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Exotic shape symmetries around the fourfold octupole magic number N = 136:
Formulation of experimental identification criteria
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We employ a realistic nuclear mean-field theory using the phenomenological, Woods-Saxon Hamiltonian with
newly adjusted parameters containing no parametric correlations; originally present correlations are removed
employing the Monte Carlo approach. We find very large neutron shell gaps at N = 136 for all the four
octupole deformations α3μ=0,1,2,3. These shell gaps generate well-pronounced double potential-energy minima
in the standard multipole (α20, α22, α3μ, α40 ) representation, often at α20 = 0, which in turn generate exotic
symmetries C2v , D2d , Td , and D3h, discussed in detail. The main goal of the article is to formulate spectroscopic
criteria for experimental identification. Calculations employing macroscopic-microscopic method are performed
for nuclei with Z � 82 and N � 126 in multidimensional deformation spaces to analyze the expected exotic
symmetries and octupole shape instabilities in the mass table “northeast” of the doubly magic 208Pb nucleus.
Whereas the proton-unperturbed properties of neutron-generated octupole shell effects are illustrated in detail
for exotic Z=82PbN>126 nuclei, our discussion is extended into even-even Z > 82 nuclei approaching the less
exotic Z/N ratios, to encourage experiments which could identify the predicted exotic symmetries. In addition
to the tetrahedral point group symmetry, Td , of which experimental evidence has recently been published,
we present D2d symmetry resulting from a superposition of axially symmetric quadrupole and tetrahedral
symmetries and two new point group symmetries, D3h and C2v , associated with the octupole α33 and α31 energy
minima, respectively. The multidimensional n > 2 deformation spaces are treated as usual by projecting the
total potential energies onto the n = 2 subspace. Using the representation theory of point groups we formulate
quantum mechanical criteria for experimental identification of exotic symmetries through analysis of the specific
properties of the collective rotational bands generated by the symmetries. The resulting band structures happen
to be markedly distinct from the structure of the bands generated by ellipsoidal symmetry quantum rotors; those
various rotational properties are discussed in detail.

DOI: 10.1103/PhysRevC.105.034348

I. INTRODUCTION

Nuclei with the strongest binding energies, whose proton
and neutron numbers are equal to one of the “magic” numbers
(corresponding to the fully occupied spherical shells with Z0

and N0 taken as 8, 20, 28, 50, 82, 126) can be considered as
ideally spherical. Adding (or removing) a few extra nucleons
to these spherical cores will immediately cause nonspherical
shape polarizations to appear. With just a few such parti-
cle or hole states activated, to first order, axial-symmetry
quadrupole-shape distortions appear. At first, one might con-
sider them negligible. Indeed, the numerical values of the
involved quadrupole deformations, α20 ∈ [−0.02, 0.02] or so,

*Corresponding author: Jerzy.Dudek@iphc.cnrs.fr

generate surfaces which, to the “naked eye,” remain undistin-
guishable from the ideal sphere. Yet, neglecting them could
lead to significant errors since the corresponding nucleon en-
ergies may vary up to ±1 MeV for i13/2 and its neighboring
orbitals of high j, high mj (nucleon angular momentum and
its projection on the symmetry axis); see, e.g., Ref. [1] and
references therein.

The concept of nuclear shapes and shape coexistence has
attracted the attention of researchers over decades of the previ-
ous and present centuries; see, e.g., reviews in Refs. [2–4] and
references therein. With nucleon numbers departing from the
spherical-closure Z0 and N0 values, the nucleon level densities
at energies close to the Fermi energies increase significantly
for spherical shapes. This, in turn, leads to a strong increase of
what in the language of nuclear mean-field theory are referred
to as “shell energies.” As a consequence, an expulsion of the
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nuclei in question from the spherical shape regions to those of
significant deformation away or even far away from spherical
symmetry takes place.

In terms of the mean-field theory modeling, both the phe-
nomenological microscopic-macroscopic methods of Strutin-
sky and Hartree-Fock, or Hartree-Fock-Bogolyubov, lead to
a number of competing potential energy minima generally
corresponding to nonspherical shapes with significant local
equilibrium energy differences, often separated by significant
potential energy barriers. This mechanism has opened the
way to numerous studies of the so-called shape isomers, as
well as shape evolution as the consequence of exciting nuclei
in experiments, by transferring angular momentum or by in-
creasing the nuclear temperature.

In this article we will focus on examining the competing
total energy minima of distinct geometrical forms. We will
not address the frequently discussed subject of the so-called
prolate-oblate shape coexistence, referring to configurations
with two minima separated by a barrier, one corresponding,
to the positive quadrupole deformation (α20 > 0, prolate) and
the other to the negative one (α20 < 0, oblate). Instead, we
will focus on predictions addressing exotic shapes, whose
symmetry properties will be described mathematically using
group theory.

To build up a link between the shape properties described
within the mean-field theory approach and the symmetry
properties treated with the help of point group theory it will
be convenient to introduce the usual multipole expansion of
the nuclear surface, �, in a standard manner in terms of the
spherical harmonics, Yλμ(ϑ, ϕ):

� : R(ϑ, ϕ) = R0c(α)

[
1 +

∑
λμ

α∗
λμYλμ(ϑ, ϕ)

]
. (1)

The expansion coefficients αλμ in Eq. (1) are usually called
“deformation parameters” or “deformations” in short. They
are generally complex but we limit ourselves, as many other
authors do, to the real parametrization. The radius parameter
R0 ≡ r0A1/3, where r0 ≈ 1.2 fm, gives an approximation of
the effective nuclear spherical radius in Fermi, and the aux-
iliary function c(α) assures that the volume encompassed by
the surface is constant and independent of deformation.

Calculations confirmed by experiment indicate that
the typical lowest order equilibrium deformations involve
quadrupole (λ = 2) components, axial α20 and nonaxial α22,
often accompanied by smaller but persisting axial hexade-
capole (λ = 4) deformation, α40. It was found long ago that,
in certain areas of the nuclear mass table, this characteristic
behavior is modified by octupole (λ = 3) axial (μ = 0) pear-
shape contributions with a nonvanishing deformation α30; see,
e.g., early articles in Refs. [5–7] indicating the presence of the
“octupole magic numbers”: 32, 40, 56, 90, 136, as discussed
in more detail in the next section; see also Ref. [8].

Other multipolarities or their combinations will be referred
to as exotic. In particular, the recently discovered [9] nuclear
tetrahedral and octahedral symmetries can be represented with
the help of nuclear surfaces in which deformation parameters
enter in the appropriately predefined combinations of certain
multipolarities, λ. For instance, tetrahedrally symmetric sur-

faces, within what we refer to as the first-order deformation
parameter, t1, involve only the nonaxial octupole deformation
parameters α3±2. For the next allowed order, referred to as
the second-order deformation parameter t2, one would need
a combination of two deformation parameters with the order
λ = 7, Ref. [10]:

t1 ≡ α3±2, (2)

t2 ≡ α7±2 and α7±6 = −
√

11/13 α7±2. (3)

Similarly (see Ref. [10]), for the second lowest order
octahedral symmetry deformations o1 and o2, one needs com-
binations of λ = 4 and λ = 6 multipolarities as follows:

o1 ≡ α40 and α4±4 = −
√

5/14 α40, (4)

o2 ≡ α60 and α6±4 = +
√

7/2 α60. (5)

As far as the construction of experimental symmetry identi-
fication criteria is concerned, the mathematical treatment of
the exotic symmetries, which will be discussed in the present
article, follows exactly the treatment tested earlier in Ref. [11]
and applied in Ref. [9].

In what follows we will be particularly interested in the
impact of nonaxial octupole shape components α3μ �=0 on the
total potential energy in heavy nuclei. Mean-field calculations
indicate two characteristic scenarios. One of them involves
the presence of octupole shape components superposed with
nonzero quadrupole ones, α20 �= 0. This scenario can be con-
sidered well known, as one can conclude from the numerous
articles published on this subject, such as Refs. [5–7] or the
more recent ones Refs. [12,13], and references therein; see
also Refs. [14–16] as well as the discussions focused on heavy
nuclei, Refs. [17,18]. The reader interested in the early studies
of the related mean-field shell effects in superdeformed nuclei
is invited to consult Refs. [19,20]; similarly, those interested
in high-spin evolution thereof should see Refs. [21,22].

The other scenario involves pure octupole instabilities,
(α20 = 0, α3μ �= 0), which evolve in certain nuclei with
varying nucleon numbers. Despite the apparent similarities
between the two scenarios with and without vanishing α20

quadrupole deformation, the resulting point group symmetries
as well as their possible experimental manifestations are gen-
erally distinct and will be discussed in this article.

It turns out that heavy nuclei are particularly predisposed
to produce pronounced octupole shape effects. Among them,
certain Pb isotopes seem particularly attractive to us, as they
allow one to focus on studying a relatively clean buildup of
those shape polarizations caused by neutrons, while keeping
the protons within the shell closure Z = 82. Our detailed cal-
culations predict numerous cases of coexistence of competing
local equilibrium deformations with all four nonvanishing oc-
tupole components, which naturally raises questions about the
potential energy barriers separating such local energy minima,
as well as other nuclear structure implications discussed later
in this article.

Our calculations involve nuclear shape analysis in the
spaces of quadrupole (α20 and α22) variables and octupole
variables α3μ with μ = 0, 1, 2, 3, accompanied occasion-
ally by some extra test projections involving more exotic
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multipolarities (λ,μ), but the bulk properties are analyzed
in the four-dimensional (4D) deformation subspaces in this
article.

Section II will be devoted to a brief description of the struc-
ture of the nuclear Hamiltonian used in this article together
with typical total energy calculation results relevant for the nu-
clear range studied. This will bring us to the subject of Sec. III,
in which the characteristic shape-competition properties pre-
dicted on the basis of microscopic calculations of the potential
energies in exotic heavy Pb nuclei will be extended to nu-
clei with Z > 82, which are easier to access experimentally
with the presently available projectile-target combinations, fa-
cilitating new propositions of exotic-symmetry identification
experiments.

In Sec. IV we will formulate quantum criteria which al-
low for an experimental identification of exotic point group
symmetries introduced earlier, with the help of characteristic
rotational “molecular symmetry bands.” Since their properties
generally differ drastically from the properties of the well-
known bands generated by the ellipsoidal quantum rotors,
dominated by (�I = 2) transitions, the corresponding infor-
mation will allow for formulating experimental proposals for
exotic symmetry identification in unique manners.

The summary and conclusions will be presented in Sec. V.

II. NUCLEAR MEAN-FIELD HAMILTONIAN:
DEFINITIONS AND TYPICAL RESULTS

The nuclear potential energy calculations presented in this
article were performed with the help of the macroscopic-
microscopic method of Strutinsky [23,24], employing the re-
cently reanalyzed “universal” parametrization of the deformed
Woods-Saxon potential [25]. The idea of “universality” was
introduced long ago in the presently used context in Ref. [26];
see also Ref. [27] for contemporary links. The adjective “uni-
versal” refers to the fact that a unique parameter set is used for
all the nuclei in the entire mass table.

A. Mean-field Hamiltonian and nuclear potential energy

We recall briefly the definition of the nuclear mean-field
Woods-Saxon Hamiltonian, which can be considered very
standard today:

ĤW S = T̂ + V̂W S + V̂ so
W S + [V̂Coulomb for protons], (6)

where T̂ represents the nucleonic kinetic energy operator and
V̂W S the central Woods-Saxon potential, the latter defined with
the help of the equation of the nuclear surface, �, as follows:

V̂W S (�r, α;V c, rc, ac) = V c

1 + exp[dist� (�r, Rc; α)/ac]
. (7)

The symbols introduced above have the following meaning:
V c is the central potential depth parameter, rc (in Rc = rcA1/3)
the central radius parameter, and ac the central-potential dif-
fusivity parameter. The function dist� (�r, Rc; α) represents
the geometrical distance between the nucleon position �r ≡
{x, y, z} and the nuclear surface �, whereas α stands for all
the deformation parameters αλμ.

The spin-orbit potential as usual involves the gradient of
the central one,

V̂ so
W S (�r, p̂, ŝ, α; λso, rso, aso) = 2h̄λso

(2mc)2

[( �∇V so
W S

) ∧ p̂
] · ŝ, (8)

where

V so
W S (�r, α;V c, rso, aso) = V c

1 + exp[dist� (�r, Rso; α)/aso]
. (9)

We have introduced λso as a dimensionless spin-orbit strength
scaling factor, rso (in Rso = rsoA1/3) as the spin-orbit radius,
and aso as the spin-orbit diffusivity parameter.

In principle, this definition of the phenomenological mean-
field Hamiltonian with the deformation-dependent Woods-
Saxon proton and neutron potentials explicitly introduces two
sets of six parameters each,{

V c
π,ν, rc

π,ν, ac
π,ν ; λso

π,ν, rso
π,ν, aso

π,ν

}
, (10)

one for protons π and one for neutrons ν. However, it turns
out that an alternative representation of the parameters of
the Hamiltonian in question that explicitly involves a smooth
dependence on Z and N is significantly better suited for large
scale calculations. The interested reader may consult Ref. [25]
for details, here we will limit ourselves to recapitulating the
final results based on the above reference.

The mean-field Hamiltonian parameters used in the present
article have been adjusted in Ref. [25] to the empirical single-
nucleon energies established for the doubly magic spherical
nuclei

16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn, 146Gd, 208Pb, (11)

following the evaluation of Ref. [28]. When adjusting param-
eters to the data on several nuclei (eight in the present case)
it will be of significant advantage to introduce explicitly the
isospin dependence in the strength parameters of central and
spin-orbit potentials in the form directly involving the isospin
strength constants κ as follows:

V c
π,ν = V c

0

(
1 ± κc N − Z

N + Z

)
(12)

and

λso
π,ν = λso

0

(
1 ± κso N − Z

N + Z

)
, (13)

with the plus sign holding for the protons and the minus sign
for the neutrons. According to this modification, V c

0 , λso
0 , as

well as κc and κso are new adjustable constants, corresponding
to the ones introduced originally, and we can formally write
an equivalence relation between the two subsets:{

V c
0 , κc; λso

0 , κso
} ↔ {

V c
π ,V c

ν ; λso
π , λso

ν

}
. (14)

From contemporary research results one expects that mod-
eling uncertainties should be tested and controlled before
submitting for publications; see, e.g., the Physical Review Ed-
itorial, Ref. [29]. One of the first, most direct verifications in
this context consists of establishing the possible presence (or
absence) of the parametric correlations generated by the newly
parametrized Hamiltonians. This requirement is fundamental
since one may demonstrate rigorously that Hamiltonians with
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TABLE I. Parameters of the universal Woods-Saxon Hamilto-
nian from Ref. [25]. Upper row: protons. Lower row: neutrons. The
dependent parameters resulting from the procedure of elimination
of the parametric correlations are rc

π = 1.278 fm, rc
ν = 1.265 fm,

rso
π = 0.830 fm, rso

ν = 0.890 fm. The spin-orbit diffusivity parame-
ters are aso

π = aso
ν = 0.700 fm; see Ref. [25].

V c
0 (MeV) κc ac

π,ν (fm) λso
0 κ so

0.594
Mean values −50.225 0.624 26.210 −0.683

0.572
0.010

Standard error 0.142 0.013 0.513 0.139
0.011

parametric correlations have essentially null predictive power
for the data outside of the fitting zone; see, e.g., Secs. III and
IV of Ref. [25] and references therein.

In the present project, the well-established tools of the
inverse problem theory of applied mathematics have been em-
ployed. By applying standard mathematical algorithms, which
involve among others Monte Carlo simulations, the presence
of parametric correlations for 4 out of 12 originally introduced
Woods-Saxon parameters [see Eq. (10)] has been detected.
The identified correlations have been removed so that the
final parameter set contains only eight independent ones. The
corresponding results from [25] are collected in Table I.

The Schrödinger equation with the Hamiltonian of Eq. (6)
is solved using standard diagonalization methods with a ma-
trix representation of the Hamiltonian within the anisotropic
harmonic oscillator (HO) basis. The HO basis cutoff condi-
tions have been adjusted in such a way that the calculated
single-nucleon energies remain stable within three decimal
places even for the extreme ranges of variations of the defor-
mation parameters; see Ref. [25] for details.

The total potential energies are calculated using the
macroscopic-microscopic method of Strutinsky as in
Refs. [23,24]. In accordance with the corresponding
definitions and notation the nuclear potential energy is
calculated as

Etotal = Emacro + δEπ
micro + δE ν

micro. (15)

The first term stands for the classical macroscopic liquid-drop
model contribution and the two microscopic terms are defined
as the sums of the so-called shell correction and pairing cor-
rection terms introduced in Refs. [23,24].

To calculate the nuclear energies we employ a macroscopic
energy description in the form of the finite-range liquid-drop
model (FRLDM). It contains the surface energy term given by
the Yukawa-plus-exponential finite-range model of Ref. [30]
within the formulation of Refs. [31,32]. Our macroscopic en-
ergy expression coincides with Eq. (62) of Ref. [33]. All other
terms in the Strutinsky energy expressions are standard, and
the interested reader may consult Ref. [25] and the references
therein.

B. Deformed mean-field shell effects in 4D octupole space

We begin our presentation of the octupole shape suscep-
tibilities in heavy lead isotopes and the neighboring heavy

FIG. 1. Single-particle neutron levels as functions of the pear-
shape axial octupole deformation obtained with the Universal
Woods-Saxon Hamiltonian. The pear-shape deformations are the ear-
liest studied in the literature. The “magic” octupole number N = 136
deserves notice; for details see the text.

nuclei by first focusing on the strongest gaps in the single-
particle spectra, which result from an increase of the octupole
deformations α3μ for μ = 0, 1, 2, and 3. We use the Hamil-
tonian in its parametric correlation-free form introduced in
the preceding section, and begin with the “traditional,” pear-
shape, axially symmetric deformation α30. The corresponding
illustration is given in Fig. 1.

The α30 octupole shell opening at N = 136 is clearly visi-
ble above the 2g9/2 orbital, separating the N = 126 and N =
136 spherical-shell gaps with its five doubly degenerate mem-
bers mj = ± 1

2 ,± 3
2 , . . . ,± 9

2 downsloping between α30 = 0
and α30 ≈ ±0.3. The observed gap is caused by a repulsive
interaction between the 2g9/2 orbital members from the main
N = 6 shell and the 1 j15/2 intruder orbital members from the
main N = 7 shell. The presence of the strong gaps at N = 136
in all four octupole shape components μ = 0, 1, 2, 3 can be
traced back to the strong coupling via octupole operators,

Q̂3μ ∝ r3Y3μ, (16)

entering the octupole-octupole residual interaction Hamil-
tonian “sandwiched” between the bra and the ket states
originating from the 1 j15/2 and 2g9/2 orbitals. They differ
in terms of the orbital angular momentum quantum numbers
by �� = λ = 3 (for the microscopic origin underlying the
mechanisms mentioned, see Refs. [34,35]).
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FIG. 2. Similar to the preceding figure, but for the α31 octupole
deformation. The α31 octupole gap at N = 136 extends only to
±0.20.

Figure 2 shows a qualitatively similar behavior of the
single-particle levels, even though the α31 octupole gap at
N = 136 is slightly less pronounced. Its microscopic origin
can be traced back to the properties of the octupole operator
in Eq. (16) and the �� = 3 bra vs ket relations; see Eq. (C.1)
of Ref. [34].

In the case of the α32 octupole deformation effect illus-
trated in Fig. 3 we must expect the strongest shell effects
due to the fact that this particular degree of freedom de facto
represents the tetrahedral symmetry; see Ref. [9] and refer-
ences therein. As is well known from group theory, among
the irreducible representations of the double-tetrahedral group
T D

d applicable in the discussed case of the Fermion mean-
field Hamiltonian we find one four-dimensional irreducible
representation (the corresponding levels carry fourfold degen-
eracies and are characterized by the double Nilsson labels in
Fig. 3) and two two-dimensional ones. The fourfold degenera-
cies of single-particle levels lead to an increase in the average
level spacings, and occasionally to bigger shell gaps. Indeed,
we find that the N = 136 octupole gaps are the strongest in the
discussed tetrahedral symmetry case, which is clearly visible
from the comparison of Figs. 1–4. Moreover, we find the two
most significant α32 deformed gaps at N = 136 and N = 142,
the size of the former close in its energy scale to the size of
the spherical N = 126 gap.

Another manifestation of the N = 136 gap in the case of
the α33 octupole deformation is visible in Fig. 4.

FIG. 3. Similar to the preceding figures, here for the α32 de-
formation representing a very exotic tetrahedral symmetry, whose
double point group possesses 48 symmetry elements. Particu-
larly strong shell-gap openings at N = 136 and N = 142 deserve
attention.

Comparing all four illustrations presenting the single-
neutron orbitals as functions of the octupole deformations α3μ

with μ = 0, 1, 2, 3, we may conclude that, according to the
discussion in the text neighboring Eq. (16), the repulsion of
the 2g9/2 vs 1 j15/2 orbitals transmitted via Q̂λ=3 operators
leads to the strong shell gaps at the neutron number N = 136
for all four components of the octupole tensor; see Eq. (C.1)
of Ref. [34] for explicit forms of the relevant matrix elements.
The strongest effect can be attributed to α32 deformation gen-
erating tetrahedral symmetry, whose specific mechanism is
due to the reasons based on the group theoretical arguments,
as qualitatively discussed above.

C. Octupole structure of the nuclear potential energies

We proceed to examining the impact of the single-nucleon
octupole gaps illustrated in the preceding section on the nu-
clear potential energies. We will be particularly interested in
the accompanying mechanisms, such as the presence of multi-
ple potential energy minima and the barriers separating them,
the fission barriers, and the appearance of flat energy zones
resembling valleys. The latter often give rise to a lowering of
the collective vibrational nuclear energies. The single-particle
energy diagrams presented in the preceding section allow for
a qualitative overview of the global properties of underlying
shell effects, but otherwise can hardly be used for direct
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FIG. 4. Similar to the preceding cases, here for the octupole α33

deformation. Observe the presence of octupole gaps at N = 136 and
N = 146.

comparison, e.g., as leading to spectroscopic experimental
information.

We will present a series of total potential energy illustra-
tions divided into two smaller subsequences. In the first one
we wish to show how the octupole susceptibilities evolve with
the neutron number, beginning with N = 126 up to N = 136;
the latter playing a role of a ‘universal octupole magic num-
ber,” or, alternatively ‘fourfold octupole magic number,” to all
four octupole deformations α30, α31, α32, and α33, simultane-
ously.

It turns out that all the four corresponding types of
octupole-quadrupole potential energy projections, i.e., (α30 vs
α20), (α31 vs α20), (α32 vs α20), and (α33 vs α20) look quite
similar to each other. We will only show the (α30 vs α20)
projections as representative examples. They are obtained as
the results of four-dimensional calculations: at each point of
every one of the mentioned 2D projections a minimization is
performed over the triaxial-quadrupole deformation α22 and
the hexadecapole deformation α40.

The results illustrating arrival of stable, strongly pro-
nounced octupole minima with increasing neutron number are
shown in Fig. 5 presenting three nuclei: 208Pb126, 212Pb130,
and 216Pb134. The first of them manifests a flat “north-south”
valley along the α30 axis. The second shows the onset of the
double-minimum pear-shape octupole structures. The third
manifests two fully developed symmetric octupole minima,
separated by a potential barrier of over 2 MeV.

The maps involving alternative multipolarities α31,
α32, and α33 manifest a very similar behavior, and are
not shown.

We find it instructive to present instead the sequence of
all four α20 vs α3μ projections for the magic configuration
N = 136, i.e., for the 218Pb136 nucleus; see Fig. 6. Comparison
shows that the highest barriers separating the twin octupole
minima correspond to tetrahedral symmetry α32, the height
exceeding 3 MeV, and pear-shape symmetry α30, with the
barrier clearly in excess of 2 MeV.

Yet, the remaining deformations α30, α31, and α33 pro-
duce very well-pronounced separation barriers as well. All
projections predict the coexistence of the well pronounced su-
perdeformed minima, at 4–5 MeV relative height (depending
slightly on the projection chosen).

Results in Fig. 6 show that the fission properties will be
determined by the mass-asymmetry pear-shape evolution at
increasing elongation since the corresponding fission barriers
are significantly lower in this case. For the α3μ �=0 projec-
tions the predicted saddle points remain axially symmetric at
α3μ �=0 = 0.

III. EXOTIC SYMMETRIES: FROM HEAVY Pb ISOTOPES
TO Z > 82 NUCLEI

Heavy isotopes of lead, 82PbN�126, were selected for our
study of exotic nuclear shape properties for a number of
reasons. It will be instructive to list them explicitly before
proceeding with the next steps of the presentation. However,
as the isotopes represent relatively exotic species, the corre-
sponding experimental data are limited, or scarce. In order
to encourage effective experimental efforts to identify the
underlying exotic symmetries in question it will be instructive
to enlarge the discussion to also cover some of the more
accessible nuclei. Keeping this in mind, as well as the fact
that the symmetry effects introduced evolve in a multifold
manner, they will need to be discussed in some detail for
Z > 82 nuclei.

A. Unique structural features of heavy Pb isotopes
as the theory test ground

The octupole effects, appearing in the discussed lead nuclei
in their pure form, i.e., at vanishing quadrupole deforma-
tion, evolve with Z into more complex structures. First, in
several nuclei the α30 and α31 susceptibilities occurring at
α20 = 0 evolve into octupole valleys superposed with nonzero
quadrupole deformations α20 �= 0, as seen from Figs. 7 and 8.

One may expect that this evolution with increasing Z gives
rise to “traditional” octupole-type rotational patterns com-
bined with low-lying octupole oscillation structures also in
heavier nuclei.

Second, and perhaps more importantly, the octupole com-
ponents α32 and α33—while generating valley patterns similar
to the ones just described—produce simultaneously well-
defined double minima at α20 = 0. The latter are separated
from the lower-lying quadrupole minima by significant barri-
ers and imply in a way parallel shape coexistence patterns. On
the one hand, collective octupole bands build on the α20 �= 0
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FIG. 5. Projections of the total nuclear energy on the (α30, α20) plane minimized at each point over triaxial quadrupole α22 and axial
hexadecapole α40 deformations for 208,212,216Pb nuclei resulting from our mean-field modeling. Comparison shows a buildup of octupole
susceptibility at N = 130 (for 212Pb), down to a strong octupole deformed minimum separated by the potential barrier of over 2 MeV height
at N = 134 (for 216Pb). The present collection of maps illustrating the pear-shape projections turns out to be characteristic for other octupole
α3μ �=0 components in Pb nuclei, up to minor details.

minima combined with the low-lying octupole Kπ = 2− and
Kπ = 3− vibrations and the associated octupole bands. On the
other hand, Td and D3h exotic-symmetry bands set in and com-
pete with the others. All these structures and their evolution
can be followed and identified with the present day nuclear
structure instrumentation, and the rest of this article will be de-
voted to presenting the suggested modeling and identification
methods.

It will be instructive to begin the discussion by enumerating
the unique nuclear structure elements in the Pb nuclei, in
order to treat those as a reference while proceeding to the
presentation of the particularities of this evolution towards
extended sectors of the mass table.

To start, let us emphasize a strongly appealing nuclear
structure mechanism: The shape evolution in question is dom-
inated by shell energies which originate from one kind of
nucleons, the neutrons, whereas proton contributions are con-
strained by the presence of the dominating Z = 82 closure.
Therefore, to a leading order, we are dealing here with the
result of octupole repulsion between characteristic high-�
(high- j) neutron orbitals, 2g9/2 and 1 j15/2 as discussed in the
text surrounding Figs. 1–4.

Second, the results presented in the preceding section carry
an important message about clearly visible spherical-shape
instabilities of the majority of Pb nuclei, many of which are
traditionally considered “just spherical” or “nearly spherical.”
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FIG. 6. Results structurally similar to those in Fig. 5, here comparing potential energy projections for the octupole “supermagic” number
N = 136 (see Figs. 1–4), with all four μ projections, α3μ ↔ α30, α31, α32, α33, for the 218Pb136 nucleus. Given the fact that combining Z = 82,
having relatively weak octupole proton effects, with N = 136 accumulates the strongest neutron octupole effects, we should consider the
present comparison as representing the purest manifestations of the N = 136 “supermagic” gap.
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FIG. 7. Map selection focusing on the differences in terms of the pear-shape octupole evolution at the Z = 82 proton configuration
(preceding figures) and larger proton numbers, here with radium, Z = 88, chosen as an example. We wish to emphasize that, in contrast
to the tendency visible from Figs. 5 and 6 for the Z = 82 case, there is a buildup of nonvanishing quadrupole deformation on top of the
α30 ≈ ±0.15 octupole doublets. The quadrupole components of equilibrium deformations evolve from α20 ≈ 0 to α20 ≈ 0.15 for increasing
neutron number N = 126, 128, 130, . . . , 136. The underlying symmetry corresponds to the point group C∞v . The calculated equilibrium
values are αth

20 = 0.075, 0.125, and 0.150 for 218,222,224Ra compared with experimental ones from Ref. [38]: α
exp
20 = 0.0910+49

−39, 0.1915(76), and
0.179+11

−8 , the closeness illustrating the predictive power of the universal parametrization.
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FIG. 8. Map selection focusing on the illustration of the systematic differences between the shape evolution for α30, Fig. 7, and here, α32.
Observe the buildup of a ground-state quadrupole deformed minimum in parallel with the pronounced α32 ≈ ±0.15 tetrahedral minima. A flat
energy zone around α20 ≈ 0 developing in 218Ra130 ends up with the α20 ≈ 0.15 ground-state minimum in 224Ra136. Notice a parallel buildup of
the well-pronounced tetrahedral minima at α32 ≈ ±0.15 with α20 = 0. They are predicted to generate rotational bands with vanishing collective
E2 and E1 transitions [9].
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However, as can be seen from Fig. 5, already at the neutron
number N = 130 we predict a nonspherical pear-shape equi-
librium deformation, a tendency which accelerates quickly
with increasing N .

Third, there is yet another specificity of the discussed
shape evolution: the pear-shape octupole susceptibility, along
with a buildup of significant instability, takes place with no
competition from the quadrupole components. The same ap-
plies to other octupole shape components. In other words,
the equilibrium deformations in question are determined by
the lowest order shape multipolarities (α20 = 0, α3μ �= 0). It
then follows that the corresponding experimental studies of
the excitation spectra in the discussed nuclei primarily provide
information about octupole shapes as the leading order mecha-
nism, the quadrupole one playing, unusually, a secondary role.

The fourth observation in the series is noticing that the
pear-shape effects are accompanied by comparably strong
effects generated by all three α3μ �=0 components; see Fig. 6.
Moreover, the α32 octupole-tetrahedral shell effects are man-
ifestly stronger than the ones related to the pear-shape
configurations for reasons resulting from the properties of
the irreducible representations of the T D

d group introduced in
Sec. II B. This unique structural feature may turn out to be
of primordial importance for the present discussion, since, if
the tetrahedral structures dominate, they induce the presence
of a new class of isomers (discussed in detail in the article
discovering the presence of these symmetries in subatomic
physics, Ref. [9]), opening new frontiers in terms of experi-
mental perspectives.

The symmetry point groups corresponding to a superpo-
sition of nonzero axial quadrupole shape components, α20 �=
0, with the nonzero octupole components are formally the
same in three out of the four cases. Indeed, both (α20 = 0,
α30 �= 0) and (α20 �= 0, α30 �= 0) lead to C∞v point group
symmetry. Analogously, comparing the formal symmetries
induced by (α20 = 0, α31 �= 0) and the combination (α20 �=
0, α31 �= 0) leads to a common result, the point group C2v .
In contrast, whereas the deformation α32 �= 0 represents the
tetrahedral symmetry group mentioned earlier, superposing
(α20 �= 0, α32 �= 0) leads to another point group, D2d . Finally,
both (α20 = 0, α33 �= 0) and the combination (α20 �= 0, α33 �=
0) generate a common symmetry, D3h, in both cases.

We arrive in this way at the notion of exotic symmetries
which will be adopted in this project:

The octupole bands, a term implicitly referring to a pear-shape
geometry, were studied for over a half a century and are
considered a standard element in nuclear structure theory. In
contrast the geometries behind the point group symmetriesC2v ,
Td , D2d , and D3h are referred to as “exotic” in the present
article.

The differences between rotational band properties (see
Sec. IV), generated by distinct symmetries just listed, as pre-
dicted by group representation theory, are very significant and
can be used for the experimental identification of the symme-
tries in question. In particular, observation of the presence or
absence of certain characteristic levels, alternatively of double
or triple degeneracies of levels as band members, provides
unique arguments in favor (or disfavor) of identification of

symmetries. Therefore, instrumentation capable of detecting
(possibly weak) electromagnetic signals will generally be suf-
ficient, provided that such levels are populated/depopulated
by electromagnetic transitions at all.

Exact tetrahedral symmetry leads to specific, unique exotic
structures. Indeed, in the latter case both collective E1 and
E2 transitions vanish [9], which can be seen as an important
obstacle when trying to identify such symmetry via systems
of γ detectors. Fortunately, such limitations do not apply
for D2d symmetry. The latter can be seen as the result of
tetrahedral symmetry broken by a quadrupole one. This offers
a fascinating possibility of studying, among others, a weak
Td -symmetry breaking by observing weak but nonvanishing
electromagnetic E2 and/or E1 transitions.

We emphasize that the commonly discussed manifesta-
tions of the pear-shape octupole deformations take the form
of the so-called octupole bands or parity-doublet bands,
mechanisms accompanied by other measurable signals such
as frequency staggering with increasing spin, correlations
between the reduced transition probabilities, characteristic
angular momentum alignment properties, and more; see the
reviews in Refs. [7,8,36] and monographs in Refs. [35,37].
Those typical rotational octupole bands were predicted to
correspond to equilibrium shapes with simultaneous non-null
quadrupole and pear-shape contributions (α20 �= 0, α30 �= 0).
One should expect that varying quadrupole components in
the nuclear shape will influence the relations between the
reduced transition probabilities, B(E2) vs B(E1) and B(E3),
thus facilitating identification.

However, it is equally natural to expect that alternative
observable signals generated by the rotational motion, such as
staggering or angular momentum alignment properties, will
be significantly influenced by the presence of the quadrupole
or other strong octupole effects. The corresponding analysis
in terms of the Hartree-Fock-Bogolyubov cranking (HFBC)
approach is in progress and the results will be published
elsewhere.

B. Octupole α3μ exotic shapes in Z > 82 nuclei: Implied
evolution of exotic symmetries

The purpose of the following discussion is to provide a
synthetic description of the predicted evolution of shapes
driven by the octupole α3μ deformation components and the
associated exotic symmetry properties with varying proton
and neutron numbers. In what follows, we have preselected
a sector of the nuclear mass table covering the zone of newly
predicted symmetry effects. Our selection of graphical illus-
trations is intended as a compromise between presenting all
the new symmetries and their evolutions on the one hand,
and the possibilities of populating such nuclei in experiments
aiming at identifying the theoretically predicted structures on
the other.

It follows from the results presented so far that the octupole
effects of interest set in from N = 132 onwards, reaching
their most pronounced manifestations at N = 136. In Figs. 7
and 8 we present sequences of total potential energy maps
illustrating the evolution of the octupole deformations, α30

(the most studied in the literature in the past) and α32 (the
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most pronounced in terms of the shell effects due to the un-
derlying tetrahedral symmetry) in the N = 130, 132, 134, 136
isotopes. Among nuclei with Z ∈ [84, 90] we select for this
illustration the 88Ra nucleus, for which a relatively big amount
of experimental information already exists in the literature,
signifying that the production of the corresponding excited
configurations in a laboratory should not lead to extreme
technical or instrumental difficulties.

In reference to the octupole pear-shape evolution, our cal-
culations predict a competition between the unstable octupole
ground-state configurations and the superdeformed minima at
α20 ≈ 0.5, as well as faint, oblate-shaped minima at α20 ≈
−0.25. Within this general pattern, the flat α30 octupole val-
ley corresponding to α20 = 0 for 214Ra126 gets even more
elongated for 216Ra128 (none of them shown) and transforms
next into a sequence of double-minimum structures in the
218–224Ra130–136 nuclei, as shown in Fig. 7. We emphasize that
the transition mentioned is accompanied by a steady increase
in quadrupole equilibrium deformations, starting with α20 ≈
0.03 in 218Ra and ending with α20 ≈ 0.15 in 224Ra.

In terms of predictions comparable to experiments, our
calculations suggest that, while the octupole radiation B(E3)
strengths should be comparable among nuclei in the discussed
sequence, the collective quadrupole transition strength should
be gradually increasing. The evolution just described can be
seen as characteristic for the whole sequence of Pb, Po, Rn,
Ra, and Th nuclei as far as octupole pear-shape geometry is
concerned and thus Fig. 7 can be seen as representative for all
mentioned nuclei.

The corresponding symmetry point group characterizing
the discussed shapes is known in group theory as C∞v . From
the mathematical viewpoint, the latter symmetry remains for-
mally the same no matter whether the quadrupole component
vanishes or not.

Concerning the evolution of the α31 deformation properties
represented by the maps similar to those in Fig. 7, in which
α30 on the vertical axis is replaced by α31, our calculations
predict a full analogy in terms of the just described behavior,
except for an increase in α20 component, its growth being
slightly slower when the neutron number increases. Given
the similarities between the α30 and α31 behavior, the latter
evolution is not shown.

The symmetry behind the shape evolution in the latter case,
guided by the octupole component α31, is known in group
theory as C2v; it remains the same for both vanishing and
nonvanishing α20.

In contrast to the evolution pattern behind the results
in Fig. 7, the symmetry evolution driven by α32 octupole
deformations with increasing neutron number can, very in-
terestingly, be considered qualitatively different; see Fig. 8.
Indeed, the flat α32 octupole valley for N = 126 and 128
evolves into a double minimum in 218Ra with a progres-
sively increasing barrier separating the two minima, with N
varying between 130 and 136; see Fig. 8. Yet the associated
quadrupole deformation component remains constant: α20 =
0. The symmetry behind the α32-driven evolution corresponds
to, in mathematical terms, the strict tetrahedral point-group
Td , imposing hindrance in terms of collective E2 and E1 tran-
sitions and predicted buildup of implied isomeric structures

expected to manifest themselves also at increasing angular
momenta.

And yet, along with the development of the tetrahedral
minima of increasing separation strength, a valley parallel to
the vertical (α32) axis corresponding to a non zero quadrupole
deformation (α20 ≈ 0.25) builds up, the onset being visible
for 220Ra, getting stronger for 222Ra, and finally building up
a ground-state minimum for 224Ra, the evolution of which is
visible in Fig. 8. The implied nuclear oscillatory motion com-
bines simultaneously the α32 �= 0 and α20 �= 0 deformations.
In this way a competing symmetry develops which is asso-
ciated, in group theory language, with the D2d point group.
Correspondingly, in addition to the two axial-symmetry min-
ima visible from Fig. 8 at α20 ≈ 0.50 (superdeformed) and
at α20 ≈ −0.25 (oblate shape) the tetrahedral symmetry band
enters the competition possibly accompanied by a rotational
band built on a D2d -symmetry configuration.

C. Comparison of similarities and differences in α3μ effects
at the universal magic number N = 136

As described in the preceding sections, the nuclear struc-
ture effects manifested as functions of the four octupole
deformations show certain characteristic parallels, but also
equally characteristic differences. In particular, we note sim-
ilarities in terms of the shape evolution with the proton
numbers between α30 and α31 on the one hand, and between
α32 and α33 on the other.

For a graphical illustration, we have chosen to fix the neu-
tron number at the octupole supermagic number N = 136 to
emphasize the strongest shell effects produced by the neutrons
and modify the proton number to be able to cover the compar-
ison zone including Pb, Po, Rn, Ra, and Th nuclei. Strictly
speaking, because of the graphical format’s limitations in this
section we are able to compare only the properties of the last
four nuclei just mentioned; we profit from the fact that the
analogous results for the Pb nuclei are presented in Sec. III A,
where we introduced the general lines of discussion of this
article.

1. Effects of α30 in Po, Ra, Rn, and Th: Symmetry C∞v

Referring to the results in Fig. 9, the pear-shape octupole
“north-south” valleys align vertically at quadrupole deforma-
tion, increasing approximately from α20 = 0.10 to 0.15, for
Z = 84, 86, 88, and 90 nuclei, an evolution which can be seen
as a parallel shift. The flatness of the bottom of the discussed
valley implies that, from the experimental view point, one
should expect the Iπ = 1− and 3− lowest negative parity band
members to be positioned close to or higher than the energies of
the positive-parity band members, Iπ = 4+. Indeed, the quali-
tative features of these particular aspects of the octupole-band
related spectra are illustrated in Fig. 1.7 of Ref. [37]; see the
surrounding comments and discussion in that reference.

From experimental results in Ref. [39] we find

226Th : EIπ =1− = 230.4 keV, EIπ =3− = 307.5 keV, (17)

against EIπ=4+ = 226.4 keV, (18)
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FIG. 9. Focus on the octupole supermagic number N = 136. We follow the quadrupole shape increase at the pear-shape deformation
α30 ≈ ±0.15 from α20 ≈ 0 at 220

84 Po up to α20 ≈ 0.15 at 226
90 Th. The corresponding point group symmetry is C∞v . The experimental quadrupole

equilibrium values known for 222Rn, 224Ra, and 226Th, Ref. [38], α
exp
20 = 0.1417(45), 0.1790+11

−8 , and 0.2299(19), should be compared to the
calculated ones, αth

20 = 0.13, 0.15, and 0.16, respectively.
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i.e., 3− higher than 4+, together with

224Ra : EIπ =1− = 216.0 keV, EIπ =3− = 290.4 keV, (19)

against EIπ =4+ = 250.8 keV, (20)

i.e., similar inequality as in the preceding case, and finally

222Rn : EIπ =1− = 600.7 keV, EIπ =3− = 635.5 keV, (21)

against EIπ =4+ = 448.4 keV. (22)

There are no experimental results for 220Po available.
This comparison shows a good semiquantitative correspon-

dence with the expectations based on general considerations
summarized in Ref. [37], which can be seen as a very en-
couraging argument in favor of the predictive capacities of the
modeling employed.

The just-described scenario related to the α30 evolution
should be considered standard, “nonexotic” according to our
nomenclature. Similar properties have been discussed in many
nuclei in the literature, and the present discussion serves to
provide a reference point allowing to define the systematic
similarities and possibly systematic differences in the discus-
sion of the exotic symmetry effects that follows.

2. Effects of α31 in Po, Ra, Rn, and Th: Symmetry C2v

The following comparison is analogous to the previous one
with α30 dependence of the potential energy surfaces replaced
by the first nonaxial one, α31. We will refer to the results in
Fig. 10 showing at first glance a full analogy manifested by
the presence of the “north-south” valleys which, up to certain
details, repeat the pattern of the parallel shift of the α20 posi-
tion, varying from about 0.10 to 0.15, with increasing proton
number, as discussed in the previous section. On top of this
systematic similarity we also notice a systematic difference in
that the valleys are slightly broader and shorter in terms of the
coordinates α31 vs α20.

To a leading order one may expect that corresponding
vibration energies should be slightly higher compared to
those from the previous section, given the fact that the stiff-
ness coefficients of the potential valleys are predicted to be
smaller here. Strictly speaking, to confirm the last affirmation
one would need to solve the Schrödinger equation with the
microscopically calculated mass tensor, employing the new
concepts of nuclear adiabaticity, Ref. [40]. Corresponding
calculations are in progress and the results will be presented
elsewhere.

3. Effects of α32 in Po, Ra, Rn, and Th: Symmetries Td and D2d

We continue with our step-by-step discussion of the
systematic analogies and differences within the potential
energy structures generated by the octupole shape degrees
of freedom, here the second nonaxial octupole, and also
tetrahedral-symmetry shape, α32; see Fig. 11.

The new mechanism predicted is the presence of the
tetrahedral symmetry configurations manifested by the dou-
ble minima at α32 ≈ ±0.15 combined with α20 = 0. It is
the latter feature, the vanishing of the quadrupole shape
component, together with the presence of the potential bar-
riers which surround the discussed minima of approximately

1–2 MeV heights, which lead us to the prediction of a
presence of possibly the purest realization of the tetrahedral
(Td ) symmetry minima in the discussed nuclei. The inter-
ested reader may consult Ref. [9] for the description of the
experimental procedure of searching for the identification
of such structures and their appearances (to our knowledge
this is the first and the only identification case published
so far).

In contrast, the analogous systematic mechanism seen in
the present case is the appearance, with increasing Z , of axial-
symmetric quadrupole minima at α20 ≈ 0.15. Such minima in
the α32 vs α20 coordinate plane are expected to generate two
types of oscillations, which to a leading order should parallel
to the well-known quadrupole β and γ oscillations mani-
fested experimentally via the “second” Iπ = 0+ and Iπ = 2+
vibrational states. Experimentally, the oscillations in the α32

direction are expected to generate Kπ = 2− (negative parity)
vibrational bandheads and the associated rotational bands,
analogous to the γ bands.

Finally let us remark in passing that all the structures
discussed so far are predicted to be in competition with
the axial-symmetric superdeformed minima at α20 ≈ 0.5, at
low excitation energies comparable to the ground-state ones
within some hundreds of keV difference.

4. Effects of α33 in Po, Ra, Rn, and Th: Symmetry D3h

We complete our step-by-step presentation of nuclear po-
tential energy properties, here generated by the third and the
last family of nonaxial octupole shapes, spanned by the α33

multipole parameter, inducing the presence of the threefold
symmetry axis (120◦ discrete rotation symmetry axis imply-
ing the D3h point group). As before we observe (see Fig. 12)
a systematic tendency of increase in the axial-symmetry
quadrupole-deformed ground-state minima, whereas the
double α33 minima at α20 = 0 get less and less pro-
nounced with the proton number increasing, Z = 84, 86, 88,
and 90.

According to results in Fig. 12, D3h symmetry appears in
the discussed four representative nuclei in two qualitatively
different forms, which we refer to as static and dynamic ones.

Strictly speaking we might expect that the static D3h con-
figurations must be characterized by double minima, each
centered at some positive and negative nonvanishing value,
α33 �= 0, and at the same time accompanied by sufficiently
high surrounding potential barriers. The term “sufficiently
high” can be considered vague, but in semiquantitative terms,
since the energies of the corresponding vibrational states are
expected at the level of several hundreds of keV, barriers well
in excess of 1 MeV, e.g., 1.5 MeV or more, most likely provide
a sufficient stability.

On the theory side much more precise information can be
reached by solving the Schrödinger equation of the collective
model of Bohr as in the case of the approach of Ref. [40] cited
earlier in a similar context. The corresponding project is being
followed independently of the present one, and the results will
be published in a forthcoming article.

Whereas the total energy maps suggest favorable condi-
tions for the D3h configurations in 222Rn and 220Po in their

034348-14



EXOTIC SHAPE SYMMETRIES AROUND THE FOURFOLD … PHYSICAL REVIEW C 105, 034348 (2022)

FIG. 10. Focus on the octupole supermagic number N = 136. Here we wish to stress a semiquantitative correspondence and similarities
between α30 deformation evolution, as shown in Fig. 9, and α31 for the same choice of the nuclei compared. The ground-state configuration
point group symmetry is C2v .

static variants, so that experiments aiming at their identifica-
tions may be tempting, the conditions in the remaining two
nuclei in Fig. 12 seem much less favorable. However, accord-
ing to mathematical arguments based on group theory, one

should expect the presence of two forms of oscillatory motion,
one in terms of α20 (quadrupole vibrations) and one in terms
of α33, here referred to as D3h oscillations or the dynamical
D3h effect. In the latter case we should expect existence of
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FIG. 11. Focus on the octupole supermagic number N = 136, here emphasizing the basic differences between the shape evolution induced
by α32 as compared to the α30 and α31 cases illustrated in Figs. 9 and 10, respectively. The novelty, compared to the previous cases, consists
in the fact that the tetrahedral double minimum at α32 ≈ ±0.15 and α20 ≈ 0 stays in place when the proton number increases from Z = 84,
i.e., 220Po, up to Z = 90, i.e., 226Th, whereas in parallel an axial-quadrupole symmetry ground-state minimum builds up at α20 ≈ 0.15. In
the discussed case we deal with two coexisting symmetries, one associated with the static Td double minimum, the other associated with the
ground-state α32 oscillations at α20 ≈ 0.15, leading to dynamic realization of D2d .
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FIG. 12. Illustration analogous to the preceding one, here focusing on the octupole deformation α33 in place of α32 in Fig. 11. In the present
case, the double α33 minima, combined with α20 ≈ 0 characteristic of the D3h-symmetry point group, are less pronounced, whereas the axial
symmetry quadrupole ground-state minimum with α20 ≈ 0.15 sets in firmly beginning with N = 132.

the Kπ = 3− vibrational states which may become bandheads
of the corresponding rotational bands, possibly carrying the
signs of their underlying symmetry.

More precise mathematical conditions built on group-
representation theory will be employed to construct the
experimental identification criteria in Sec. IV.
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IV. IDENTIFICATION CRITERIA OF EXOTIC
SYMMETRIES VIA COLLECTIVE ROTATION

In the preceding sections we discussed a number of mech-
anisms which may generate the presence of exotic shape
symmetries, in particular in the heavy lead isotopes but also
in numerous heavier nuclei in their neighborhood. Among
those nuclei, many have already been populated in various
nuclear reactions and published experimental evidence sug-
gests that specific experiments aiming at identification of
the predicted exotic-symmetry structures are possible. Recall
that we apply the name “exotic symmetry” by definition nei-
ther to quadrupole- nor to axial-symmetry octupole-deformed
shapes.

Results presented so far illustrate the link between these
symmetries and the shell effect caused by repulsion be-
tween the neutron 2g9/2 and 1 j15/2 orbitals, the proton shell
structures playing a relatively minor role, if any, then by
slightly destabilizing the exotic symmetry structures. The re-
pulsion between the two neutron orbitals was attributed in
the literature to the octupole-octupole residual interactions or
alternatively the mean-field octupole deformations [34]. This
generates shell effects, which in turn cause the octupole shape
susceptibility in the form of the flatness of the potential energy
landscapes, alternatively in the form of the well-developed
static minima. In majority of the discussed nuclei this mecha-
nism leads to the α3μ deformation effects for all tfour octupole
degrees of freedom simultaneously, as illustrated in the preced-
ing section.

A. Evolution of the octupole magic-gap structure
with rotational frequency

In the following sections we will study the specific prop-
erties of rotational bands generated by exotic symmetries in
nuclei of interest with the idea of using their unique features
for identification of their presence experimentally. Before pro-
ceeding, it will be instructive to test the evolution of the exotic
shell structures with increasing spin or, alternatively, increas-
ing rotational (cranking) frequency. Indeed, in order to be able
to employ the underlying theoretical methods focusing on the
rotational properties, e.g., in experimental proposal writing,
it will be instructive to verify whether the corresponding shell
effects resist the impact of the increasing rotational frequency.

To this end we are going to employ a 3D cranking approach
by solving the corresponding mean-field cranking problem
with the Hamiltonian

ĤW S → Ĥ �ω
W S = ĤW S − �ω · ĵ , (23)

where ĤW S is given by Eq. (6) whereas �ω ≡ {ωx, ωy, ωz} and
ĵ denotes the nucleonic angular momentum operator.

We have verified that increasing the rotational frequency
induces a gradual closing up of the N = 136 magic gap, but
at the same time modifying the directions of the cranking fre-
quency vector with respect to the octupole deformed nucleus
does not influence the degree of this variation in any dramatic
manner. It thus turns out that it will be sufficient to illustrate
the whole mechanism with the help of simplified pictures of
such changes by selecting one cranking axis as representative.

FIG. 13. Single particle neutron Routhians at pear-shape oc-
tupole deformation α30 = 0.15 representative of potential energy
minima predicted in heavy lead isotopes, as well as in several
heavier nuclei. The gap opening at h̄ωy = 0 is about 1.5 MeV and
decreases as expected towards h̄ωy = 0.20 MeV, the frequency at
which the single-particle Routhian distribution becomes approxi-
mately uniform.

Figures 13–16 show four diagrams analogous to those in
Figs. 1–4, with the single-particle energies replaced here by
the single-particle Routhians corresponding to the Oy-axis
cranking as a representative illustration of the shell-gap evo-
lution with nuclear cranking frequency, thus with the spin.
Calculations indicate that the total (proton and neutron) an-
gular momentum at the maximum frequency shown are of the
order of 20h̄, an estimate representative of the nuclei in the
mass zone discussed in this article. In what follows we will
be interested in the rotational band structures corresponding
to frequency intervals below the high- j alignment area and
possibly a back-bending, which translates in terms of angular
momentum into an interval of the order of a dozen h̄.

FIG. 14. Similar to the preceding figure, but for the α31 = 0.15
octupole deformation. The α31 octupole gap at N = 136 and h̄ωy = 0
is of the order of 1.5 MeV, slightly more than in the previous case, but
the N = 136 gap manifests the highest stability against the cranking
effect down to maximum h̄ωy = 0.2 MeV considered here.
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FIG. 15. Similar to the preceding figures, here for single-particle
Routhians at deformation α32 = 0.15 representing tetrahedral sym-
metry minima in many nuclei in the studied mass region. The low
level density area including N = 136 and N = 142 gaps at h̄ωy = 0
extends to almost 3 MeV and decreases to about 2 MeV at the
maximum frequency illustrated, manifesting the strongest resistance
against rotation.

Cranking calculations show, as expected, that the strongest
shell effects around N = 136 correspond to the α32 tetrahedral
symmetry case, Fig. 15, with the dominating shell gap closing
at h̄ωy ≈ 0.30 MeV. A smaller N = 136 gap at α31 deforma-
tion, the C2v-symmetry case, persists in the similar cranking
frequency range; see Fig. 14. The pear-shape symmetry shell
effects as function of the rotational frequency are clearly
visible in Fig. 13, the main gap closing at h̄ωy ≈ 0.25 MeV.
Finally, the case of α33 shell effects and the underlying geom-
etry with the threefold symmetry axis is illustrated in Fig. 16,
showing the least pronounced gaps. The shell effects are man-
ifested mainly by the visibly low level density zones, which

FIG. 16. Similar to the preceding cases, here for α33 octupole
deformation representing a D3h symmetry in potential energy minima
in many nuclei in the discussed mass region. The octupole shell effect
at h̄ωy = 0 can be considered as the weakest in comparison to other
cases and essentially takes the form of relatively low level density at
N = 136, 138.

decrease with increasing frequency filling in the energy in-
terval with the single-particle Routhians in an approximately
uniform manner at h̄ωy ≈ 0.15 MeV.

We conclude that the mean-field cranking estimates mod-
eling the mechanism of vanishing N = 136 octupole shell
effects with increasing collective rotation clearly suggest a
survival of such effects within, on average, at least the an-
gular momentum zone within a dozen h̄. This provides one
more motivation to examine the rotational band properties as
predicted by group representation theory at least within the
discussed interval, which will be our following subject.

B. Rotational band properties in the presence of Td octupole
symmetry, deduced by employing point group theory

It will be instructive to begin our presentation of rotational
properties of nuclei obeying selected point group symme-
tries by recalling two, in a way opposite, view-points, which
nonetheless will be demonstrated to be complementary. They
both aim at describing the same physical objects and phenom-
ena:

(i) Rotating nuclei are described as structureless quan-
tum rotors with their Hamiltonians constructed out
of nuclear total angular momentum operators, Î =
{Îx, Îy, Îz}, using well-known tensor-coupling algebra.
The underling mathematical formalism applied in the
discussed context can be found, e.g., in Refs. [41,42].
It allows constructing the rotor Hamiltonians invariant
under any predefined point-group symmetry of inter-
est.

(ii) Alternatively, rotating nuclei are described within a
microscopic mean-field theory extended to include the
external rotation, the latter allowing an introduction of
the angular momentum of rotation in this case. The
external rotation is usually treated by employing the
well-known mean-field cranking and Hartree-Fock-
Bogolyubov cranking (HFBC) methods.

Without going into formal details, we consider it instruc-
tive to remind the reader about certain principles of the two
approaches in order to present unifying symmetry aspects
between the two, thus strengthening the final argumentation
about experimental identification issues.

1. Pointgroup symmetric structureless quantum rotors

The first of the two approaches has an advantage of relative
simplicity as compared to the more microscopic case, allow-
ing for a direct calculation of the energy spectra as well as
the reduced electromagnetic transition probabilities. The ap-
proach adapted to the present discussion, from Refs. [41,42],
is based on the rotor Hamiltonian

ĤRot = Î2
x

2Jx
+ Î2

y

2Jy
+ Î2

z

2Jz
+ ĥ({p}; Îx, Îy, Îz ), (24)

in which the first term represents the “traditional” triaxial rotor
with the moment of inertia parameters Jx, Jy, and Jz, and
the second term allows modeling point group symmetries with
the help of adjustable parameters denoted {p}. It is composed
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of the spherical-tensor operators involving the powers of an-
gular momentum components higher than 2 and constructed
using the Clebsch-Gordan coupling rules. The algorithm is
fully analogous to the one applied in molecular physics, e.g.,
Refs. [43,44]. This formalism allows us to extend the context
of collective excitations to include, in full analogy with the
molecular physics applications, also the vibrations and the
rotation-vibration coupling (see Ref. [42]):

ĤRot → ĤRot + ĤVib + ĤVibRot. (25)

In the following we limit our interest to collective nuclear
rotation and thus orientation of the rotor relative to a chosen
Cartesian reference frame, the latter described with the help
of Euler angles. The solutions allowing us to represent the
probability of nuclear orientation in space and other collective
properties can be obtained by a diagonalization method, as
usual employing Wigner functions as a basis. The correspond-
ing transformation properties of the solutions of the problem
are conveniently written down with the help of the orthogonal
group in three dimensions,

O(3) = Ci × SO(3), (26)

and its irreducible representations play a central role in what
follows. Here Ci denotes the inversion group and SO(3) the
(special orthogonal) rotation group, according to standard def-
initions and notation.

Information about point group symmetries of nuclear
shapes and their impact on the properties of the nuclear
rotational bands on the microscopic-structure level will be de-
duced by employing the mean-field theory with the cranking
approximation, and will be addressed next.

2. Projected mean-field theory: Link with Point groups

In contrast to the structureless rotor picture introduced so
far, the mean field theories in their various realizations address
the solution of the nuclear motion in the language of the many-
body problem written down, within a two-body interaction
scheme, beginning with the Hamiltonian

Ĥ2−Body =
∑
i1i2

ti1i2 ĉ+
i1

ĉi2 + 1

2

∑
i1i2i3i4

vi1i2i3i4 ĉ+
i1

ĉ+
i2

ĉi4 ĉi3 , (27)

in which the symbols t and v represent the kinetic energy and
the two-body interaction terms, respectively, whereas ĉ+ and
ĉ represent single-nucleon creation and annihilation operators.
The mean-field ansatz is usually introduced with the help of
the totally antisymmetric product states 〈�′| and |�〉, allowing
us to introduce the language of densities and the variational
principle.

Geometrical symmetries enter the self-consistent mean
field approach via external constraints taking the form of
extra conditions imposed, e.g., on the expected values of the
multipole moment operators

〈�|Q̂λμ|�〉 = Qλμ ↔ αλμ, (28)

where Qλμ are physicist-defined numbers, often chosen to
correspond to the nuclear shape deformations introduced in
Eq. (1); for instance, by specifying a series of values like

α32 = 0.15, 0.20, 0.25 . . ., we may calculate the nuclear en-
ergies according to the HFBC approach for increasing static
tetrahedral deformations.

With or without constraints, the deformed mean fields
lead to breaking of the original symmetries possibly carried
by two-body interactions in Eq. (27) so that the quantum
numbers characterizing the system in a laboratory reference
frame such as the nuclear angular momentum I and parity
π (or proton and neutron particle numbers in the case of
Hartree-Fock-Bogolyubov approaches) need to be recovered
using projection techniques. This is done with the help of the
projection relations

∣∣�I±
Mκ

〉 =
∑

K

gI±
K,κ P̂I

MK P̂±|�〉, (29)

in which P̂I
MK and P̂± are angular momentum and parity pro-

jectors respectively, and where expansion coefficients, gI±
K,κ ,

are obtained by solving the generalized eigenvalue problem
within the formalism of Hill-Wheeler equations; see Ref. [11]
for details.

Needless to say, describing the details of these procedures
(which are standard today) bypasses the scope of the present
article, but the interested reader may consult textbooks and
review articles, such as Refs. [45–47] and references therein.

Let us open the principal subject of the discussion by
presenting the results of the microscopic Hartree-Fock-
Bogolyubov cranking calculations with the spin and parity
projections, for one of the nuclei of primary interest in this
article, 226

90 Th136, corresponding to the “universal octupole
magic number” N = 136 at which the tetrahedral-symmetry
shell effects are the strongest. Results presented in Fig. 17 cor-
respond to the lowest EI vs I energy sequence obtained from
the constrained, spin and parity projected HFBC calculations,
with the Q32 moment for a typical equilibrium deformation
predicted by our calculations [see Eq. (28)] and based on the
calculations in Ref. [11].

We arbitrarily limit the illustrations to states with I � 12.
An unprepared reader might be surprised seeing a perfectly
parabolic energy sequence, EI ∝ I (I + 1), which, in contrast
to similar sequences seen in a huge number of publications,
manifests a number of characteristic differences:

(i) The lowest energy perfectly parabolic EI ∝ I (I + 1)
sequence contains both even- and odd-spin states.

(ii) The corresponding sequence referred to as a band
contains states of opposite parities.

(iii) At certain spins we note the presence of degenerate
energy states: spin-parity doublets at Iπ = 6±, 9±,
10± and a degenerate triplet state, composed of a
doublet Iπ = 12+ and a singlet Iπ = 12−.

(iv) Certain states are completely missing: In the present
case these are Iπ = 1±, 2±, and 5± states whose en-
ergies lie significantly higher and thus do not belong
to the illustrated, lowest-energy parabolic sequence.

(v) The calculated spectrum also contains other higher-
lying states, which do not join the lowest parabolic
sequence and are not discussed here.
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FIG. 17. Results adopted from Ref. [11], showing the structure of the lowest energy EI vs I sequence obtained within the realistic HFBC
formalism, together with spin and parity projection techniques as schematically indicated in Eq. (29) for 226Th. To ensure the link with the Td

symmetry, the HFBC equations were solved under the Q32 constraint equivalent to α32 ≈ 0.15; see Eq. (28). For “pedagogical” reasons we
use two graphical representations emphasizing, on the left, two structural elements of the problem: the presence of positive and negative parity
states in the sequence, and occasional occurrence of degenerate multiplets. On the right, we emphasize the parabolic dependence of energies
on spin, EI ∼ I (I + 1); the negative parity levels are plotted as dotted lines. Also, the dotted lines should be understood as degenerate with
neighboring full lines.

Needless to say, the properties just described are not ac-
cidental and take their origin in the structure of one of
the irreducible representations of the Td group as presented
next.

3. Irreducible representations of O(3) and point groups:
Band properties of Td-symmetric nuclei

The subjects overviewed below have been of interest in
molecular physics and chemistry for a long period now, with
certain significant publications dating back to the middle
of the previous century; see, e.g., Refs. [48–50]. There has
been much less interest in the nuclear context. In particu-
lar, the nuclear rotation pattern of Fig. 17, was obtained in
Ref. [11] using advanced quantum mechanical methods of
nuclear physics with neither explicit considerations of sym-
metries nor group theory. And yet the same pattern can be
found in Fig. 138 of Ref. [49] embedded in the discussion of
spectra of Td -symmetric molecules; the monograph in ques-
tion was published in 1945. We mention in passing that certain
nuclear configurations interpreted in terms of α particles can
be seen, due to certain geometrical resemblances, as analo-
gous to molecular configurations. This was the case of the
4α cluster Td configurations of 16O discussed as early as the
1970s and onwards (Refs. [51–54] or more recent ones), and
in the cases addressing D3h symmetry in 12C, Ref. [55] and
rotation-vibration coupling in 16O, Ref. [56].

To start, let us consider solutions of the rotor prob-
lem, Eq. (24). The corresponding wave functions transform
as (generally reducible) representations D(Iπ ) of the group
O(3) in Eq. (26) with definite spin and parity (Iπ ). Rep-

resentations D(Iπ ) have the form of (2I + 1) × (2I + 1)
matrices in the space of rotor wave functions with a given
(Iπ ), whereas construction of irreducible representations in-
volves K mixing with specific combinations of K quantum
numbers.

Next, consider a given point group, say G, here in the
realization G = Td as the symmetry of the considered rotor,
and let us denote its irreducible representations Dn, for n =
1, 2, . . . ,N . According to standard concepts in group theory
(see, e.g., Chapter 3 in Ref. [57]), we can decompose the
O(3)-group representations D(Iπ ) in terms of the irreducible
representations Dn of G, thus providing the link between the
rotor states with spin-parity (Iπ ) and the point group struc-
tures. We demonstrate that

D(Iπ ) =
N∑

n=1

a(Iπ )
n Dn. (30)

Alternatively one can write out the “branching rule”

D(Iπ ) =
N⊕

n=1

D⊕a(Iπ )
n

n ,

where a(Iπ )
n are multiplicity factors taking non-negative in-

teger values. Crucially, this is for representations of a given
group in terms of representations of a subgroup, in the present
case Td ⊂ O(3).

Calculating the multiplicity factors needed here is again a
standard matter in group theory literature. They are expressed
with the help of the characters of irreducible representations
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TABLE II. The multiplicity factors a(Iπ )
n belonging to the five

irreducible representations of point group Td for integer spins I � 12
showing separately the results for both parities. The first column lists
the irreducible representations. The interested reader may find more
details related to point group terminology in the Appendix.

Td multiplicity factors for D(Iπ=+)

I+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+

A1 1 0 0 0 1 0 1 0 1 1 1 0 2
A2 0 0 0 1 0 0 1 1 0 1 1 1 1
E 0 0 1 0 1 1 1 1 2 1 2 2 2
F1 0 1 0 1 1 2 1 2 2 3 2 3 3
F2 0 0 1 1 1 1 2 2 2 2 3 3 3

Td multiplicity factors for D(Iπ=−)

I− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10− 11− 12−

A1 0 0 0 1 0 0 1 1 0 1 1 1 1
A2 1 0 0 0 1 0 1 0 1 1 1 0 2
E 0 0 1 0 1 1 1 1 2 1 2 2 2
F1 0 0 1 1 1 1 2 2 2 2 3 3 3
F2 0 1 0 1 1 2 1 2 2 3 2 3 3

as follows:

a(Iπ )
n = 1

NG

∑
g∈G

χ∗
(Iπ )(g)χn(g)

= 1

NG

N∑
α=1

fαχ∗
(Iπ )(gα )χn(gα ). (31)

According to standard definitions and notation NG is the order
of G, i.e., the number of its elements g ∈ G, and χ(Iπ )(g) and
χn are characters of the representations D(Iπ ) and Dn, corre-
spondingly. The classes of the point group are enumerated
with the index α, the symbol fα represents the number of
elements in each class, and gα are representative elements
for each class. The number of classes equals the number of
irreducible representations, N . Using the tables of characters
(see, e.g., Refs. [58,59]), one may employ Eq. (31) to obtain
the results summarized in Table II.

To proceed towards interpretation of the above informa-
tion, let us recall that a given matrix of a Hamiltonian invariant
under a symmetry group G, e.g., quantum rotor within solu-
tions of given (Iπ ), can be represented in a block-diagonal
form in which blocks correspond to irreducible representa-
tions of the group. It follows that there are no off-diagonal
matrix elements of the Hamiltonian, which connect states
from different representations, expressing the structural fin-
gerprints of the families of states, no matter the values of I ,
under the condition that they belong to the same irreducible
representation. In particular, within each Td irreducible rep-
resentation, the lowest-spin state with a specified parity can
be treated as the “bandhead” of the sequence of states with
increasing spins. Since the structure of the nucleus generating
a given rotational band can be seen as predefined by the struc-
ture of the ground state, we may interpret the partner states
of increasing spins as representing the same intrinsic struc-
ture rotating, in classical language, with increasing rotational

frequency, and their expected energy vs spin dependence is
expected to be quadratic, at least to a leading order.

With the help of the information in Table II we can con-
struct the spin-parity sequences defining the rotational bands
built on structurally different ground states corresponding to
the Td irreducible representations listed in the first column
of the table. The corresponding solutions are collected in
Eqs. (32)–(36):

A1 : Iπ
gs = 0+, 3−, 4+, 6±, 7−, 8+, 9±, 10±,

11−, 2 × 12+, 12−, . . . , (32)

A2 : Iπ
gs = 0−, 3+, 4−, 6∓, 7+, 8−, 9∓, 10∓,

11+, 12+, 2 × 12−, . . . , (33)

E : Iπ
gs = 2±, 4±, 5±, 6+, 7±, 2 × 8±, 9±,

2 × 10±, 2 × 11±, 2 × 12±, . . . , (34)

T1 : Iπ
gs = 1+, 2−, 3∓, 4∓, 2 × 5+, 5−, 6+, 2 × 6−,

2 × 7∓, 2 × 8∓, 3 × 9+, 2 × 9−,

2 × 10+, 3 × 10−,

3 × 11∓, 3 × 12∓, . . . , (35)

T2 : Iπ
gs = 1−, 2+, 3±, 4±, 5+, 2 × 5−, 2 × 6+,

6−, 2 × 7±, 2 × 8±, 2 × 9+,

3 × 9−, 3 × 10+, 2 × 10−,

3 × 11±, 3 × 12±, . . . . (36)

A few comments linking the above group-theoretic and
symmetry-related information and the projected HFBC ap-
proach are appropriate at this point. To start, it is expected
that the tetrahedral lowest-energy band, referred to as tetra-
hedral ground-state band, is built on the lowest constrained
HFBC Iπ = 0+ state, called its ground state. Something sim-
ilar should be said about the Td -symmetric quantum rotor
solutions. The corresponding lowest energy Iπ sequence is
presented in Eq. (32), giving the symmetry-imposed spin-
parity relations in the tetrahedral ground-state band. It turns
out that this sequence corresponds exactly to the one obtained
earlier, which was based on the projected HFBC formalism
and is illustrated in Fig. 17. This simultaneously confirms the
intrinsic validity of the formalism and the coherence between
the related computer programs and numerical solutions (in full
agreement with the group-representation formalism and with
the underlying symmetries and their formal description).

It is worth emphasizing at this point that the projected
HFBC algorithm and the associated computer program con-
tain no single instructions related to symmetries, symmetry
operators, commutation relations, etc. Instead, the only infor-
mation containing a link with the symmetry environment is
implicit, viz., via constraints. Construction of the HFBC solu-
tions satisfying tetrahedral symmetry involves the constraint
with the help of the (here tetrahedral) symmetry operator,
Q̂32. The latter obviously contains no explicit information
about spins or parities of the solutions, and yet relations in
Eqs. (32)–(36) are produced via projection algorithm. Even
if not intuitive, these properties follow the mathematical
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background summarized briefly via Eqs. (29)–(31) and ex-
posed in detail in the textbooks of Herzberg, Hamermesh, or
Cornwell [49,50,57,59] and also many others, and are well
known in molecular physics.

Let us stress that the theorems used here for illustration
of the tetrahedral symmetry are formulated using the general
language of point groups and therefore not limited to any spe-
cific point group. This issue was described in Ref. [11], Fig. 4,
illustrating the projected HFBC results for the tetrahedral
symmetry case and in Fig. 5 showing the “usual ellipsoidal”
symmetry constraint; in the test the tetrahedral constraint was
just replaced by the quadrupole one showing a perfect corre-
spondence.

Let us emphasize that the structure represented by Eq. (32)
has been confirmed experimentally in Ref. [9]. This, to our
knowledge is the first experimental identification of nuclear
tetrahedral symmetry concerning a lighter nucleus, 152Sm.
The article in question confirms all the essential structural
singularities up to spin I = 10. This concerns in particular the
identification of the parity doublets1 at Iπ = 6±, 9±, and 10±
and, what is equally important, the confirmation of the absent
states at I = 1, 2, and 5 h̄.

Combining the information contained in Eq. (32) with
the experimental confirmation in Ref. [9] places the whole
sequence of structures predicted in Eqs. (33)–(36) in the
category of important experimental challenges. First, the
discussed relations represent the full symmetry scheme gen-
erated by the Td group, implying, on the one hand, that
identification of any one of them identifies the presence of
the discussed symmetry in the corresponding nucleus. On the
other hand a confirmation of one of them suggests the pres-
ence of any other in the symmetry scheme, whereas certain
deviations could indicate the possible symmetry breaking sig-
nals, both encouraging, in our opinion, some very interesting
and original research possibilities.

On the technical/instrumental level one can imagine at
least two complementary strategies. To see their relevance
let us recall that at the exact tetrahedral symmetry limit
the collective E2 and E1 type transitions vanish. Conse-
quently the lowest-order collective electric type transitions
correspond to a multipolarity λ = 3: electric octupole transi-
tions. Even though the reduced B(E3) transition probabilities
are orders of magnitude weaker than the quadrupole or
dipole ones, germanium multidetector systems can be seen
as a possible solution, especially since the strict symme-
tries are seldom realized in nuclei and a partial breaking
of those symmetries can produce several interconnecting γ -
decay paths including E1 and/or E2 transitions, which could
become detectable.

1Strictly speaking, Ref. [9] analyzes a simultaneous presence of
tetrahedral and octahedral symmetries, the importance of the under-
lying mechanism being that the tetrahedral group is a sub-group of
the octahedral one, Oh. The latter contains inversion, the implication
being that the analyzed experimental sequence is in fact composed
of two very close-lying parabolas of states with opposite parities,
again in perfect agreement with the group-theory affirmations about
interrelations between the Oh and Td groups.

Another instrumentation of choice would be contemporary
high resolution mass spectrometry. It is not a paradox that
if the electromagnetic signals are weak, the measurement of
the masses becomes a natural alternative. In this case the
experimental signals would take the form of a series of peaks
in counts vs mass (energy) with parabolically increasing dis-
tances between the peak positions. Modern instruments, e.g.,
those at the GSI-Darmstadt, Germany or TITAN, Canada,
seem to be the solutions of choice.

Let us complete this part of the discussion with a number of
comments which may render links with experimental efforts
more efficient. First of all let us notice that we have so far
presented the exact Td -symmetry limit case, which at the same
time encourages opening a “new spectroscopy era” by focus-
ing on the bands which are not dominated by E2 transitions
of the B(E2) strengths reaching up to hundred of Weisskopf
units. At the same time, we introduced rotational patterns for
all irreducible representations of the discussed point group.
Whereas the first issue can be addressed via efforts employing
γ -multidetector systems and high-resolution mass spectrom-
etry, the second one can be hurt by certain traditions in the
nuclear structure community, traditions which go back to the
middle of the previous century. We refer to the “well-known”
(at least in molecular physics) predictions of spectra of the
ellipsoidal rotor, which involve as the standard band structure
the single K = 0 band, accompanied by the doublets of the
K = ±1, K = ±2, K = ±3, K = ±4, ... bands—a sequence
which is seldom (if at all) found in the nuclear structure
literature. What is usually found instead is evidence limited
to the low-K bands, seldom bypassing K = 3, the very likely
reason being that the corresponding higher-K structures are
very difficult to populate. As a not-unlikely consequence it
appears that the population difficulty is de facto taken for
nonexistence.

At this particular point we find a difference compared with
molecular physics literature, where the bands with growing K
bandheads, combined with the vibration-rotational structures,
are numerous and evident. Moreover, rotational bands corre-
sponding to various irreducible representations of molecular
point groups, like the ones signaled in Eqs. (33)–(36), are also
discussed. At the same time the full rotational structures like
the one in Eq. (32) are, to our knowledge, very difficult to
evince experimentally in molecular physics for instrumental
reasons, and whose discussion certainly bypasses the scope of
the present article.

Given all the complications mentioned, combined with the
complete absence of evidence in our domain of the discussed
structures, we believe that rather than addressing many (or
all) of the mathematically identified types of bands it will be
of certain advantages to concentrate on the relatively simpler
structures like the one of the tetrahedral ground-state band,
Fig. 17.

C. Rotation in the presence of C2v , D3h, and D2d octupole
symmetries: Band structures deduced

with the help of group theory

The extended discussion of the tetrahedral symmetry
case in the previous section is supported by the world-first
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TABLE III. Similar to Table II but with the multiplicity factors
a(Iπ )

n belonging to the four irreducible representations of the point
group C2v , for integer spins I � 12 and π = +. The first column
lists irreducible representations of C2v; the interested reader may find
details related to the point group terminology in the Appendix.

C2v multiplicity factors for D(Iπ=+)

I+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+

A1 1 0 2 1 3 2 4 3 5 4 6 5 7
A2 0 1 1 2 2 3 3 4 4 5 5 6 6
B1 0 1 1 2 2 3 3 4 4 5 5 6 6
B2 0 1 1 2 2 3 3 4 4 5 5 6 6

experimental evidence in Ref. [9], deduced from experimental
data of various authors. It encourages an extension of the
analysis of shape-symmetry effects accompanying α32 oc-
tupole deformation towards α31 and α33 octupole degrees of
freedom which, as presented in the preceding Sections of this
article, generate sufficiently well-pronounced potential energy
minima, which in many cases may give rise to stable exotic
shape configurations.

1. The case of octupole symmetry C2v ↔ (α31 �= 0)

It is sufficient to apply Eqs. (30) and (31) with the charac-
ters of the group Td , replaced by the characters of the group
C2v to obtain the results in Tables III and IV. The illustration
of the structure of the resulting C2v ground-state band is pre-
sented in Fig. 18, analogous to the illustration on the left-hand
side of Fig. 17.

2. The case of octupole symmetry D3h ↔ (α33 �= 0)

Analysis of rotational properties of nuclei obeying pure
octupole α33 geometry and thus containing a threefold sym-
metry axis as a symmetry element leads to the D3h symmetry.
With the help of the group representation theory, we obtain
the tables of the multiplicity factors in full analogy to the
preceding ones. The corresponding results are collected in
Tables V and VI with the slightly modified labeling of the
irreducible representations as detailed in the Appendix.

As in the preceding case we will limit ourselves to a short
presentation of the ground-state band properties. All the other
band structures can be obtained directly, leading to analogs of
Eqs. (32)–(36).

TABLE IV. Results similar to the ones in Table III but with
multiplicity factors a(Iπ )

n for π = −.

C2v multiplicity factors for D(Iπ=−)

I− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10− 11− 12−

A1 0 1 1 2 2 3 3 4 4 5 5 6 6
A2 1 0 2 1 3 2 4 3 5 4 6 5 7
B1 0 1 1 2 2 3 3 4 4 5 5 6 6
B2 0 1 1 2 2 3 3 4 4 5 5 6 6

FIG. 18. Graphical representation of the structure of the rota-
tional band built on the Iπ = 0+ ground state in the case of the
symmetry C2v; states Iπ = 0− and 1+ are absent.

The structure of the ground-state band in question is
illustrated schematically in Fig. 19, showing the growing de-
generacy of multiplets when spin increases. Characteristically,
there are no negative parity states allowed in this case for
I � 2, and similarly no positive parity states for I = 3 and 5.
Above I = 7 only triplets or higher rank degenerate multiplets
are possible. Notice that the predicted structure allows for
numerous E2 as well as M1 transitions, which encourages the
use of γ -multidetector systems for a possible identification
of such structures in nuclei manifesting the corresponding
α33 �= 0 potential energy minima.

3. The case of combined α20 �= 0 and α32 �= 0 shapes:
Point group symmetry D2d

Recall that in Sec. III A we introduced the possible
breaking of the pure Td symmetry by competition with the
quadrupole α20 shape components, leading to yet another
symmetry point group, D2d . The resulting multiplicity factors
are listed in Tables VII and VIII for positive and negative

TABLE V. Similar to Table III but for the D3h multiplicity factors
with π = +.

D3h multiplicity factors for D(Iπ=+)

I+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+

A′
1 1 0 1 0 1 0 2 1 2 1 2 1 3

A′
2 0 1 0 1 0 1 1 2 1 2 1 2 2

E ′ 0 0 1 1 2 2 2 2 3 3 4 4 4
A′′

1 0 0 0 1 1 1 1 1 1 2 2 2 2
A′′

2 0 0 0 1 1 1 1 1 1 2 2 2 2
E ′′ 0 1 1 1 1 2 2 3 3 3 3 4 4
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TABLE VI. Similar to the preceding table, but for the D3h multi-
plicity factors with π = −.

D3h multiplicity factors for D(Iπ=−)

I− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10− 11− 12−

A′
1 0 0 0 1 1 1 1 1 1 2 2 2 2

A′
2 0 0 0 1 1 1 1 1 1 2 2 2 2

E ′ 0 1 1 1 1 2 2 3 3 3 3 4 4
A′′

1 1 0 1 0 1 0 2 1 2 1 2 1 3
A′′

2 0 1 0 1 0 1 1 2 1 2 1 2 2
E ′′ 0 0 1 1 2 2 2 2 3 3 4 4 4

parities, respectively. Whereas their structures in terms of the
irreducible representations are the same as in the Td case (see
the left columns in Tables II and III), the content is totally
different, leading to the corresponding Iπ = 0+ ground-state
band illustrated in Fig. 20. Referring to this figure, notice
that, characteristically, the Iπ = 1+ and 3+ states are totally
missing, as are the states Iπ = 0− and 1−. Other than that, the
sequence contains an ample selection of both parities and both
spin-parity states, which likely lead to the combinations of the
E2 and E1 transitions, whose presence can be seen as a factor
encouraging the corresponding experimental identification.

D. Comments about identification of exotic nuclear
point group symmetries

Following our mean-field theory potential energy calcula-
tions presented in the first part of the article, which manifest
strong octupole shell effects, predicted to generate equilib-
rium deformations with nonvanishing α3μ components, we

FIG. 19. Illustration similar to that in Fig. 17 but for the structure
of the ground-state band in the case of symmetry D3h (α33 �= 0).

TABLE VII. The multiplicity factors a(Iπ )
n belonging to the five

irreducible representations of the point group D2d , representing the
symmetry of nuclear surfaces combining the quadrupole and tetra-
hedral components α20 and α32 for integer spins I � 12; here for
π = +.

D2d multiplicity factors for D(Iπ=+)

I+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+

A1 1 0 1 0 2 1 2 1 3 2 3 2 4
A2 0 1 0 1 1 2 1 2 2 3 2 3 3
E 0 1 1 2 2 3 3 4 4 5 5 6 6
B1 0 0 1 1 1 1 2 2 2 2 3 3 3
B2 0 0 1 1 1 1 2 2 2 2 3 3 3

discussed the physical consequences of such structures im-
plied by the group theory arguments. More precisely, using
the applications of point group and group-representation the-
ories very well known from molecular physics literature, we
derived the properties of rotational band structures character-
istic of each discussed exotic symmetry. Given the fact that
tetrahedral symmetry belongs to the most exotic nuclear point
group symmetries in the discussed category, and the fact of
its experimental identification in the 152Sm nucleus [9], we
discussed this particular structure in more detail, but believe
that all the predicted structures are worthy of attention and
further studies in the future, both from the experimental and
theory viewpoints.

Let us emphasize that our focus in this article was on
demonstrating the arguments in favor of the presence of the
corresponding exotic structures in subatomic physics. This
strongly encourages focusing on the exact symmetry limits, in
order to define the underlying reference lines in the cleanest,
most unperturbed format possible. More advanced analyses
are encouraged—taking into account the increasing number
of mechanisms such as symmetry breaking and/or coupling
with other degrees of freedom, such as collective vibrations—
analogous to the molecular structure studies that are numerous
in the literature.

Having stressed the strategy of following exact symmetry
limits as guidelines, we address possible experiments aiming
at the symmetry identification.

1. Experimental focus on collective-level degeneracies

We will first address tests of degeneracies of certain rota-
tional levels as a direct approach to symmetry identification.

TABLE VIII. Similar D2d -symmetry case but for π = −.

D2d multiplicity factors for D(Iπ=−)

I− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10− 11− 12−

A1 0 0 1 1 1 1 2 2 2 2 3 3 3
A2 0 0 1 1 1 1 2 2 2 2 3 3 3
E 0 1 1 2 2 3 3 4 4 5 5 6 6
B1 1 0 1 0 2 1 2 1 3 2 3 2 4
B2 0 1 0 1 1 2 1 2 2 3 2 3 3
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FIG. 20. Schematic illustration of the Iπ = 0+ ground-state band
structure corresponding to the D2d point group symmetry resulting
from the combination of the quadrupole α20 and octupole α32 shape
multipolarities. The presented band structure is totally different from
the one corresponding to the pure Td symmetry illustrated in the left-
hand side of Fig. 17.

Indeed, in principle, even limiting comparison to the states
I � 6 in Figs. 17–20 allows us to distinguish between patterns
illustrated in a unique manner. Yet, such a strategy will be
subject to a number of limitations, which influence the final
choices:

(i) To begin with, nuclei selected as experiment candi-
dates should correspond to a compromise between
theory criteria of the strongest manifestations of sym-
metry, such as the Z vs N combination with the most
pronounced local potential energy minima, and the ex-
perimental criteria guided by the optimal beam/target
combinations and instrumental detection efficiency.
It follows that the discussed compromises will very
likely guide the final choice, deviating from the
strongest symmetry manifestation cases with the re-
sult that ideal, exact degeneracies will be to an extent
perturbed.

(ii) Consider a given d-fold degenerate multiplet at a given
spin-parity condition, Iπ . The related wave functions,
�Iπ

M,ρ for ρ = 1, 2, . . . , d are mutually orthogonal,
representing independent substructures. Consequently,
the feeding conditions of each of the multiplet mem-
bers should be expected to differ, perhaps strongly
from one multiplet member to another, with the result
that identification of some of them could become diffi-
cult and some multiplet members could be missing in
single-experiment data.

After enumerating certain difficulties which can be ex-
pected, let us also recall a strongly helping factor: All band
members discussed here form parabolic EI -vs-I dependence;
see Fig. 5 in Ref. [9] for illustration. This quadratic depen-
dence is likely to play a very helpful role in eliminating
or accepting certain experimental levels as band/multiplet
members, especially when feeding transitions are weak and
spin-parity identifications of levels are uncertain.

2. Experimental focus on single-particle fourfold level
degeneracies: Tetrahedral symmetry case

After a brief discussion of perspectives of identification of
nuclear symmetries via collective rotational Iπ level degen-
eracies, let us turn to yet another very attractive and exotic
quantum mechanism, which to our knowledge has so far never
been addressed experimentally. This is the predicted existence
of fourfold nucleonic level degeneracies.

So far, we have discussed the properties of even-even nu-
clei, therefore deduced from the properties of the groups Td ,
C2v , D3h, and D2d , rather than their double-group partners. In
the case of mean-field solutions where the direct objects of
interest are fermions and the related single-nucleon excitation
energies, the symmetry properties are described in terms of
the double point groups T D

d , CD
2v , DD

3h, and DD
2d . All the ir-

reducible representations of the latter are two dimensional,
implying a Kramers time-reversal double degeneracy, with
the exception of the T D

d group having two two-dimensional
and one four-dimensional irreducible representations. It then
follows that among the single-particle levels of the corre-
sponding nuclei some are fourfold degenerate.

In the case of a static (no rotation) mean-field theory each
single-particle eigenvalue, eν , is common to both ψν and its
time-reversed image ψν̄ ≡ T̂ ψν , where T̂ denotes the time-
reversal operator, and we have

Ĥψν = eνψν and Ĥψν̄ = eν̄ψν̄ with eν = eν̄ . (37)

Since solutions ψν and ψν̄ are linearly independent, to each
particle-hole excitation of an even-even nucleus,

δe∗
1p-1h ↔ eμ − eν = eμ − eν̄ = eμ̄ − eν = eμ̄ − eν̄ , (38)

with ψν and ψν̄ originally occupied and ψμ and ψμ̄ unoccu-
pied, there correspond four linearly independent particle-hole
configuration wave functions constructed out of the ap-
propriate combinations between the pairs: {ψν or ψν̄} and
{ψμ or ψμ̄}. It follows that, in the nonspherical even-even
nuclei whose symmetry point group is neither T D

d nor OD
h ,

to each particle-hole excitation energy there corresponds a
fourfold degeneracy caused by the presence of four linearly
independent 1p-1h wave functions, but manifested by a single
excitation energy, δe∗

1p-1h; see Eq. (38).
In the presence of fourfold single-nucleon degeneracies we

should think of totally new spectroscopic challenges. Indeed,
in this case, we have to consider the wave functions, say,
ψν1 , ψν̄1 , ψν2 , and ψν̄2 (in place of ψν and ψν̄ introduced
previously) accompanied by ψμ1 , ψμ̄1 , ψμ2 , and ψμ̄2 (in place
of ψμ and ψμ̄). Assuming that the associated ν-type fourfold
degenerate energy level is occupied and the μ-type remains
unoccupied, we can construct
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(i) one-particle one-hole excitations leading to 16 linearly
independent, mutually orthogonal wave functions, or

(ii) two-particle two-hole excitations leading to 32 linearly
independent, orthogonal wave functions.

Yet, in the exact symmetry limit all these combinations cor-
respond either to the single excitation energy equal to δe∗

1p-1h
of Eq. (38) in the case of one-particle one-hole excitations or
to a single excitation energy δe∗

2p-2h in the case of two-particle
two-hole excitations and equal to twice the single-particle
energy difference, i.e., 2 × (eμ1,μ2 − eν1,ν2 ).

However, in contrast to the strict mathematical results, it is
very unlikely that in the realistic physics cases, even for the
very well pronounced potential energy minima, the discussed
T D

d symmetry will be exact. Consequently each of the fourfold
degenerate levels, above referred to as eν1,ν2 and eμ1,μ2 within
the exact symmetry, in a slightly broken symmetry case is
expected to undergo a splitting into two close-lying single-
particle levels,

Exact T D
d :

{
eν1,ν2 ; eμ1,μ2

} → {
eν1 , eν2 ; eμ1 , eμ2

}
, (39)

leading to four slightly different δe∗
1p-1h-type excitation

energies and eight slightly different e∗
2p-2h-type energies. Ex-

perimentally we arrive at challenges of identifying either
16-plets of 1p-1h excited states or 32-plets of 2p-2h excited
states with close-lying energies, but with generally different
spins.2 One should expect numerous weak (single-particle
strength) electromagnetic transitions feeding or depopulating
those numerous states, certain among them forbidden by the
usual electromagnetic selection rules.

To summarize,

It is worth emphasizing that the priority in the discussed
problem is to obtain evidence for the relatively large number of
close-lying exited states rather than focusing on the complete
determination of the full quadruplets or octuplets of nearly
degenerate particle-hole excited states. An evidence of a few
such excitations will provide encouraging evidence of the
fourfold T D

d degeneracies and a good starting point for more
advanced theory studies.

When planning experimental identification of the dis-
cussed particle-hole excitation high-level degeneracies we
have an extra obstacle to take care of: distinguishing between
the sought signals (coming from the particle-hole excitations
generated by the tetrahedral symmetry configuration) and the
fake signals (possibly coming from particle-hole excitations
of the competing, e.g., superdeformed minima), predicted to
be close in energy. We will have a closer look at this aspect
next.

Indeed, in nuclei with all neutron levels below the large
N = 136 tetrahedral gap occupied, the Iπ = 0+ tetrahedral
ground states are expected to generate relatively high-lying

2More precise theory information about spins and parities of such
states may be provided within mean-field theory after employing the
angular momentum and parity projections techniques which are con-
sidered standard today. Yet, the presence of numerous configurations
to take into account enforces this type of study to follow the “case by
case” strategy rather than massive calculations.

one-particle one-hole or two-particle two-hole excitations
with nearly degenerate excitation energies. Such excita-
tions will be energetically separated from the particle-hole
excitations originating from the competing axial-symmetry
quadrupole minima. As it turns out, the superdeformed min-
ima are predicted to be very close in the energy scale to
the tetrahedral ground states studied in this article; they are
expected to be populated with comparable probabilities. Be-
cause of this systematic energy difference one may hope to
avoid overlapping between the T D

d highly degenerate spectra
of close-lying particle-hole excitations and the other ones,
originating incidentally from totally different, quadrupole-
deformed shape configurations.

3. Missing states as symmetry identifiers

Experimental verification of nonexistence of certain phys-
ical facts is a very difficult issue and in many situations next
to impossible, being directly related to the sensitivity of the
instrumentation used. In fact this problem can generally be
discussed in relative terms only. From reading Figs. 17–20 we
predict an absence of certain (usually low-spin) states, which
should be missing in the illustrated parabolic sequences asso-
ciated with the selected irreducible representations. However,
we might expect the presence of contaminating signals orig-
inating from levels with the right spin-parity combinations,
but whose energies incidentally lie in the studied excitation
zones of interest. The question arises, which extra arguments
and criteria can possibly be applied in order to diminish the
probability of contaminating the true results? Some ideas will
be discussed next.

In the present context we can expect a few sources of
structural contamination belonging to two classes: collec-
tive and noncollective excitations. Collective rotation signals
may originate either from exotic symmetry minima or from
the competing prolate-oblate quadrupole symmetry states,
possibly superdeformed. Since the latter ones should be char-
acterized by large moments of inertia and reduced transition
probabilities of the order of dozens to hundreds of Weisskopf
units, the signals of this type should become easily eliminated.
The collective rotation signals coming from the exotic sym-
metry minima could in principle be also recognized because
the predicted parabolic energy vs spin sequences originat-
ing from various irreducible representations are characterized
both by different energy bandheads and by different effective
moments of inertia.

As far as a possible competition from the collective vi-
brational states is concerned, the latter are expected in the 1
MeV energy range and therefore should not interfere with the
low-spin rotational transitions in most of the cases of interest.

Let us consider two other sources of possible con-
tamination, originating from noncollective (particle-hole)
excitations, either from competing prolate-oblate deformed
axial-symmetry minima or from the exotic symmetry minima
in question. In the case of the former, we will encounter
relatively well-known mechanisms of irregular energy vs spin
excitation patterns, which due to the axial symmetry and the
implied K quantum number conservation lead to the presence
of the so-called K isomers and yrast-trap energy pockets. An
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encouraging element of the discussion at this point is provided
by the fact that such structures can be very well treated on
theory grounds either within the realistic mean-field approach
employing the so-called tilted Fermi surface method (see, e.g.,
Ref. [1]) or with the spherical shell-model approach. Even
though the proposed elimination procedure is to an extent a
model-dependent one, if the suspected contaminant states can
be shown to belong to a decay scheme containing K isomers,
their interpretation as axially symmetric structures will remain
very likely.

The remaining, third source of difficulty is excluding a
possible misinterpretation due to an incidental presence of a
state with a predefined spin-parity combination arriving at the
parabolic energy zone while being, in fact, a particle-hole ex-
cited state of, e.g., the Iπ = 0+ exotic symmetry ground state.
We believe that in this context coincidentally positive signals
are very unlikely. First, it is wellknown that the particle-hole
excitation energies are very irregular and it is very unlikely
that the corresponding energy fits the energy position at the
parabola within a few keV interval. Second, the corresponding
total nuclear spins and parities result from combinations of
nucleonic spins and parities of levels existing in the vicinity
of the Fermi level, and again we find it very unlikely that the
strict energy and spin conditions would fit coincidentally.

4. Electromagnetic transitions to trace symmetries:
General remarks

Analysis of the electromagnetic transition properties be-
longs to the most powerful nuclear structure tools, yet its
complexity in the present context bypasses the complexity
of the spectral problems discussed in this article. This is
because when analyzing the transitions we will be confronted
with a number of extra quantum mechanisms which are less
important or nonexisting in the case of examining the spectral
properties.

The first element of the discussion can be formulated as
follows. There exists an important difference between the
arguments of symmetry from the viewpoint of mathematics
vs the same issue seen through the perspective of physics. In-
deed, the symmetry conditions at the constraint of 〈Q32〉 = q32

and 〈Q32〉 = q ′
32 are strictly the same, that is to say, spatial

density distributions are invariant under the same symmetry
elements in both cases. The same is not at all true in case of the
physics solutions, as discussed in detail in Ref. [11] [the inter-
ested reader may compare Figs. 4(a)– 4(f) for the tetrahedral
symmetry case and Figs. 5(a)– 5(f) for the quadrupole-axial
symmetry case]. An increase in the constraint values impacts
markedly the energies of the states, what alerts us about the
modifications in the structures of the wave functions, solutions
of the related Schrödinger equation. It follows that the matrix
elements of, in particular, electromagnetic transition operators
will vary with increasing strengths of the constraints at sym-
metry fixed, and some extra control mechanisms need to be
introduced to quantify those effects.

The second degree of freedom in the discussed context is
the dynamical symmetry breaking via collective zero-point
motion in the deformations competing with the symmetry
driving ones, e.g., α20 and α22 competing with α3μ. For in-

stance, in the exact tetrahedral symmetry limit, the reduced
transition probabilities of the collective E2 as well as E1
transitions vanish and consequently none of those should
be expected among the levels in Fig. 17. If, however, large
amplitude quadrupole oscillations would be allowed around
α20 = 0 and α22 = 0 equilibrium points, the dynamical (most
probable) quadrupole deformations and related B(E2) values
will be altered (thus nonvanishing) and the electromagnetic
decays connecting levels of the spectrum in Fig. 17 will be
altered accordingly. One can control this type of problem by
solving realistically the problem of collective nuclear motion.
Encouraging steps in this directions via expanding the micro-
scopic reformulation of the problem of adiabaticity and of
the Bohr model have been published recently [40] and the
corresponding analysis is in progress.

As we can see, electromagnetic transition analysis is
an important but complex problem in research of exotic-
symmetries; fortunately it can be treated at an independent,
advanced step, provided that some signals of symmetries have
been found from the energy-spectrum tests.

V. SUMMARY AND CONCLUSIONS

Nuclear deformations and the implied geometrical symme-
tries are very often addressed in the literature. These concepts
owe their existence to the short range of the strong interac-
tions which, combined with the compactness of the nuclear
density spatial distribution allow for introducing the notion of
a nuclear surface and the associated geometry. It turns out that
the shapes of nuclear surfaces can be described as deviations
from a spherical one, and therefore conveniently represented
with the help of multipole expansions of multipolarities λ = 2
(quadrupole), λ = 3 (octupole), λ = 4 (hexadecapole), etc.,
with the spherical harmonics {Yλμ} serving as an expansion
basis. Whilst quadrupole deformations {α20, α22} are in the
majority of studied cases of leading importance, interestingly
enough this rule is broken by the next order multipoles,
{α30, α31, α32, α33} in heavy lead isotopes and neighboring nu-
clei placed “northeast” from 208Pb in the nuclear mass chart.

In the present article we have addressed the consequences
of the fact that, in the heavy nuclei mentioned, these are
octupole deformations which are the first nonvanishing ones
to describe deviations from sphericity with increasing neutron
and proton numbers, generating well pronounced minima on
the potential energy surfaces. The underlying shell effects
to the leading order are caused by the strong repulsion be-
tween neutron 2g9/2 and 1 j15/2 orbitals, whose orbital angular
momentum quantum numbers � satisfy �� = 3 and produce
strong matrix elements in terms of Q̂λ=3 · Q̂λ=3 (octupole-
octupole) residual interactions, or, alternatively, repulsion
caused by octupole deformations in the mean-field Hamilto-
nian.

The neutron 2g9/2 and 1 j15/2 orbital repulsion leads
to very strong shell effects, generating what we call the
N = 136 “universal octupole magic number,” or, alterna-
tively, the “fourfold octupole magic number” emphasizing
in this way the presence of strong neutron gaps at all four
nonzero octupole deformations, with the sizes nearing �e ≈
3 MeV in the strongest α32 deformation case. Whereas the
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axial-symmetry pear-shape generating α30 deformation pro-
duces very well-known effects of, among others, octupole
parity-doublet bands, which have been studied over the years,
the effects of the other octupole degrees of freedom can be
considered de facto unknown. Interestingly, the shapes gen-
erated either by a pure α31 deformation or its combination
with the axial quadrupole, {α20, α31}, lead to a C2v point group
symmetry of the nuclear surface, whilst α33 alone, or in the
combination {α20, α33}, leads to D3h symmetry. In contrast,
α32 alone produces shapes with tetrahedral symmetry Td while
its combination with the quadrupole-axial deformations leads
to the D2d point group symmetry.

This article focuses on nuclear structure implications of
the predicted nuclear point group symmetries C2v , D3h, Td ,
and D2d . They are referred to as exotic given the fact that to
our knowledge they were either not addressed in the nuclear
structure literature, or their experimental evidence is as scarce
as in the case of Td symmetry.

To obtain information about shape competition and coexis-
tence we employed a phenomenological, realistic mean-field
approach together with the macroscopic-microscopic method.
We used the Hamiltonian with the deformed “universal”
[26,27] Woods-Saxon potential together with the newly de-
termined potential parameters from Ref. [25]. Parameter
adjustment was based on the recent experimental data, the
inverse problem theory of applied mathematics, and Monte
Carlo simulations. This approach allowed us to eliminate
parametric correlations and to increase in this way the stability
of predictions outside of the fitting zones, i.e., in particular
when addressing the new zones of interest.

Our mean-field calculations were performed in the space
of deformation parameters including α20 and α22 in the
quadrupole sector, α3μ=0,1,2,3 in the octupole sector, and α40

(occasionally α42 and α43) in the hexadecapole one. They
were performed within 3D and 4D deformation meshes,
a typical subspace involving between 5 × 106 and 5 ×
107 deformation points per mesh. Within each 4D mesh
several bidimensional (αλμ, αλ′μ′) combinations were con-
structed to produce graphical representations of the results
in the form of contour plots. For instance, in the case of
the 4D mesh (α20, α22, α40, α42) we found particularly in-
structive projections (α20, α22)min: α40,α42 , (α20, α40)min: α22,α42 ,
(α22, α40)min: α20,α42 , and (α40, α42)min: α20,α22 . Results from vari-
ous 4D subspaces of the eight-dimensional deformation space
allowed for constructing a database composed of over 104

various 2D projections, constituting a powerful source of
information which allows for overlooking the evolution of
various shape properties. In particular, in the (Z, N ) zone
of interest in this article we only found weak effects of the
quadrupole triaxiality (α22), facilitating the analysis of the di-
rect competition between the quadrupole and octupole degrees
of freedom.

In the next step we analyzed total energy projections
involving competition between quadrupole and octupole de-
formations, (α20, α3μ), minimized over α40, the latter option
as a step towards more realistic predictions. Calculations pre-
dict the strongest exotic symmetry effects for Td symmetry,
(α20 = 0, α32), especially in 220Po and 222Rn, and slightly
weaker ones in 224Ra and 226Th, all isotones of the universal

octupole magic number N = 136. Similar can be said about
the D3h symmetry in the above N = 136 isotones, even though
the potential barriers surrounding the minima in question are
systematically slightly lower. In all these nuclei, the minima
become less pronounced with N departing from the magic
N = 136 configuration.

The C2v symmetry is predicted to appear in three forms: the
one in lighter nuclei, Pb and Po, with configurations similar
to those just mentioned, i.e., of double minima of the (α20 =
0, α31) type; in heavier nuclei in the form of double minima
superposed with quadrupole oblate shapes, (α20 < 0, α31); or
alternatively in the form of long valleys, (α20 > 0, α31), par-
allel to the α31 axis. Those latter configurations are expected
to generate collective vibrations and lead to dynamical C2v

equilibrium.
To address the issue of experimental identification of the

theoretically predicted exotic symmetries, following earlier
experience obtained by combining the spin-parity projected
Hartree-Fock-Bogolyubov mean-field theory, with the sym-
metry and group theory considerations from Ref. [11], we
have analyzed the rotational band properties expected from
nuclei with the corresponding symmetries. The mathematical
techniques used by us follow the ones very well known from
molecular physics, but are seldom used in the microscopic,
e.g., mean-field calculations, Refs. [11] and [9] being ex-
ceptions. The main results, presented in a compact way in
Figs. 17–20 were limited to the structures of bands built on the
Iπ = 0+ bandheads, but the information provided allows one
to reconstruct the full information; the interested reader can
simply follow the pattern detailed for the Td case, Eqs. (32)–
(36).

The most important predictions applicable in symmetry
identification analyses can be summarized as follows:

(i) Each of the discussed exotic symmetries generates
distinct structures in terms of the energy vs spin-parity
sequences, {EIπ }, which differ significantly from the
well-known properties of ellipsoidal rotors.

(ii) At certain spins we predict degeneracies: sometimes
at positive parities, sometimes at negative parities, and
sometimes with both parities (“degenerate rotational
multiplets”).

(iii) At some spin-parity combinations, depending on the
symmetry point group, no states are allowed.

These characteristic features are distinct from one point
group to another (see Figs. 17–20), therefore if confirmed
experimentally, they would identify the sought quantum sym-
metries.

Since the strict applications of the formal criteria just
recalled may lead to severe experimental difficulties (for
instance, identifying fivefold degeneracy at Iπ = 5± in the
C2v-symmetry case, Fig. 18) we developed some more
detailed arguments showing how to identify the sought sym-
metry without identification of all the items in the criterion
list.

Theory predictions excluding the presence of certain Iπ

states in an examined rotational band can be seen as precious
and powerful criteria helping identification of the symmetry,
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but the experimental confirmation of the absence usually de-
pends on the actual instrumental sensitivity and may change
with improvement of the instrumentation. Since this particular
problem does not have a solution (in any branch of physics),
we included a discussion of mechanisms which can help the
identification at a given instrumental sensitivity level.
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APPENDIX: VOCABULARY OF POINT GROUP NOTATION
USED IN THIS ARTICLE

Below we recall selected definitions and notation to fa-
cilitate reading certain fragments of this article for persons
using neither group nor point group techniques on an everyday
basis.

1. Notation related to point groups

We begin by recalling that all point groups, G, are com-
posed of elements g1, g2, . . . , gNG ∈ G, defined as symmetry
operations acting on finite-size objects in 3D space, like
molecules or nuclei. By definition, they all leave at least one
point of the considered object invariant. It follows that all cor-
responding symmetry elements can be composed of rotations
Ĉn through angles αn = 2π/n about a common axis and mirror
reflections in planes σ̂ . In particular, space inversion Î and
rotary-reflection axis operations Ŝn ≡ Ĉn ◦ σ̂ can be expressed
as combinations of the above elements.

Traditionally, the largest-n symmetry axis is called “ver-
tical,” e.g., a threefold one, Ĉ3v , the reflections in a plane
perpendicular to Ĉnv are called “horizontal,” σ̂h, and those in
a plane passing through the axis are called “vertical,” σ̂v . We
mention a special case used in the text, σ̂d , a reflection in a
plane containing the principal axis of symmetry and bisecting
the angle between two twofold rotation axes perpendicular to
the principal axis, required for the D2d group.

2. Notation related to irreducible representations

There exist a number of typographical conventions related
to the way of writing the symbols associated with certain
irreducible representations. The one-dimensional even and
odd representations referring to the Ĉ2-symmetry element are
usually denoted with letters A and B, respectively. Various rep-
resentations of the same symmetry are distinguished with the
index, e.g., three one-dimensional even representations will
be denoted A1, A2, and A3, respectively. The two-dimensional
representations are traditionally denoted E and the three-

FIG. 21. Illustration of the surface symmetry at deformation
α31 = 0.25 representing an example of the C2v group. The axis
pointing to the right is the Ox axis, the twofold symmetry axis in
the present case.

dimensional ones F . A similar convention of indexing applies
if there are more than one of each appearing in the discussion,
e.g., E1 and E2 and/or F1 and F2 etc.

In particular, when the symmetry element list contains
inversion Î, an index g (from German “gerade,” even) or u
(from German “ungerade,” odd) can be added to the repre-
sentation symbols, e.g., Ag, Au, and Bu means, erspectively,
the irreducible representations even with respect to the Ĉ2

rotation and even with respect to inversion, even with respect
to rotation and odd with respect to inversion, and finally odd
with respect to rotation and odd with respect to inversion.

When the operation in question is σ̂h, the even and odd
representations are sometimes distinguished by prime and
double-prime symbols, respectively. For instance, A′ and B ′′
signify the representations even with respect to Ĉ2 and σ̂h and
odd with respect to both of these elements.

We will briefly recall the definitions of the C2v , D2d , and
D3h point groups discussed in this article; presentation of the
Td group would require certain extra notational complications
and is omitted here, especially since this particular group is
among the most often addressed and illustrated in the litera-
ture, in particular in the context of symmetries of molecules.

3. Point group C2v

This is a particular case of the Cnv group which contains a
rotation axis of order n, Ĉn, and a “vertical” symmetry plane,
σ̂v , which passes through this axis. It follows that there are n
symmetry planes and 2n elements in total. For n = 2 we find
the four-element group

C2v = {
1, Ĉ2, σ̂

(1)
v , σ̂ (2)

v

}
, (A1)
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FIG. 22. Illustration of a surface with an arbitrary choice of the
combination α20 = 0.25 and α32 = 0.25 representing an example of
the D2d group.

where 1 is the neutral element. Note that the second reflection
element is generated by a consecutive reflection and rotation,
σ̂ (2)

v = Ĉ2 ◦ σ̂ (1)
v . An example of a C2v symmetric surface is

shown in Fig. 21.

4. Point group D2d

The group D2d is a particular case of Dnd which contains
one n-fold axis, Cn, and one horizontal twofold axis, U2, where
(n − 1) images of the U2 axis are also generated, giving n U2-
type axes altogether.

By definition we add a vertical symmetry plane, σ̂d , pass-
ing midway between the two neighboring U2-type axes, thus
obtaining n of those symmetry planes in total (the symbol d
stands for “diagonal”). Finally, the combinations Ĉ ◦ σ̂d gen-
erate n rotary reflections Ŝ. Group Dnd contains 4n operations
in total. For the particular case n = 2 we find

D2d = {
1, Ĉ2, Û (1)

2 , Û (2)
2 , σ̂

(1)
d , σ̂

(2)
d , Ŝ4, Ŝ3

4

}
. (A2)

An illustration of a D2d symmetric surface is shown in Fig. 22.

FIG. 23. Illustration of the nuclear surface at α33 = 0.25 repre-
senting an example of the D3h symmetry. The axis pointing to the
left is the Oz axis, marking the threefold rotation symmetry in this
case.

5. Point group D3h

This group is a particular case of the Dnh group containing
a rotation axis of order n, Ĉn, and a second-order axis
perpendicular to the former, Û2. Consequently there are
n such axes of the second order, {Û (1)

2 , Û (2)
2 , . . . , Û (n)

2 }.
Moreover, it contains a vertical symmetry plane, σ̂v , and thus
n corresponding images, {σ̂ (1)

v , σ̂ (2)
v , . . . , σ̂ (n)

v }. The group also
contains a horizontal symmetry plane, σ̂h, which combined
with Cn leads to the sequence Ĉn ◦ σ̂h, Ĉ2

n ◦ σ̂h, . . . , Ĉn
n ◦

σ̂h. This group contains NG = 4n group elements
in total.

By setting n = 3 we arrive at the D3h group containing
4n = 12 elements,

D3h = {
1, Ĉ3, Ĉ2

3 , Û (1)
2 , Û (2)

2 , Û (3)
2 , σ̂h, σ̂

(1)
v , σ̂ (2)

v , σ̂ (3)
v ,

Ĉ3 ◦ σ̂h, Ĉ2
3 ◦ σ̂h

}
. (A3)

An illustration of a D3h symmetric surface can be found in
Fig. 23.
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[42] A. Góźdź, M. Miśkiewicz, and J. Dudek, Int. J. Mod. Phys. 17,

272 (2008).
[43] K. T. Hecht, J. Mol. Spectrosc. 5, 355 (1961).
[44] W. G. Harter and D. E. Weeks, J. Chem. Phys. 90, 4727

(1989).
[45] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer, New York, 1980).
[46] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems

(MIT Press, Cambridge, MA, 1985).
[47] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.

75, 121 (2003).
[48] E. B. Wilson Jr., J. Chem. Phys. 3, 276 (1935).
[49] G. Herzberg, Molecular Spectra and Molecular Structure, Vol.

II, Infrared and Raman Spectra of Polyatomic Molecules (D.
Van Nostrand, New York, 1945).

[50] G. Herzberg, Molecular Spectra and Molecular Structure, Vol.
III, Electronic Spectra and Electronic Structure of Polyatomic
Molecules (D. Van Nostrand, New York, 1966).

[51] N. Onishi and R. K. Sheline, Nucl. Phys. A 165, 180 (1971).
[52] D. Robson, Nucl. Phys. A 308, 381 (1978).
[53] D. Robson, Phys. Rev. Lett. 42, 876 (1979).
[54] D. Robson, Phys. Rev. C 25, 1108 (1982).
[55] D. J. Marín-Lámbarri, R. Bijker, M. Freer, M. Gai, Tz.

Kokalova, D. J. Parker, and C. Wheldon, Phys. Rev. Lett. 113,
012502 (2014).

[56] R. Bijker and F. Iachello, Nucl. Phys. A 957, 154 (2017).
[57] M. Hamermesh, Group Theory and Its Application to Physical

Problems (Dover, New York, 1962).
[58] G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Prop-

erties of the Thirty-Two Point Groups, (MIT Press, Cambridge,
MA, 1963).

[59] J. F. Cornwell, Group Theory in Physics – An Introduction
(Academic, New York, 1997).

034348-32

https://doi.org/10.1103/PhysRevC.102.064326
https://doi.org/10.1103/PhysRevC.103.054301
https://doi.org/10.1103/PhysRevC.103.044311
https://doi.org/10.1088/1402-4896/aaa3d0
https://doi.org/10.1103/PhysRevC.95.034329
https://doi.org/10.1016/0370-2693(90)90284-D
https://doi.org/10.1016/0370-2693(91)90088-8
https://doi.org/10.1103/PhysRevLett.52.1272
https://doi.org/10.1103/PhysRevLett.63.2645
https://doi.org/10.1016/0375-9474(67)90510-6
https://doi.org/10.1016/0375-9474(68)90699-4
https://doi.org/10.1103/RevModPhys.44.320
https://doi.org/10.1103/PhysRevC.103.054311
https://doi.org/10.1088/0305-4616/4/10/006
https://doi.org/10.1088/0305-4616/5/10/014
https://doi.org/10.1016/0375-9474(80)90312-7
https://doi.org/10.1103/PhysRevC.23.920
https://doi.org/10.1016/0010-4655(87)90093-2
https://doi.org/10.1103/PhysRevC.88.044313
https://doi.org/10.1103/PhysRevC.88.044307
https://doi.org/10.1103/PhysRevC.88.024302
https://doi.org/10.1103/PhysRevC.87.067304
https://doi.org/10.1103/PhysRevC.87.041302
https://doi.org/10.1103/PhysRevC.87.034328
https://doi.org/10.1103/PhysRevC.87.024309
https://doi.org/10.1103/PhysRevC.87.014329
https://doi.org/10.1088/0954-3899/37/6/064031
https://doi.org/10.1103/PhysRevA.83.040001
https://doi.org/10.1103/PhysRevC.20.992
https://doi.org/10.1016/0375-9474(81)90473-5
https://doi.org/10.1016/0092-640X(81)90003-6
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1007/BF01425595
https://doi.org/10.1088/0954-3899/43/7/073002
https://doi.org/10.1016/j.adt.2015.10.001
https://www.nndc.bnl.gov/
https://doi.org/10.1103/PhysRevC.99.041303
https://www.actaphys.uj.edu.pl/R/32/9/2625/pdf
https://doi.org/10.1142/S0218301308009793
https://doi.org/10.1016/0022-2852(61)90102-3
https://doi.org/10.1063/1.456659
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1063/1.1749653
https://doi.org/10.1016/0375-9474(71)90157-6
https://doi.org/10.1016/0375-9474(78)90558-4
https://doi.org/10.1103/PhysRevLett.42.876
https://doi.org/10.1103/PhysRevC.25.1108
https://doi.org/10.1103/PhysRevLett.113.012502
https://doi.org/10.1016/j.nuclphysa.2016.08.008

