
PHYSICAL REVIEW C 105, 034349 (2022)

Two-body weak currents in heavy nuclei
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In light and medium-mass nuclei, two-body weak currents from chiral effective field theory account for a
significant portion of the phenomenological quenching of Gamow-Teller transition matrix elements. Here we
examine the systematic effects of two-body axial currents on Gamow-Teller strength and β-decay rates in
heavy nuclei within energy-density functional theory. Using a Skyrme functional and the charge-changing finite
amplitude method, we add the contributions of two-body currents to the usual one-body linear response in the
Gamow-Teller channel, both exactly and though a density-matrix expansion. The two-body currents, as expected,
usually quench both summed Gamow-Teller strength and decay rates, but by an amount that decreases as the
neutron excess grows. In addition, they can enhance individual low-lying transitions, leading to decay rates that
are quite different from those that an energy-independent quenching would produce, particularly in neutron-rich
nuclei. We show that both these unexpected effects are related to changes in the total nucleon density as the
number of neutrons increases.
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I. INTRODUCTION

β decay is a well-studied weak process. Dating back to
1933, Fermi’s theory of β decay [1] paved the way for our
later understanding of the electroweak force. Despite substan-
tial progress, however, a peculiar feature of nuclear β decay
has puzzled physicists for decades. Gamow-Teller transition
rates, the primary contributions to decay in most nuclei, are
systematically overpredicted by the nuclear shell model [2],
and a phenomenological “quenching factor” has been required
to bring theoretical predictions in line with experimental
data [3–5]. The physical source of the quenching was unclear
until fairly recently.

The literature contains several reviews of the so-called
quenching problem; recent examples include Refs. [6,7]. The
work of Refs. [8–10] provides compelling evidence that in
all but the lightest nuclei, where quenching is small, nuclear
correlations and two-body meson-exchange currents each pro-
duce significant quenching. Nucleons contribute coherently
to the two-body currents, which should therefore be impor-
tant in heavy nuclei. Although ab initio many-body methods,
with interactions and currents from chiral effective field the-
ory (χEFT), have proved useful for studying the quenching
problem in lighter nuclei, they are computationally difficult
to apply in most heavy nuclei. Several studies of double-β
decay and dark-matter scattering in medium-mass and heavy
nuclei treated two-body currents in a simple nuclear-matter
approximation [11–14], but a more complete treatment in
heavy systems is still missing. Here we fill the gap.

*evan.ney@unc.edu
†engelj@unc.edu
‡schunck1@llnl.gov

Our approach is to use the χEFT currents in conjunction
with a Skyrme energy functional. The simultaneous use of two
distinct schemes is inconsistent, of course, but will do for an
initial investigation of the effects of the two-body currents.
Ultimately, we want to treat the numerical coefficients of the
chiral currents as parameters to be fit in conjunction with the
energy-density functional. We defer that large task to a future
paper.

This paper is structured as follows: In Sec. II we dis-
cuss the weak axial current, its implementation in nuclear
energy-density-functional (EDF) calculations of linear re-
sponse, and a density matrix expansion of the two-body
current. In Sec. III, we outline our method for numerically
incorporating the two-body current in an axially-deformed
oscillator basis. We then present calculations in several nuclei
and discuss the effects of the new current in Sec. IV. Finally,
in Sec. V, we discuss the outlook and conclude.

II. THEORETICAL MODEL

A. Weak axial current

β decay is a semileptonic process. It is governed by a
Hamiltonian density that for energies much less than the mass
of the W boson can be written as

Hβ = − Gβ√
2

∫
d4x Jμ(x)Lμ(x) + H.c., (1)

where Gβ/(h̄c)3 = 1.14959 × 10−5 GeV−2 can be inferred
from superallowed decays [15], Jμ(x) is the nuclear weak
current, Lμ(x) is the leptonic weak current, x ≡ (x, t ), and
we use the Einstein sum convention. With Fermi’s golden
rule in first-order perturbation theory, one computes decay
rates from a phase-space-weighted transition matrix element.
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Equation (1) implies that the β-decay transition matrix ele-
ment between the initial atomic state |I〉 and the final state |F 〉
is [16]

〈F |Hβ |I〉 = − Gβ√
2

lμ

∫
d3x 〈 f |e−iq·xJμ(x)|i〉. (2)

In this expression q is the momentum transferred to leptons
and lμ is a leptonic matrix element that depends only on
initial and final lepton wave functions. The remaining term,
〈 f |Jμ(x)|i〉, is the matrix element of the nuclear current opera-
tor between initial and final nuclear states |i〉 and | f 〉. Because
nuclear states are complicated, the nuclear matrix elements
cannot be written in closed form. Most often, one invokes
the impulse approximation, which takes the nucleus to be a
collection of free nucleons, so that the current is represented
by a one-nucleon operator.

In the standard model, the nuclear current is a sum of vec-
tor and axial-vector pieces, Jμ(x) = JV

μ (x) + JA
μ (x). Here, we

consider only the axial current in the limit of zero momentum
transfer. The resulting leading-order contributions come from
the spatial piece of the four-current. In the nonrelativistic im-
pulse approximation this piece is a one-body vector operator
with the first-quantized form

JA
1b(x) = −gA

∑
i

σ (i)t (i)
± δ3(x − ri ). (3)

The sum is over nucleons in the nucleus, gA ≈ 1.27 [17] is the
axial-vector coupling, x is the position (a c-number argument
of the quantum field operator JA

1b), and ri is an operator de-
scribing the location of the ith nucleon relative to the nuclear
center of mass. We use the notation σ (i) ≡ (σ (i)

x , σ (i)
y , σ (i)

z )
and τ (i) ≡ (τ (i)

x , τ (i)
y , τ (i

z ) for the usual Pauli matrices acting
on the two-component spin and isospin vectors of the ith
nucleon. We use t to denote the isospin operators themselves:
t (i) = 1

2τ (i). The raising/lowering operators in Eq. (5) are then
t (i)
± = t (i)

x ± it (i)
y . With this notation, t−|n〉 = |p〉, t+|p〉 = |n〉,

and t−|p〉 = t+|n〉 = 0.
To go beyond the impulse approximation, we need to spec-

ify degrees of freedom. We take them to be given by χEFT,
which treats only nucleons and pions explicitly, including
other effects in contact interactions among the constituents.

We restrict ourselves to the leading-order two-body axial cur-
rent derived in Eqs. (A5) and (A6) of Ref. [18] (see also
Refs. [19,20]). From those expressions, we derive the first-
quantized two-body current operator, which has the form

JA
2b(x) =

∑
i< j

[O(2b)
i j (ri − r j, pi ) δ(x − ri )

+ O(2b)
ji (r j − ri,−p j ) δ(x − r j )

]
. (4)

We leave the operators O(2b) unspecified for now, using them
here just to indicate the form of the current. They depend
on the coordinates of two nucleons and the momentum pk =
− i

2 (
−→∇ k − ←−∇ k ), which acts on wave functions of the kth

nucleon.
We use the axial current operators in conjunction with

Eq. (2) to generate a set of x-independent operators whose
nuclear transition matrix elements determine the decay proba-
bility. We begin by substituting Eqs. (3) and (4) in Eq. (2), and
then evaluate the integral over x. Using the long-wavelength
(or allowed) approximation, we assume that |q|R, where R
is the nuclear radius, is small enough to let us replace e−iq·x
by unity. For the one-body part of the current, the procedure
generates the operator

A1b = −gA

∑
i

σ (i)t (i)
± . (5)

The two-body current contains a short-range (contact) piece
and a finite-range pion-exchange piece. For the short-range
part, after inserting explicit expressions for the operators O(2b)

in Eq. (4), we obtain

A2b,s = − gA

4mN f 2
π

∑
i< j

[2d̄1(t (i)
± σ (i) + t ( j)

± σ ( j) )

+ 4d̄2 t (i× j)
± σ (i× j)]δ3(ri − r j ), (6)

where s stands for “short,” σ (i× j) ≡ σ (i) × σ ( j), t (i× j)
± ≡ (t (i) ×

t ( j) )x ± i(t (i) × t ( j) )y, and to arrive at this expression we have
inserted a missing factor of − 1

4 [9,20,21] in the short-range
term from Eq. (A6) of Ref. [18]. The finite-range pion-
exchange two-body operator is

A2b,π = − gA

2mN f 2
π

{
4c̄3

∑
i< j

[t ( j)
± (σ ( j) · ∇)∇ + t (i)

± (σ (i) · ∇)∇] + 2t (i× j)
± [pi(σ

( j) · ∇) + p j (σ
(i) · ∇)]

+4

(
c̄4 + 1

4

)
t (i× j)
± [(σ (i) × ∇)(σ ( j) · ∇) − (σ ( j) × ∇)(σ (i) · ∇)]

}
Y0(|ri − r j |). (7)

This expression is equivalent to those given in Refs. [18,21],
but is written entirely in terms of derivatives acting on the
Yukawa function, Y0(r) = e−mπ r/(4πr). The dimensionless
low energy constants (LECs) in Eqs. (6) and (7) are defined
by [18]

c̄i = mN ci, d̄i = mN f 2
π

gA
di. (8)

B. Linear response in energy-density-functional theory

Nuclear EDF theory away from closed shells is imple-
mented through the Hartree-Fock-Bogoliubov (HFB) gener-
alized mean field. To the extent that static HFB calculations
approximate the exact energy and one-body density, the time-
dependent HFB equations provide an adiabatic approximation
to the full time evolution of the nuclear density, and the HFB
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linear response is an adiabatic approximation to the exact
response. The time-dependent equations can be written as [22]

iṘ(t ) = [H + F (t ), R(t )], R =
(

ρ κ

−κ∗ 1 − ρ∗
)

, (9)

with ρ the one-body density matrix and κ the pairing tensor.
In these equations, the mean-field Hamiltonian H and external
field F take the forms

H =
(

t + 
 �

−�∗ −(t + 
)∗

)
, F =

(
f + 
̃ �̃

−�̃∗ −( f + 
̃)∗

)
.

(10)
The matrices t and f are from the kinetic piece of the Hamil-
tonian and the one-body external field, respectively. The terms

 and � represent the effects of correlations. If the functional
is associated with a (typically density-dependent) potential
V̂ , and if the external field is generated in part, as it will be
here, by a two-body operator F̂ (t ), these terms come from
contracting the two-body matrix elements of V̂ and F̂ (t ) with
one-body density matrices:


ik =
∑

jl

v̄i jklρl j, �i j = 1

2

∑
i j

v̄i jklκkl ,


̃ik =
∑

jl

F̄i jklρl j, �̃i j = 1

2

∑
i j

F̄i jklκkl , (11)

where the v̄’s are antisymmetric matrix elements of V̂ and the
F̄ ’s are antisymmetric matrix elements of F̂ (t ).

The HFB linear response comes from treating the time-
dependent HFB equations in first order in the external field
F (t ) to obtain small oscillations around the static mean
field. The oscillations are the same as those imposed by the
quasiparticle random phase approximation (QRPA). One can
obtain the linear response efficiently with the finite amplitude
method (FAM) [23,24], the charge-changing version of which
is outlined in several places [25–27]. Our work here takes
advantage of the similarity between 
 and 
̃ in Eq. (11) to
include the effects of the two-body nuclear current operator in
Eqs. (6) and (7). We neglect the “pairing field” �̃ in this paper
and compute only the “particle-hole mean field” 
̃, which
should be more important.

Our computation involves external perturbations that
change the projection along the symmetry axis of the an-
gular momentum by an amount K . In deformed nuclei each
component of the vector operators in Eqs. (5)–(7) can in-
duce a different response, but in systems where time-reversal
symmetry is conserved the response to operators that change
angular momentum by ±K is the same. The laboratory-frame
response is a linear combination of the intrinsic responses
to the different components of the vector operators, where
each intrinsic result is multiplied by the factor �K = 1δK,0 +√

2δK,K>0 [28]. Because we therefore must compute the re-
sponse to each component of the current operators, we refer
to the external field as a vector, F , comprising f , �̃, and
�̃. Equations (9)–(11) should be understood to represent the
response to a single component of these vectors that changes
intrinsic angular momentum by K = 0,±1.

III. COMPUTATIONAL METHOD

We use the Python program PYNFAM [27] to compute β-
decay properties. This program wraps the ground-state HFB
solver HFBTHO [29–31] and the charge-changing FAM solver
PNFAM [25] for computing the linear response. In all our
calculations we use the same SKO′ Skyrme functional used
in the global β-decay calculations of Refs. [27,32]. In fitting
this functional, the authors took an effective value for gA of
1.0, and considered one-body Gamow-Teller strength only.

Because of the similarity of Eqs. (9) and (10) to static HFB
equations, we can implement the full two-body current in the
FAM in a way that is very similar to the implementation of
the finite-range Gogny interaction in HFB calculations [31].
This approach entails computing two-body matrix elements
of the finite-range operator and contracting them with the
one-body density, as in Eq. (11). Unlike the Gogny interac-
tion, however, the two-body axial current is a charge-changing
spin-dependent vector operator with a finite-range part that
involves a Yukawa function (rather than a Gaussian).

A. Contact term

The zero-range term of the two-body current can be treated
just like a Skyrme interaction. We express the contraction of
the antisymmetrized current operator with the density matrix
as

�̃i j,s =
∑

kl

〈ik|Ā2b,s| jl〉ρlk, (12)

where Ā2b,s = A2b,s(1 − PrPσ Pτ ) is the antisymmetrized ver-
sion of Eq. (6) and the matrix elements are given by

〈ik|Ā2b,s| jl〉 =
∫

d3r
∑

σ1σ
′
1τ1τ

′
1

∑
σ2σ

′
2τ2τ

′
2

× 〈rσ1τ1rσ2τ2|Ā2b,s|rσ ′
1τ

′
1rσ ′

2τ
′
2〉. (13)

We can rewrite Eq. (12) in terms of the nonlocal densi-
ties [33,34],

ρ00(r, r′) =
∑

i j

ρ ji

∑
στ

φ∗
i (r′στ )φ j (rστ ),

ρ1k (r, r′) =
∑

i j

ρ ji

∑
σττ ′

φ∗
i (r′στ ′)φ j (rστ )〈τ |τk|τ ′〉,

s00(r, r′) =
∑

i j

ρ ji

∑
σσ ′τ

φ∗
i (r′σ ′τ )φ j (rστ )〈σ |σ|σ ′〉,

s1k (r, r′) =
∑

i j

ρ ji

∑
σσ ′ττ ′

φ∗
i (r′σ ′τ ′)φ j (rστ )〈σ |σ|σ ′〉〈τ |τk|τ ′〉,

(14)
which are, respectively, the scalar-isoscalar, scalar-isovector,
vector-isoscalar, and vector-isovector components of the full
one-body density matrix. Then, evaluating the matrix ele-
ments of A2b,s, we can extract the direct mean field current

�̃
dir.
s (r),

�̃
dir.
s (r) = gA

2mN f 2
π

{
−d̄1

[
ρ00(r)σt± ∓ 1√

2
s1±1(r)

]
−2id̄2σ ×

[
s10(r)t± ± 1√

2
s1±1(r)tz

]}
, (15)
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where the densities with one coordinate r are the diagonal
elements of those defined in Eq. (14), and we have left the spin
and isospin components of the field in operator form. When
we compute matrix elements, we get

�̃
dir.
i j,s = 〈i|̃�dir.

s (r)| j〉 =
∫

d3r
∑

στ,σ ′τ ′
φ∗

i (rστ )�̃
dir.
s (r)φ j (rσ ′τ ′).

(16)
To obtain the exchange part of the mean field, we evaluate

the matrix elements of −A2b,sPrPσ Pτ and extract the field

�̃
exc.
s (r) = gA

2mN f 2
π

{
1

2
(d̄1 − 2d̄2)

[
ρ00(r)σt± ∓ 1√

2
s1±1(r)

]
+1

2
(d̄1 + 2d̄2)

[
∓ 1√

2
σρ1±1(r) + s00(r)t±

]
−id̄1

(
σ ×

[
s10(r)t± ± 1√

2
s1±1(r)tz

])}
. (17)

Finally, our HFB ground state is symmetric under time-
reversal and does not include proton-neutron mixing. The spin
and charge-changing ground-state densities therefore vanish,
leading to the result

�̃s(r) ≡ �̃
dir.
s (r) + �̃

exc.
s (r) = − gA

4mN f 2
π

c̄D ρ00(r) σt±. (18)

Equation (18) is just as easy to work with as the usual
one-body Gamow-Teller operator and depends on a single
combination c̄D ≡ d̄1 + 2d̄2 of the LECs.

B. Finite-range term

To obtain the finite-range contribution to the mean field
we must contract the antisymmetrized finite-range part of
the current with the density matrix according to Eq. (11).
The two-body current contains Yukawa functions, which are
not separable. Without separability, the time it would take to
compute the mean field in a model space with N harmonic
oscillator shells would scale like O(N12), making large model
spaces impossible [35].

However, we can approximate the Yukawa function by a
sum of Gaussians. The two functions do not have the same
behavior at r = 0 but the integrands in their matrix elements,
which contain a factor of r2, do. We therefore use the fit [36],

r2

[
e−r

r

]
≈ r2[6.79e−34r2 + 2.41e−6.6r2 + 0.786e−1.44r2

+ 0.241e−0.38r2 − 0.062e−0.15r2 + 0.078e−0.13r2
],

(19)

to approximate two-body Yukawa matrix elements. The sep-
arability of Gaussian interactions makes contraction with the
density in configuration space tractable. Because we perform
our calculations in a basis of axially-deformed harmonic os-
cillator states, in which the mean field contains a Cartesian
(z) component, contributing a computation time of O(N8),
and a radial (r, φ) component, contributing a time of O(N10),
the separability provides vastly better computational scaling.
Thus, we work with the nonlocal mean field �̃π (rστ, r′σ ′τ ′).
Spin and isospin degrees of freedom, however, are implicit

in HFBTHO and PNFAM. It is therefore necessary to sum over
the corresponding quantum numbers analytically. The result
is then contracted over spatial quantum numbers numerically.

We compute Gaussian matrix elements in our axially de-
formed oscillator basis in the way described in Refs. [31,37],
obtaining them as analytic functions of the oscillator quantum
numbers, and using the Cartesian expansion of the radial
oscillator wave functions to express the full Gaussian matrix
elements entirely in terms of one-dimensional Gaussian ma-
trix elements (i.e., with one-dimensional wave functions). The
decomposition makes it easy to compute the derivatives in the
two-body current. The finite-range terms in the current appear
not as the Yukawa function Y0(r), but in the forms ∂i∂ jY0(r)

and (
←−∇ − −→∇ )∂ jY0(r). The derivatives acting on Y0(r) can

be integrated by parts so that they act on wave functions,
allowing us to use relations that relate derivatives of one-
dimensional oscillator wave functions to linear combinations
of a few other such wave functions. Thus, all finite-range
matrix elements in �̃π are expressed as linear combinations
of one-dimensional Gaussian matrix elements.

From now on we neglect the terms proportional to pi and
p j in Eq. (7). They are computationally expensive to evaluate
and contribute very little. In the nuclear-matter approximation
of Refs. [11,13], for example, these terms change matrix el-
ements by only 1.5%–2.5% in the zero-momentum limit for
typical values of 2c̄4 − c̄3. In addition, time-reversal symme-
try causes the contributions of direct terms proportional to c̄4

to vanish exactly.

C. Density matrix expansion

To validate our implementation of the linear response
produced by the two-body current, and to find good approxi-
mations to it, we compare it to the response produced by an
effective density-dependent one-body current, derived from
a kind of density matrix expansion (DME). The DME is
a method to construct a density-dependent, local operator
O(r) that approximates the nonlocal operator O(r, r′) of inter-
est [38–42]. When applied to a local, two-body, finite-range
potential of the type V (r1, r2), the DME effectively maps it
into a local one-body potential V (R) with R = 1

2 (r1 + r2).
The application to a charge-changing current operator rather
than a charge-conserving Hamiltonian introduces some sub-
tleties that we describe along with details of the expansion
in Appendix A. The DME leads to a more sophisticated den-
sity dependence for the one-body current than that given in
Refs. [11] and [12].

At leading order, the DME reproduces the contact term
exactly [cf. Eq. (18)]. As for the finite-range piece, the ex-
pansion produces no direct term at all at leading order. There
is a leading-order exchange term, however, given by

�̃
exc.
DME(r)

= gA

mN f 2
π

σt±

{
C̄

[
1− m2

πF [kF (r)]− 1

10
m2

πG[kF (r)]

]
ρ(r)

−D̄ρ(r) − 1

6

C̄m2
π

k2
F (r)

G[kF (r)]

[
1

4
∇2ρ(r) − τ (r)

]}
,

(20)
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with C̄ = 1
3 (2c̄4 − c̄3 + 1

2 ) and D̄ ≡ d̄1 − 2d̄2. Here ρ(r) is
the scalar-isoscalar particle density, ρ(r) ≡ ρ00(r), and τ (r)
is the (isoscalar) kinetic density, τ (r) ≡ ∇ · ∇′ρ00(r, r′)|r=r′ .
The functions F and G are given by

F [k] = 3

2k2

[
1 − mπ

k
tan−1

(
2k

mπ

)
+ m2

π

4k2
ln

(
1+ 4

k2

m2
π

)]
,

G[k] = 3

2k2

[
1+ 8

k2

4k2+ m2
π

− m2
π

k2
ln

(
1+ 4

k2

m2
π

)]
, (21)

and kF (r) ≡ [3π2ρ(r)/2]1/3 is the local Fermi momentum.
Although nonzero direct terms arise at higher orders

(N2LO, N4LO, and beyond), the expansion of the direct term
does not converge for a realistic pion mass. The DME for
the direct current is essentially an expansion of a finite-range
two-body object in delta functions and their derivatives [43],
and the range of the pion is too large to allow the expansion
to converge quickly at nuclear density. We therefore truncate
the DME at leading order, in which the finite-range c̄3 contri-
bution to the direct term vanishes completely. As we will see,
however, this approximation is not bad.

IV. RESULTS

A. Modification of Gamow-Teller strength

In this section we explore the effects of the two-body axial
current on the β− transition strength function, which reduces
to the Gamow-Teller strength distribution in the absence of
two-body currents. We define a “bare” Gamow-Teller oper-
ator from Eq. (5) as OGT ≡ A1b/gA, and add the two-body
current to define a modified Gamow-Teller operator O′

GT ≡
OGT + (1/gA)(A2b,π + A2b,s). The bare Gamow-Teller transi-
tion strength from parent state |i〉 to daughter state | f 〉 is then
B f i ≡ |〈 f |OGT|i〉|2, and the full strength is B′

f i ≡ |〈 f |O′
GT|i〉|2.

The charge-changing FAM computes the linear response to an
external field operator and constructs the function S(ω). This
function contains poles at excitation energies of the system
with residues equal to the transition strengths. We obtain the
derivative of, e.g., the full transition strength from the full
FAM linear response, S′(ω), via [25]

g2
A

dB′

dω
= − 1

π
Im[S′(ω)]. (22)

From the transition strength function we quantify the net two-
body effect by defining the “total quenching factor,”

q ≡
√√√√∫

dω dB′
dω∫

dω dB
dω

. (23)

As the definition shows, q is determined by the ratio of
the summed strengths, and is independent of gA. The total
quenching factor allows one to define an effective value of
the axial-vector coupling, geff

A = q gA, that could be used in
a one-body calculation to account for two-body effects. In
general, those effects will depend on the transition, causing
q to depend on the energy range of the integrals in Eq. (23).
We therefore consider QRPA energies up to 60 MeV, which is
generally sufficient to exhaust the β− contribution to the Ikeda
sum rule in the nuclei we consider.

20 40 60 80 100 120

Proton Number Z

0.70

0.75

0.80
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0.90

q
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RTD

EM

FIG. 1. Total quenching trends with proton number for the dif-
ferent sets of LECs in Table I, with c̄D = 0. The solid symbols
correspond to the lightest isotope of a given element and the open
symbols to the heaviest one, at the neutron drip line.

To begin our exploration of two-body currents in heavy
nuclei we focus on a small set of nuclei, including the well-
studied spherical isotopes 48Ca, 90Zr, and 208Pb, plus, to
examine the effects of neutron excess and deformation, the
spherical isotopic chain 132Sn – 174Sn and the well-deformed
isotopic chain 162Gd – 220Gd. We include only even-even iso-
topes and truncate the chains at the two-neutron drip line.
Finally, to explore the effects of changes in the total mass,
we include the light nuclei 20O and 28O, and the superheavy
nuclei 294Og and 388Og. We find 28O and 388Og to be at the
two-neutron drip line.

Figure 1 shows the value of q for all the nuclei in our
data set except those in the middle of the isotopic chains.
Because we use a density functional with no direct connection
to the interactions and operators of χEFT, we consider three
different sets of LECs for the long-range contribution to the
current (see Table I) and at first ignore the contact coefficient
c̄D. We find that the two-body current always has an overall
quenching effect. For all LEC sets, the amount of quenching
increases with proton number, leading to values of q between
0.86 and 0.91 in 20O and between 0.73 and 0.80 in 388Og.
For elements at the boundaries of the isotopic chain, we also
observe slightly less quenching in the heavier isotopes than
the lighter ones. The differences in q between 20O and 28O are
only 0.0014–0.0023, however, while the differences between
the heaviest and lightest isotopes for Sn, Gd, and Og are all
larger and similar, averaging 0.013–0.017.

TABLE I. A summary of the LECs used in this work. The entries
all have units of GeV−1.

Label c3 c4

EGM [44] −3.40 +3.40
RTD [45] −4.78 +3.96
EM [46] −3.20 +5.40
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FIG. 2. Same as Fig. 1 but for the change in q with c̄D = ±2.

In Fig. 2 we examine the effect of the contact term.
Equation (18) shows that adding a positive c̄D reduces the
quenching while adding a negative c̄D increases it. The
amount by which q is raised or lowered is almost symmetric
about c̄D = 0, so the difference between the c̄D = ±2 values
in Fig. 2 [denoted �q(c̄D = ±2)] can be thought of as the
size of error bars on the q values in Fig. 1 due to the variation
of c̄D in this range. The c̄D contribution by itself is the same
for all LEC sets; small differences in its effects reflect the
interference of the contact with the finite-range term. The size
of the variation due to c̄D follows the same trends with N and
Z as q itself, and ranges from 5% to 10% of q at c̄D = 0.

We compare calculations with the full current to those with
the DME current in Fig. 3. The DME predictions—the circles
in the figure—differ from those of the full current by roughly
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FIG. 3. The difference between the total quenching produced by
the density-matrix expansion (DME) and by the full calculation, as
a percentage of the full quenching with the RTD parameter set [45].
Blue circles correspond to predictions of the DME exchange current,
not supplemented by anything else, while red triangles correspond
to those of the DME exchange current together with the full direct
current (see text).
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FIG. 4. Total quenching in the (a) Sn and (b) Gd isotopic chains
with the EGM LEC set, and with the full current and the same
versions of the DME shown in Fig. 3. Panels (c) and (d) show the
respective deformations. Vertical lines indicate the magic numbers
N = 82 and 126.

the same amount, ≈5%, for all nuclei. This indicates that the
DME captures the same trends as in Fig. 1, but for all nuclei
it overestimates the quenching slightly. The source of this
discrepancy is the direct term, which is neglected in the DME.
The triangles in the figure add the full current’s direct term to
the DME exchange term, producing a small correction that
makes the agreement with the exact results almost perfect.

Next, we explore trends with deformation and neutron
excess by computing the two-body contributions for all even-
even isotopes of Sn and Gd from N = 78 to N = 124 (Sn)
and N = 98 to N = 122 (Gd). We use the EGM LEC set
with c̄D = 0, and again compare the full results with those
of the DME. From Fig. 4(c) we see that the Sn nuclei are
mostly spherical, though those in the middle of the shell are
slightly deformed. On the other hand, Fig. 4(d) shows the Gd
isotopes are very prolate, except right around the shell closure
at N = 126. Although we see a small increase in quenching
near the shell closures in both elements, there is no significant
trend with deformation. There is, however, a small, contin-
uous decrease in quenching with neutron excess that is also
apparent in Fig. 1. The DME exchange term mirrors the full
calculation, again slightly overestimating the quenching. We
display its results because they are so much easier to compute
than the full results. Like the nuclear-matter approximation
of Refs. [11,13], the DME exchange expresses the two-body
contribution as a density-dependent renormalization of the
one-body Gamow-Teller operator. We thus expect the amount
quenching to closely mirror the nuclear density.

B. Gamow-Teller rates

We turn now to β-decay rates. They have been measured
in only a few of the nuclei in our set and, with the Skyrme
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FIG. 5. Comparison of Gamow-Teller rates computed with the full one-plus-two-body current and gA = 1.27 to those computed with
the one-body current only and geff

A = 1.0, in (a) Sn and (b) Gd isotopes. The percent difference is (λ1b+2b
gA=1.27 − λ1b

gA=1.0)/λ1b
gA=1.0 × 100%, with λ

representing decay rates. The isotopes 128Sn – 132Sn are excluded because the Gamow-Teller strength below the β-decay threshold is negligible.

functional that we use, we under-predict those rates even with-
out including a two-body current [27]. We are thus not able to
see how much the two-body current will improve the descrip-
tion of rates without recalibrating the functional, perhaps even
treating the LECs as free parameters, and examining more
data. We leave that major task for a future publication. Here,
however, we can still get an idea of what to expect by looking
at the differences between rates computed with the one-body
axial current and an effective axial-vector coupling geff

A = 1.0,
employed in most EDF work so far (including Ref. [27]), and
those computed with the one-plus-two-body axial current and
the bare axial-vector coupling, gA = 1.27. To what extent does
a nucleus- and energy-independent effective gA compensate
for the omission of two-body currents?

We address the question in the Sn and Gd chains in
Fig. 5, finding that in lighter isotopes the effective axial-
vector coupling closely approximates the two-body current’s
effect on the rate. In very neutron-rich nuclei, however, we
begin to see a more significant difference between the two
approaches. The Sn isotopes show a steady increase in the
difference with neutron number, with an uptick near the drip
line to about 12%. In the lighter Gd isotopes, the differ-
ence is very small until the N = 126 shell closure, after
which it increases markedly, to about 40% in 220Gd. Al-
though we do not plot the results, we have made the same
rate comparison for the O and Og isotopes in our data set.
In 20O, the difference between the quenched one-body and
unquenched one-plus-two-body rates is 32% and in 28O it
is 24%, a variation of only about 8%. But in 322Og, the
difference is 30% and in 388Og it is 121%, a variation of
over 90%. These findings suggest that a constant effective
axial-vector coupling does not adequately account for the
effects of two-body currents, particularly in very neutron-rich
nuclei.

To understand the source of the discrepancy in neutron-rich
isotopes, we examine the change in the low-lying one-
body Gamow-Teller strength distributions (up to the β-decay
threshold energy) caused by the two-body current for the
lightest and heaviest Sn and Gd isotopes. This analysis is not
so easy, unfortunately. The FAM requires that the strength
distribution be computed with an artificial Lorentzian width
applied to each transition, but the overlap of the Lorentzian

tails from all transitions, in particular from the Gamow-Teller
resonance, prevents us from using the strength for any one
transition to compute the quenching factor for that transition.
To get the best picture, we should use a very small artificial
width to minimize the distortion. The FAM does not converge
well if the width is too small, however, so we use a moder-
ately small half-width of γ = 0.1 MeV to maintain sufficient
numerical stability.

Figure 6 shows the resulting ratio of the one-plus-two-body
strength to the one-body strength. The two-body current ap-
pears to affect all low-lying transitions in lighter isotopes in
almost the same way, but in the heavier isotopes it appears
to enhance some transitions. Such enhancement offsets the
quenching of other transitions in the computation of q, ex-
plaining the significant underestimate made by the effective
axial-vector coupling in these heavier nuclei.

0.0 1.5 3.0
0.63

0.65

0.67

d
B

′
d
ω

/
d
B d
ω

(a)

162Gd

0 5 10
0.55

0.60

0.65

0.70

(b)

134Sn

0 10 20

EQRPA [MeV]

0.5

1.0

1.5

2.0

d
B

′
d
ω

/
d
B d
ω

(c)

220Gd

0 10 20

EQRPA [MeV]

0.6

0.8

1.0 (d)

174Sn

FIG. 6. Ratio of the one-plus-two-body FAM strength to the
one-body strength for Gamow-Teller transitions below the β-decay
threshold energy in the light isotopes (a) 162Gd and (b) 134Sn, as well
as the heavy isotopes (c) 220Gd and (d) 174Sn. Arrows indicate the
transitions examined in Figs. 7 and 8.
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FIG. 7. Density of the lowest lying Gamow-Teller transition am-
plitude in (a) 134Sn and (b) 174Sn as a function of the radial coordinate
r. The curves show densities for the one-body, two-body, and one-
plus-two-body amplitudes. The factor of 4πr2 makes the integrated
amplitudes equal to the areas under the curves. The vertical line
is at the spherical radius R0 = 1.2A1/3, and the legends show the
amplitudes A and quenching factors q0 for the state in question. The
overall signs of the amplitudes are arbitrary, but the relative signs
between the one- and two-body terms are not. The quenching factor
q0 contains the square root of the squared amplitudes and is always
positive.

What causes the enhancement of some low-lying transi-
tions in neutron-rich isotopes? To answer, we compute the
transition-amplitude density for the lowest lying states in the
heaviest and lightest Sn isotopes with non-negligible rates.
Although the quenching discrepancy in the Sn rates is not as
large as in that in the Gd rates, the Sn isotopes are easier to
understand because they are mostly spherical, allowing us to
display the density as a function of a single variable. We use
the DME to compute the densities because it provides a local
one-body external field, while the field from the full current is
nonlocal. (Details on the computation of transition densities
in the FAM appear in Appendix B.) Figure 7 shows that
the two-body current contributes very little at or beyond the
nuclear surface. The reason is the nucleon-density dependence
in Eq. (20) of the DME current field, which weakens quickly
as the density falls. The falloff of the one-body curve is much
slower. When the one-body contribution at the surface has the

same sign as that in the interior, as in Fig. 7(a), this fact is not
important and the two-body contribution quenches the tran-
sition amplitude. But when it has the opposite sign, leading
to relatively small one-body transition strength, the difference
between the quenching effect of the two-body current in the
interior and its almost negligible effect at the surface causes
the integrated matrix element to change sign and have a larger
absolute value than without the two-body contribution, result-
ing in an enhanced strength.

As we already noted, enhancement is more common in
neutron-rich nuclei than in those closer to stability. Although
a careful and systematic analysis would be necessary to con-
vincingly identify the physics responsible for the trend, the
presence of a node in the transition-amplitude density associ-
ated with the space-independent operator σt−—the condition
that leads to enhancement by the two-body current—implies
a mismatch between the shapes of neutron and proton
single-particle wave functions with the same spatial quantum
numbers. Such a mismatch is much more common in isotopes
with a large neutron excess.

Most of the Gd isotopes are deformed, and an analysis
of transition-amplitude densities is more complicated than in
Sn because the density is not constant on spherical shells.
Nevertheless, we can proceed. Figure 8 shows the density for
a slice of the upper right quadrant of the nuclei, and we see
that these deformed isotopes exhibit the same phenomena as
the Sn isotopes: quenching when the one-body density has the
same sign everywhere and enhancement when it changes sign,
because of a smaller two-body contribution at the surface than
in the interior. In the heavier isotope here, however, the surface
contribution outweighs the interior contribution even at the
one-body level. The concentration of the two-body contribu-
tion, with opposite sign, in the interior, makes the imbalance
even larger and enhances the integrated transition strength.

Although in this exploratory paper we are not yet examin-
ing the consequences of the energy and isospin dependence
of the quenching for total β-decay rates, our findings suggest
that they will be significant.

V. CONCLUSIONS

We have developed a method to include the contribu-
tions of two-body charge-changing axial currents in the
Skyrme-EDF linear-response, and applied the method to
Gamow-Teller strength and β-decay rates. From the current,
we construct mean-field-like external-field matrices that can
easily be included in the linear response equations, e.g.,
through our charge-changing FAM. We have also developed
a density matrix expansion for the two-body axial current. At
leading order the expansion reproduces the contact current
operator exactly and replaces the finite-range operator with
a density-dependent one-body Gamow-Teller operator. This
approximation reproduces the full linear response quite well
for all the nuclei we studied, and provides a cheap way of in-
cluding two-body contributions. If the direct term is computed
exactly, an easier task in some codes than in our oscillator-
based FAM, the expansion works almost perfectly.

To examine the effects on observables, we took the two-
body current operators and the parameters that multiply them
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FIG. 8. Density of the lowest lying Gamow-Teller transition amplitude in (a) 162Gd and (b) 220Gd as a function of r and z. The figures show
densities for the (a1,b1) one-body, (a2,b2) two-body, and (a3,b3) one-plus-two-body amplitudes. The volume element of 4πr is included (with
an extra factor of 2 to account for the lower hemisphere). The curved lines indicate the nuclear surface determined from Eq. (B13), with
r = 1.2A1/3. The titles show the amplitudes A and quenching factors q0 for the state.

from χEFT. We found, first, that in all the nuclei we studied
the two-body current quenches the summed Gamow-Teller
strength. The quenching increases significantly with Z and
decreases with N . These trends can be understood by the
density dependence of the effective one-body operator pro-
duced by the density-matrix expansion. We also looked at
the energy dependence of the Gamow-Teller strength, finding
that the two-body current causes a nearly constant quenching
of decay to low-lying states near stability but a quenching
with significant state dependence and in some cases even
enhancement in very neutron-rich nuclei. Even though the
amount of quenching of the summed strength changes just a
little as N grows, the enhancement of low-lying strength can
cause β-decay rates to differ significantly from what would
be predicted by a single effective gA. The energy dependence
in neutron-rich nuclei, like the isospin dependence of the
quenching of summed strength, is connected with nuclear
density profiles and the occurrence of zeros in the spatial
transition-amplitude distribution when the neutron excess is
large.

Our results open up a number of interesting paths for fu-
ture projects. Global calculations [27,32,47,48] indicate that
first-forbidden β decay should be important in many nuclei,
and our work should be extended to that channel and then
applied to produce global calculations for r-process simula-
tions. But most important is the marriage of χEFT with EDF
theory. We have taken the first step here by including a chiral
current together with a phenomenological density functional,
in a way that is obviously not self consistent. It would make
sense to refit not only the coupling constants of the functional
but also the LECs in the currents. Once at least some of
that is done, better systematic calculations of β-decay rates

over the entire isotopic chart will become possible. Here the
DME, which has already been applied to derive EDFs from
chiral potentials [42,49] and has been used to obtain an anal-
ogous density-dependent current, will be especially useful.
And with existing computational technology, one might be
able work directly with two-and three-body chiral interactions
and currents, without the DME. The combination of EDF
phenomenology and methods with ab initio interactions and
currents is promising and should be fully investigated.

ACKNOWLEDGMENTS

We thank L.J. Wang and R. Navarro-Perez for helpful
correspondence regarding two-body currents and their nu-
merical implementation. This work was supported in part
by the Nuclear Computational Low Energy Initiative (NU-
CLEI) SciDAC-4 project under U.S. Department of Energy
Grants No. DE-SC0018223 and No. DE-SC0018083, and by
the Department of Energy under Grant No. DE-SC0013365
and the FIRE collaboration. Some of the work was per-
formed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract
No. DE-AC52-07NA27344. Computing support came from
the Lawrence Livermore National Laboratory (LLNL) Insti-
tutional Computing Grand Challenge program.

APPENDIX A: DENSITY MATRIX EXPANSION

Although one might start from a time-dependent energy-
density functional that includes the effects of currents, the re-
sult of a DME will be the same as if we start with the
“mean-field currents” �̃π and �̃s. Instead of working with the
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charge-changing density, as we would in an energy functional,
we (equivalently) obtain the DME exchange functional by
applying Eq. (24) from Ref. [39] directly to the products
of single-particle wave functions [those corresponding to the

single particle states i and j in, e.g., Eq. (12)] as well as
to densities. Using the four-component spin-isospin vector
�i(r) in place of the individual components ϕi(r, σ, τ ), we
have

�
†
i (r1)� j (r2) = eir·ker·[ 1

2 (∇1−∇2 )−ik]�†
i (r1)� j (r2)|r1=r2=R

 eir·k
{

1 + r · [ 1
2 (∇1 − ∇2) − ik

] + 1
2

(
r · [

1
2 (∇1 − ∇2) − ik

])2
}
�

†
i (r1)� j (r2)|r1=r2=R. (A1)

Here k is a characteristic momentum, r ≡ r1 − r2, and R ≡
1
2 (r1 + r2).

For the decaying nucleon labeled by i and j, we take the
characteristic momentum to have magnitude kF . Assuming
that the decaying nucleon is near the Fermi surface, working at
the leading order in Eq. (A1) for the decaying-nucleon states
|i〉 and | j〉—that is, neglecting all terms in the large braces
except “1”—and averaging over angles for the momenta k
(with the assumption that the system is spherically symmetric)
gives

�
†
i (r1)� j (r2) −→ �s

1[kF (R)r]�†
i (R)� j (R), (A2)

with �s
1[kr] ≡ j0(kr) [39]. For the nucleon densities asso-

ciated with ϕk and ϕl in Eq. (12), we use the expansion
expressions from Ref. [39]. If, as for the full current, we
neglect the terms in Eq. (7) that contain pi and p j , the nonlocal
spin density does not contribute and integrating the chiral cur-
rent together with �s

1[kF (R)r] and the nucleon density from
Eq. (26) of Ref. [39] over the relative coordinate r eliminates
many of the other terms in Eq. (7). The integrals, together
with the replacement of R by the one-body coordinate r, result
in Eq. (17). The expansion can be continued to higher order
in both the wave functions of the decaying nucleon and the
densities associated with the other nucleons, but we do not
present the results of that analysis here.

The direct part of the current can also be expanded in
the manner described in Ref. [43], where it was applied to
the Gogny interaction. When used together with the chiral
interaction, however, the expansion does not converge quickly,
at least in our tests. We attribute the problems to the long range
of pion exchange. In any event, in leading order the direct
current does not contribute at all, so that the most of the effects
of the two-body currents come from the exchange current.

APPENDIX B: TRANSITION DENSITIES

We wish to understand why the two-body current quenches
some low-lying transitions and enhances others, particularly
in neutron-rich nuclei. To do so, we compute the spatial den-
sity of the transition amplitude for particular transitions. A
transition amplitude to a given state within the FAM depends
on the corresponding QRPA eigenvector, which we must ex-
tract. Once we have it, we obtain the transition amplitude from

〈m|F |0〉 =
∑
μ<ν

(
X m∗

μν F 20
μν + Y m∗

μν F 02
μν

)
, (B1)

where the X ’s and Y ’s make up the QRPA eigenvector for state
|m〉.

Reference [50] explains how the QRPA modes are related
to the FAM response and shows that they can be determined
up to an unknown phase, eiθ = 〈m|F̂ |0〉/|〈m|F̂ |0〉|, from the
expression

X m
μν = eiθ Res[X FAM,�m]√

Res[S,�m]
, Y m

μν = eiθ Res[Y FAM,�m]√
Res[S,�m]

,

(B2)

where �m is the excitation energy of state |m〉, X FAM and Y FAM

are the FAM amplitudes [24], S is the FAM response given,
e.g., in Eq. (28) of Ref. [50], and Res[A,�m] is the residue of
quantity A at frequency �m. One can extract the residues of
the FAM quantities from contour integrals, but it is difficult to
choose a contour that contains only a single transition. A more
efficient but more approximate method to extract the residues
is to compute the FAM quantities a small distance γ above the
real axis. The residue of S is then given by [51]

Res[S,�m] ≈ −γ Im[S(�m + iγ )]. (B3)

A similar relation holds for X FAM and Y FAM if we choose the
undetermined phase such that the QRPA eigenvectors are real.
To verify that the energy at which we are evaluating these
functions is indeed a QRPA eigenvalue, and that the peak is
well separated enough for the approximation in Eq. (B3) to
hold, we compute the norm of the QRPA mode we extract:

N =
∑
μ<ν

(
X m∗

μν X m
μν − Y m∗

μν Y m
μν

)
. (B4)

If N is close to 1, we can be confident the results are close to
the true QRPA values. The transitions highlighted in Fig. 6 all
have values of N > 0.99 for γ = 0.01 MeV.

To obtain a spatial density for the transition amplitude we
express Eq. (B1) in coordinate space. Because the mean fields
for one-body and two-body currents are one-body operators,
they have the simple form

F̂ =
∑

i j

f 11
i j a†

i a j, (B5)

where a†
i (ai) creates (destroys) a particle in level i, and the

(charge-changing) transition-amplitude density can be defined
through the relation

〈m|F̂ |0〉 =
∫

d3r ρm
T (r), (B6)
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where, for β− transitions,

ρm
T (r) =

∑
σ,σ ′

∫
d3r′ δρm(rσ p, r′σ ′n) f 11(rσ p, r′σ ′n). (B7)

In Eq. (B7) the term δρm is the density perturbation for the mth
QRPA mode in coordinate space, obtained through a change
of basis,

δρm(rσ p, r′σ ′n) =
∑

pn

φ∗
p(r′σ ′ p)φn(rσn)δρm

pn, (B8)

where the φk (rστ ) ≡ ψ |�|
nr nz

(r, z) ei�φ√
2π

χ
�

(σ )χq(τ ) are axially
deformed oscillator basis states and the δρm

pn are given by the
inverse Bogoliubov transformation,

δρm
pn = UpπX m

πνV T
nν − V ∗

pπY m
πνU †

nν . (B9)

Here Upπ refers to the pth basis component of the π th proton
quasiparticle state and U †

nν refers to the nth basis component
of the νth neutron quasiparticle state.

The full two-body current is nonlocal in position space, so
we use the DME approximation to get a transition-amplitude
density that depends on the local particle density. We then
define a density-dependent function g[ρ] such that the one-,
two-, and one-plus-two-body current external fields can all be

written in the form

f 11(rστ, r′σ ′τ ′) = g[ρ(r)] δ(r − r′)〈σ |σ|σ ′〉〈τ |t−|τ ′〉
(B10)

with

g[ρ(r)] =
⎧⎨⎩−1, one-body,

f [ρ(r)], two-body,
−1 + f [ρ(r)], one-plus-two-body,

(B11)

and f [ρ] the density-dependent function in Eq. (20).
Inserting Eqs. (B8) and (B10) into Eq. (B7) we obtain the

transition-amplitude density in our axially deformed oscillator
basis:

ρm
T (r) = g[ρ(r)]

∑
pn

δρm
pnψp(r, z)ψn(r, z)〈σp|σ|σn〉δ�p�n .

(B12)
The angular parts of the oscillator wave functions cause terms
for which �p �= �n to vanish, so we have replaced them with
a Kronecker delta to make the density real.

Finally, to construct radial plots for the two-dimensional
axially symmetric density, we can average the density over
shells defined by a spherical radius r and the deformation β2,

S(r, θ ) = r
[
e− 1

2 β2

√
5

4π cos(θ ) + e+β2

√
5

4π sin(θ )
]
. (B13)

For spherical nuclei β2 = 0, so the surfaces becomes spheres
and the value of the density over the surfaces is constant.
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