re-
action plane, the direction of the reaction plane is estimated
with a combination of particle momenta, most commonly
sum of weighted transverse momenta, qν = ων p⊥ν . When
the direction of the reaction plane is used as a reference for
a certain particle μ, that particular particle is omitted from
the reference, to avoid a self-correlation. That is, the reaction
plane direction is estimated with the direction of the vector
[3,17]

Qμ′ =
∑
ν 	=μ

ων p⊥ν =
∑
ν 	=μ

qν . (24)

The direction is obviously the same as for the average vector
q of the remaining particles,

qμ′ = 1

N − 1

∑
ν 	=μ

qν, (25)

where N is particle multiplicity. When qν are largely un-
correlated, except through the reaction-plane geometry, the
central-limit theorem implies that the distribution of the av-
erage vector q in relation to the reaction plane approaches
Gaussian for large N :

d2P

d2q
� N − 1

2π σx σy
exp

{
−N − 1

2

[
(qx − 〈qx〉)2

σ 2
x

+ q2
y

σ 2
y

]}
.

(26)

Here, index x is for a component along the reaction plane
direction and y is for a component along the perpendicular
direction. The dispersions σ and average 〈qx〉 refer to single-
particle emission in relation to the reaction plane,

σ 2
x = 〈(qx − 〈qx〉)2〉 = 〈

q2
x

〉 − 〈qx〉2, σ 2
y = 〈

q2
y

〉
. (27)

Under the condition that the correlations tied to the reac-
tion plane dominate [5], the parameters for the probability
distribution can be determined from constructs out of the q
contributions averaged over particle sets and events:

〈q1 · q2〉 = 〈qx〉2,〈
2(q1 · q2)(q2 · q3) − (q1 · q3) q2

2

〉 = 〈qx〉2
(〈

q2
x

〉 − 〈
q2

y

〉)
.

(28)

Here, the indices 1, 2, and 3 refer to any three particles con-
tributing to Q in an event.

Now, we can express q in terms of azimuthal deviation
from the true direction of the reaction plane, �� = �′ − �,

qx = q cos ��, qy = q sin ��, (29)

and write the probability density (26) as

d2P

d2q
= d2P

q dq d�′ � A exp[−B(��) q2 + 2C(��) q].

(30)

Integration over magnitude of q yields the central-limit dis-
tribution of the estimated reaction plane relative to the true
plane:

dP

d�′ =
∫

dq q
d2P

d2q
� α(��) {1 + √

π β(��) exp [(β2(��)]{1 + erf[β(��)]}}. (31)

Here, the terms β and α, both dependent on the deviation �� from the true reaction plane, are

β(��) = C(��)√B(��)
=

√
N − 1

2
(
σ 2

y cos2 �� + σ 2
x sin2 ��

) σy

σx
〈qx〉 cos �� ≈

√
N − 1

〈q2〉 〈qx〉 cos �� (32)

and

α(��) = A
2B(��)

=
σx σy exp

[− (N−1)〈qx〉2

2σ 2
x

]
2π

(
σ 2

y cos2 �� + σ 2
x sin2 ��

) ≈ 1

2π
exp

[
− (N − 1)〈qx〉2

〈q2〉
]

; (33)
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see also Ref. [7]. The final approximations in Eqs. (32) and
(33) pertain to the case of weak azimuthal anisotropies in the
distributions relative to the reaction plane. These underscore
that the main variation with angle in (31) is tied to the factor
of cos �� in (32).

An example of the distribution (31) is shown in Fig. 8.
We next illustrate the envisioned procedure of reaction plane
deblurring in the case of the final state modeled using a
local-equilibrium model that incorporates common concepts
for intermediate-energy heavy-ion collisions.

A. Deblurring example: Local-equilibrium model

We illustrate deblurring for a 3D distribution associated
with the reaction plane, deducing d3 N/p⊥ d p⊥ dy dφ from
d3 N/p⊥ d p⊥ dy dφ′, cf. Eq. (23), by simulating the final state
of a collision in a local equilibrium model. As a reference
beam energy for the collision, we take 300 MeV/nucleon and
consider A � 4 charged products in the final state.

Our goal is to mimic a state that is consistent at a very
coarse level with the observations [17,18]. We have no inten-
tion to dive into any controversies around the freeze-out in
collisions, whether the colliding systems literarily go through
an equilibrium when expanding into vacuum or whether they
separately freeze out chemically and kinematically. Specifi-
cally, we assume that the system freeze-out can be described
in terms of a local equilibrium, at a uniform freeze-out den-
sity ρ f and temperature Tf , combined with collective motion
for the freeze-out location. Within the latter, the longitudinal
expansion dominates, but also present are a radial transverse
expansion, with a weak elliptical modulation, and finally a
weak sideward flow, typical for mid-central collisions. We
take the freeze-out density at ρ f = ρ0/6 and, for simplicity,
a neutron-proton symmetric system. Assuming that the local
kinetic energy for nucleons is a fraction of the kinetic energy
available per nucleon, we arrive at the freeze-out temperature
Tf � 29 MeV. Note, we assume that the average number of
protons included in the measurements, whether as free or in
clusters, is 〈Zt 〉 = 50. Then, ρ f and Tf give us charged particle
multiplicities, 〈Np〉 = 19.0, 〈Nd〉 = 17.8, 〈Nt 〉 = 〈Nh〉 = 3.7,
and 〈Nα〉 = 1.0. The A � 3 multiplicities are low, for a given
proton multiplicity, compared to the data from the specific
beam energy region [18]. However, our main goal is to explore
the situation with different species used in reaction plane
determination, not a literal reproduction of relative yield data.
We sample multiplicities for the species from Poisson distri-
butions for the average specie multiplicities and we combine
a momentum sampled from a local equilibrium distribution
for the specific species with a collective velocity boost that
itself combines the aforementioned persistence of longitu-
dinal motion, radial transverse expansion, and elliptic and
sideward flows, all of the latter common between the species.
In Fig. 7, we show exemplary characteristics of protons and
deuterons in the generated events. Second-order coefficients
of azimuthal anisotropy have low values in this simulation, in
fact for protons they are quite comparable to statistical errors
even for a large number of events, and are not shown.

In each of the events in the sample, when considering
particle μ, we estimate the reaction plane direction with the

FIG. 7. Characteristics of protons and deuterons within the lo-
cal equilibrium model. The lines represent differential distributions
in normalized rapidity, dNX /dyR, and symbols represent first-order
azimuthal-asymmetry coefficients, v1X = 〈cos (φ − �)〉X , all vs yR.
Here, the rapidity is in the center of mass and scaled with the rapidity
of the beam, yR = y/yBeam.

remaining particles in the event. We use

ων =
{

sgn yR if |yR| > δ,

0 if |yR| < δ
(34)

in Eq. (24), with δ = 0.17 [3]. The distribution of estimated
plane directions, relative to the true direction, is shown in
Fig. 8 for this choice of weights. More optimal weights could
be chosen, yielding a more narrow distribution [17,19]. Our
goal here, though, is of presenting deblurring opportunities
and not of making of making everything optimal; actual ex-
perimental analysis will likely face other tensions. In addition
to the distribution found in the simulations, we show in Fig. 8
the central-limit result (31), with widths from Eqs. (27) and
(28), and N replaced by the average 〈N〉 for the simulation.
Remarkably, the curves cannot be distinguished by eye, which
bodes well for using central-limit results in practice, in lieu of
any complete self-consistent simulation. Notably, testing of
the proximity to the central limit can be carried out directly in
the experiment, by randomly dividing events into subevents
of nearly equal multiplicity [3] and comparing the relative
distribution of estimated directions of the reaction plane to
that from Eq. (31) with (N − 1) replaced by 〈N〉/4.

We next illustrate the blurring that occurs when attempting
to measure the triple differential distribution. To the blurred
distribution we apply deblurring. Specifically, we examine
the spectrum of deuterons at a moderately forward rapidity,
yR = 0.5. We choose deuterons rather than protons in the il-
lustration, because the push of the latter in the reaction plane is
relatively meager in the parametrization of the flows we chose.
Figure 9 shows three versions of the transverse momentum
spectra in the reaction plane (py = 0): as recorded for the
event sample using the known direction of the reaction plane
(diamonds), as recorded (crosses) when using the direction
estimated with a construct from particle momenta, Eqs. (24)
and (25), and as obtained from deblurring the blurred spec-
trum (circles). The blurring function for the latter could be
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FIG. 8. Probability density for the azimuthal angle �′ of the
reaction plane in the local equilibrium model, when estimated with
the direction of the vector q out of N − 1 particles in an event,
relative to the true angle �. Here, N is the total particle number
in an event. The solid (red) line shows the density from a direct
simulation in the local equilibrium model and the dashed (blue) line
shows the density estimated with the central-limit equation (31). In
using the last equation, 〈qx〉, σ 2

x , and σ 2
y in α and β were obtained

from averages over the event simulations, following the strategy laid
out in the text. In addition, the multiplicity N , actually varying from
an event to event, was replaced with the single average value 〈N〉
over the simulated events.

determined self-consistently, through additional simulations
during the deblurring iterations, but given Fig. 8 we instead
use the central-limit formula (31). The discretization step
in the RL algorithm is the same for the blurring function
and the distribution and we use H = 15◦. The values from
restoration settle after about 5 RL iterations with ν = 1.99 and
λ = 0.005. The deblurring is carried out for each transverse
momentum bin separately and the inset in Fig. 9 shows the
case of a high central bin momentum, p⊥ = 1.17 GeV/c, with
statistical fluctuations evident.

It is apparent in Fig. 9 that the restored spectrum well
coincides with the original, as the respective representing
symbols largely overlap. It is apparent, for the high momenta
there, that the restoration can reproduce spectra varying by
an order of magnitude over the azimuthal angle. Much of the
variation over angle is already there in the simulated measured
spectrum; see the inset. The restoration just improves details
in that variation and does so mostly on a local scale in the
azimuthal angle. Have we chosen different weights for Q in
Eq. (34), the blurring function in Fig. 8 could have been more
narrow, and there would be less needed improvement left for
the deblurring.

For practitioners of the analysis of heavy-ion collisions, it
should be apparent that the considerations in the 1D model
earlier are just veiled versions of the reaction-plane analysis,
stripped of the dimension that plays no direct role in the
restoration and stripped of the periodicity in the other dimen-
sion. With this, the steps that must be taken to treat detector

FIG. 9. Triple differential deuteron distribution at yR = 0.5, in
the local equilibrium model. The main figure shows the distribution
in the reaction plane, as a function of the momentum component
in the reaction plane. The inset shows the distribution at p⊥ =
1.17 GeV/c, as a function of azimuthal angle about the reaction
plane. In each case, three versions of the distribution are displayed:
one determined directly using the known direction of the reaction
plane in the modeled events (diamonds), one obtained by estimating
the direction of the plane with the vector Q (crosses), out of momenta
of remaining particles in the simulated events, Eq. (24), and one
arrived by applying the deblurring to the measured triple-differential
distribution, with the RL algorithm applied to Eq. (23) and the
blurring function from the central-limit theorem, Eq. (31).

inefficiencies consistently with the rest of the reaction-plane
analysis should be apparent from the preceding section. Parti-
cle misidentifications would give rise to matrix elements in the
transfer matrix coupling not only different particle identities,
but also rapidities. Interestingly, it might even be possible to
handle a situation where the particles could only be identified
on a statistical level [5].

B. Why 3D characteristics?

It may be asked, why engage in deblurring, if proce-
dures exist for determining azimuthal Fourier coefficients
as a functions of transverse momentum [8–11]? The lowest
nonvanishing coefficients usually have a straightforward
physical meaning and may be easier to determine for low
event statistics than refined distributions. However, a mul-
titude of coefficients of different orders, changing with
rapidity and transverse momentum, combining information
from different azimuthal directions, can be a challenge at
the operational level. To illustrate how the view of reactions
could be expanded by examining distributions that include az-
imuthal angle relative to the reaction plane, and potentially 3D
distributions, we reach to the Boltzmann-Uhlenbeck-Uehling
(pBUU) transport model [20]. The latter and other transport
models have been extensively used to simulate a variety of
heavy-ion collisions in the beam energy region from a few tens
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FIG. 10. Triple differential distributions in the reaction plane at
yR = 0.5, for neutrons (circles) and protons (diamonds), from the
pBUU simulations of 132Sn + 124Sn collisions at 270 MeV/nucleon
and b = 3.3 fm. The rapidity yR is here in the nucleon-nucleon center
of mass and normalized to the beam.

of MeV/nucleon to a few GeV/nucleon, describing different
observables at quantitative and semiquantitative levels [21].
With this, predictions of such models might be considered
pertinent, but as azimuthal and more broadly 3D spectra have
not been accessible experimentally, they were normally not
considered in the theory either.

Multiple transport simulations have been carried out in the
context of 270 MeV/nucleon Sn + Sn experiments performed
recently at RIKEN [22]. In Fig. 10, we show exemplary re-
sults from such simulations, proton and neutron spectra from
132Sn + 124Sn collisions at b = 3.3 fm, within the reaction
plane at yR = 0.5. With projectile and target of different mass,
the rapidity is taken here in the nucleon-nucleon center of
mass and is normalized to the beam. There are similarities
and differences between the spectra in the conventional local
equilibrium picture, such as in Fig. 9, and from transport,
such as in Fig. 10, when the spectra are examined in the
reaction plane. Both types of spectra have maxima shifted in
the positive direction of the reaction plane. The one in the
conventional picture is largely symmetric about the fairly flat
maximum and close to parabolic in the logarithmic scale. The
maxima in the spectra from transport are sharp, the spectra are
largely piecewise exponential in momentum, have knees, and
there is visible asymmetry between the sides extending into
the positive and negative sides of the reaction plane. The slope
for the positive side, right after the maximum, is sharper than
for the negative side. This could be due to a larger fraction
of spectator matter towards the positive side of the reaction
plane in space, for particles moving forward, than towards the
negative. The knees in the spectra are at different transverse
momenta on the two sides of the reaction plane. A sharp
maximum could be produced by Coulomb interactions, but
these cannot explain the maximum for neutrons, that seems to
be even sharper than for protons.

When the transport spectra are averaged over azimuthal
angle, the maxima in the spectra move to p⊥ = 0 and soften.

The knees soften too. Overall, the two types of spectra, from
transport and the conventional picture, become qualitatively
much closer to each other with the azimuthal angle averaging
than without. When azimuthal asymmetries in the spectra are
explored in terms of Fourier coefficients, usually just one or
two lowest ones in the particular energy regime, details such
as in Fig. 10 are beyond resolution.

Differences in the spectra for the sides of the system with
different participant-spectator composition on different sides
of the reaction plane may be accessible only through the 3D
examination of those spectra. Shift of a maximum in the spec-
trum within the reaction plane may offer the only opportunity
to examine its shape, as a maximum can be difficult to assess
when it coincides with beam direction. Comparison of the
knees in relation to the maximum, between experiment and
theory, may help to clarify their origin and clarify the level of
understanding of the collisions within theory, such as of the
elementary collisions taking place on shell.

Turning to the second example, heavy-ion collisions com-
press nuclear matter to densities above normal at conditions
approaching thermal equilibrium. With this they represent an
opportunity to learn about the nuclear equation of state (EOS).
The current interest is in the component of the EOS, the
so-called symmetry energy that describes energy change with
the change in relative neutron-proton asymmetry, at different
net nucleonic densities. Energies of more massive nuclei, and
other data, constrain the symmetry energy at subnormal den-
sities and especially at the density representing an average for
the nuclei, ρ � 2ρ0/3, at a value of about 25.4 MeV [23].
From there on, the region of density opens up where the
symmetry energy is poorly constrained and this includes the
pace of symmetry-energy variation around ρ0. Yet when dif-
ferent parametrizations of the symmetry energy are explored
in transport simulations, that pass near the asserted value, it
is very hard to find sensitivity to the symmetry energy at
ρ � ρ0, in nearly any predicted observable. One reason is
low asymmetries for the nuclear systems as a whole, addi-
tionally depleted in the center of the matter due to migration
of the asymmetry to the surface. There is some advantage
in going to heavier systems, as surface-to-volume ratio drops
and Coulomb interactions help to maintain significant interior
asymmetry, both in the initial state and in reaction dynamics
[24]. Access to the 3D information should help too. Indeed,
if one examines nucleonic spectra in the direction perpendic-
ular to the reaction plane, in 250 MeV/nucleon 208Pb + 208Pb
collisions at b = 4 fm, at yR = 0, see Fig. 11, one can observe
definite changes in the ratio of neutron to proton yields, when
the symmetry energy evolves from moderately soft to stiff,
with its slope parameter at ρ0 changing from L = 38.7 MeV
to L = 105.5 MeV. Both parametrizations of the symmetry
pass by the consensus value at ρ ∼ 2ρ0/3.

The fact that a stiff symmetry energy raises the neutron-
proton ratio at high transverse momentum agrees with
intuitive expectations. However, the fact that it lowers the
ratio at low momenta is somewhat surprising. Likely the un-
expected features of both Figs. 10 or 11 are tied to evolution
of particle emission with time. The ratio being higher than
the overall result for the system of 1.54 in Fig. 11, for most
transverse momenta, irrespective of the EOS, may be due to
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FIG. 11. Ratio of neutron yield to proton yield in
250 MeV/nucleon 208Pb + 208Pb collisions at b = 4 fm, at
midrapidity, in the direction perpendicular to the reaction plane, as
a function of transverse momentum. The two symbol sets represent
the results for two different parametrizations of symmetry energy:
diamonds—stiff with L = 105.5 MeV; circles—moderately soft
with L = 38.7 MeV. The two parametrizations are chosen so that
they yield the symmetry energy at ρ ∼ 2ρ0/3 consistent with
the conclusions from binding energies of heavy nuclei and other
determinations pertaining to subnormal densities.

Coulomb interactions that push protons out not only in the
transverse directions, but also along the beam axis.

In practical comparisons of transport theory to data it is
common to make sure that many more rudimentary aspects
of the data are understood on equal footing with those that
are more sophisticated. That is, other aspects of measured
and calculated distributions would need to be simultaneously
checked and more calculations would need to be carried out,
than here, to draw credible physics conclusions.

VI. CONCLUSIONS

We have proposed to apply deblurring, adopted from op-
tics, to nuclear observables subject to degradation, whether

on account of the inference method or detector performance,
such as 3D characteristics relative to the reaction plane in
heavy-ion collisions. In some instances, such as that of the
reaction plane determination or the schematic 1D model, and
sufficiently many particles detected, the blurring function may
be determined, relatively faithfully, following the central-limit
theorem. In a more general situation, the blurring function
may need to be determined through simulations, possibly
carried out self-consistently with the deblurring, as for the
1D model with inefficiency that cannot be linearized, or
through independent measurements, as in assessing detector
performance. In heavy-ion collisions, the deblurring, such as
with the Richardson-Lucy method, can work locally in the
azimuthal angle only, improving the 3D characteristics of
collision events that are already resolved to some extent with
the estimated reaction plane. This is a potential improvement
over the complete Fourier decomposition of 3D characteristics
in the azimuth. Importantly, estimation of the reaction plane
can be made with particles measured in a different detector
than the one used to detect the particle or particles for which
the 3D characteristics are desired.

In analysis of actual heavy-ion data, other correlations than
those associated with the reaction plane will be present in
the final states, in particular tied to the total momentum con-
servation, interactions at low relative velocity, and sequential
decays. Strategies to deal with these have been developed in
other contexts [5,11,25] and first the basis needs to be estab-
lished ignoring these correlations, which has been attempted
here.

Finally, we hope that the deblurring, revealing 3D dis-
tributions, could help extract novel physics information
from heavy-ion collisions, as we tried to illustrate. Be-
yond single-particle distributions tied to the reaction plane,
we hope that the strategy could be used for low-velocity
correlations [26].
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