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Shape and structure for the low-lying states of the 80Ge nucleus
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The ground-state shape of the 80Ge nucleus and its evolution for the lowest collective excited states have been
investigated in the framework of the Bohr model in order to clarify if the shape coexistence phenomenon is
present. The obtained results, which are largely in agreement with the most recent experimental data, indicate
a prolate shape for the ground state, respectively a sudden switch to a more deformed prolate one for certain
excited states. Also, the first-excited 0+

2 state is found to be very high in energy, namely, at 2208 keV, being
close to recent predictions made with shell-model calculations. Additionally, using the parameters fit for the few
available experimental data for the ground band, the structure of the β and γ bands has been built to support
future experiments.
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I. INTRODUCTION

Recent experimental data [1,2] revealed no evidence for
shape coexistence in the ground state of the 80Ge nucleus.
The first-excited 0+

2 state seen in a previous experiment [3]
at 639 keV, which otherwise supports the presence of such
phenomena, is missing now, being in turn predicted close to
2000 keV [2], but not below 1200 keV [1] by shell-model
calculations. There are also other studies, both theoretical and
experimental, which, over time, have paid attention to the
shape evolution within the isotopic chain of Ge and especially
to the shape coexistence in 80Ge [4–10]. Nevertheless, the
subject still remains open as long as the position of the first-
excited 0+

2 state is not fully clarified and, consequently, further
experiments and theoretical calculations are needed for more
confidence. Therefore, for this purpose, a new approach is
applied in the present work to investigate the low-lying states
of 80Ge, namely, the Bohr Hamiltonian with a sextic potential
(BHSP) [11] guided by outcomes offered by the covariant
density-functional theory (CDFT) [12–18]. The BHSP [11]
has already been applied with success in describing shape
coexistence and mixing phenomena in several nuclei such as
76Kr [19], 72,74,76Se [20], and 96,98,100Mo [21], while quite
recently both methods have been used together to evince the
existence of the shape coexistence in the ground state of the
74Kr and 74Ge nuclei [22], being thus suitable to address
this issue. Besides this question related to the presence of
the shape coexistence in the ground state of 80Ge, equally
important would be to get the structure of the nonyrast states
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in terms of possible β and γ excitations, especially that such
states are not yet observed, and to see if the shape coexistence
and mixing phenomena show up in excited states. For this
latter purpose, the BHSP is an appropriate approach because
all this information can be extracted using its free parameters
fit for the few available experimental data.

The plan of the work consists in two main sections, one
in which the BHSP is briefly reviewed and another where
numerical applications are made for the experimental data
of 80Ge, verifying the structure of the low-lying states with
respect to the shape evolution as a function of spin. Also, a
section is dedicated for underlying the main achievements of
the present study.

II. BOHR HAMILTONIAN WITH SEXTIC POTENTIAL

The Bohr Hamiltonian has the following expression
[23,24]:

H = − h̄2

2B

(
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

)

+ h̄2

8Bβ2

3∑
k=1

L̂2
k

sin2
(
γ − 2

3πk
) + V (β, γ ), (1)

where β and γ are the intrinsic deformation coordinates, B is
a constant mass parameter, and L̂k are the angular-momentum
projections in the intrinsic reference frame. In the present
study is used the solution proposed in Ref. [20] to describe co-
existence between spherical and axially symmetric deformed
nuclei. In this case, after the separation of the variables
and solving the resulting γ equation, one has the following

2469-9985/2022/105(3)/034347(7) 034347-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1316-5632
https://orcid.org/0000-0002-2172-0926
https://orcid.org/0000-0002-9760-2117
https://orcid.org/0000-0001-6203-8707
https://orcid.org/0000-0001-9831-7281
https://orcid.org/0000-0001-8321-0932
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.105.034347&domain=pdf&date_stamp=2022-03-31
https://doi.org/10.1103/PhysRevC.105.034347


A. AIT BEN MENNANA et al. PHYSICAL REVIEW C 105, 034347 (2022)

equation for the β variable:[
− 1

β4

∂

∂β
β4 ∂

∂β
+ W

β2
+ v(β )

]
f (β ) = ε f (β ), (2)

where ε = (2BE )/h̄2 and v(β ) = (2BV )/h̄2 are the reduced
energy and potential, while [20]

W = L(L + 1) − K2

3
+ 6cnγ . (3)

In Eq. (3), L and K are the quantum numbers for the eigenval-
ues of the total angular momentum and its projection on the
z axis, c is the parameter describing the harmonic potential in
the γ variable, while nγ is the quantum number quantifying
the γ vibrations. An appropriate potential to describe coex-
istence and mixing between spherical and deformed shapes
would be the sextic oscillator potential:

veff (β ) = 2 + W

β2
+ β2 − aβ4 + bβ6, (4)

where the change of function f (β ) = β−2g(β ) has been in-
troduced, leading to the above effective potential veff . Here, a
and b are free parameters following to be fit as a function of
the available experimental data. The solution for Eq. (2) with
the potential (4) is found through a diagonalization procedure
[11,19,20] using as a basis states solutions for an infinite
square well potential:

f̃νn(β ) =
√

2β− 3
3 Jν (zν

nβ/βw )

βwJν+1(zν
n )

, (5)

where Jν are Bessel functions of first kind of index

ν =
√

L(L + 1) − K2

3
+ 6cnγ + 9

4
, (6)

and their zeros zν
n , while βw denotes the width of the infinite

square potential. The boundary value is determined for each
pair of parameters a and b at a value where the external curve
of the sextic potential makes an angle of 0.5 degrees with the
vertical wall of the square well potential. Consequently, the
wave function for Eq. (2) is written as

fν,nβ
(β ) =

nmax∑
n=1

A
nβ

νn f̃νn(β ), (7)

where nβ = 0, 1, 2, . . . , nmax − 1 is the β vibrational quantum
number. One can remark from Eq. (6) that the ground and
β bands are decoupled from the γ band. For example, by
considering nγ = K = 0 one gets the energies for the ground
and β bands, which depend only on the free parameters a and
b, while for nγ = 1 and K = 2 the first γ band is constructed
using the additional parameter c. Finally, taking into account
also the contribution to the wave function coming from the γ

variable and the three rotation Euler angles, the quadrupole
electromagnetic transitions are defined for this case [20]:

B
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where C is a Clebsch-Gordan coefficient, while B and G are
integrals over the β and γ variables. More details about the B
and G integrals can be found in Ref. [20]. Here, βM is a scal-
ing parameter which relates the β variable to the quadrupole
deformation as β2 = βMβ, while Z , R, and e are the charge
number, the nuclear radius, and the electron charge, respec-
tively. Another important quantity for the shape coexistence
signature is the monopole transition:

ρ2
i f (E0) =

(
3Z

4π

)2

β4
M〈 fLiKinβinγ i |β2| fL f Kf nβ f nγ f 〉2, (9)

especially connecting ground and excited 0+ states. Here, f is
given by Eq. (7).

Furthermore, the model introduced in the present section is
applied to describe the shape and structure for the low-lying
quadrupole collective states within the 80Ge nucleus.

III. NUMERICAL APPLICATIONS

In the last years, an entire polemic was raised over the
existence of the shape coexistence phenomenon in the 80Ge
nucleus [1–10]. Even if an absence of this phenomenon is
outlined more and more, the fact that the first-excited 0+ state
is still unmeasured, respectively there is a lack of data for
the ground and excited bands in this nucleus, the problem
still preserves its great interest. Consequently, through this
study, we propose an alternative investigation for 80Ge with
the purpose to shed more light on its structure.

Thus, in a first step, the CDFT [12–18] is applied for
80Ge by looking for its ground-state deformation properties.
The obtained information will be further used to choose the
appropriate instance of the phenomenological Bohr model: γ

stable or γ unstable. In Fig. 1, the potential-energy surface
(PES) determined with two functionals, the density-dependent
point-coupling (DD-PC) and the density-dependent meson-
exchange (DD-ME), is represented in the (β2, γ ) plane. The
corresponding analytical formalism and the adopted coupling
constants are those detailed in Ref. [22]. As one can see, 80Ge
presents well-pronounced prolate shape (β2 = 0.16, γ = 0◦)
in both parametrizations; that is, it has a confined β2 �= 0
minimum in the γ shape variable. These results confirm the
most recent experimental data [1,2], according to which there
is no shape coexistence in the ground state of this nucleus.

Taking into account the above results offered by CDFT, the
attention concerning the application of the BHSP is further fo-
cused on predicting the position in energy for the first-excited
0+ state of the 80Ge. This is done by considering a γ -stable
version of the Bohr model with a sextic potential [20] and
whose parameters are fit to the available experimental data
for the ground band. The quantum-mechanical ground band is
identified with the observed yrast band. The results would be
of great interest, especially due to the fact that the 0+

2 state has
not been observed yet experimentally, only an indirect predic-
tion being made based on the experimental data of its neigh-
boring isotopes, respectively in shell-model calculations [1,2].

The experimental energy ratios E (8+
1 )/E (2+

1 ),
E (6+

1 )/E (2+
1 ), and E (4+

1 )/E (2+
1 ) are fit against only the

two parameters a and b of the sextic potential because, for
these states, nγ = 0. The obtained values a = 0.026 641 53
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γ (deg) γ (deg)

FIG. 1. Potential-energy surfaces for 80Ge in the (β, γ ) plane, obtained from a CDFT calculations with DD-ME2 and DD-PC1 parameter
sets. The color scale shown at the right has the units of MeV and is scaled such that the ground state has a zero MeV energy.

and b = 0.000 203 79 correspond to the optimization
value βw = 9.302. For a more direct comparison between
theory and experiment, one determines the scaling factor
h̄2/(2B) = 662.876 keV by equating the theoretical and
experimental energies for the first-excited state 2+

1 . An
alternative procedure would be to fit the absolute energies
of 8+

1 , 6+
1 , 4+

1 , and 2+
1 experimental energy levels with a, b,

and h̄2/(2B), but the former scheme is preferable because
it deals with scale-independent features of the model. The
calculations are complemented by the transition probabilities,
where one used the already fitted parameters a and b, as
well as a scaling factor β2

M = 0.012 124 3 W.u., which is
fit from the two experimentally available B(E2) values.
The corresponding theoretical energy spectrum, respectively
the quadrupole (E2) and monopole (E0) transitions, are
compared in Fig. 2 with the available experimental data
[1,2,25]. The experimental data include some additional
low-lying levels, which can be interpreted in the present
model only as being part of a γ band. For the sake of
completeness and as an additional test of the model, we
fixed the parameter c = 0.8565 needed for the γ band
states to reproduce the experimental 2+

2 energy level and
calculated a few more theoretical γ band states. The newly
reported 3+

1 and 4+
2 states [1] can be considered as a possible

experimental realization of the predicted γ -band extension.
If further experimental studies confirm this band assignment,
the irregular evolution of the experimental excitation energy
within such a band can be theoretically reproduced by an
appropriate treatment of anharmonicities in the γ variable
[26] and its noncentrifugal coupling to the β shape variable
[27]. Summing up the fitting procedure, there is always at
least an additional data point to the number of parameters
involved. First we have three energy ratios fit with two
parameters, then we have a few more γ -band states predicted
with the help of an additional c parameter, and finally fixing
the scale β2

M one reproduces the relative difference between
two experimental transition probabilities.

In an overview, one can remark that there is a very good
agreement between all experimental energy levels and their
theoretical counterparts. A special attention deserves the ex-

cellent reproduction of the B(E2; 8+
1 → 6+

1 ) transition which
is very small compared with that from the first-excited state to
the ground state. The result of interest refers to the energy of
the first-excited 0+ state, which is predicted to be at 2208 keV,
being in agreement with the shell-model calculations made in
Refs. [1,2]. Another signature for the presence of the shape
coexistence phenomenon is the monopole transition between
the first-excited 0+ state and the ground state [28], which in
our model is calculated and represented in Fig. 2 by the dashed
arrow. This transition is usually enhanced when mixing is
involved. Although being scale sensitive, the predicted value
is quite sizable. This indicates a presence of a shape mixing
rather than a coexistence of pure configurations [19]. To have
a broader view over this problem, the next excited states of the
β band are constructed above this 0+ (2208 keV).

By looking carefully at these theoretical data obtained with
BHSP, some apparently unusual behavior shows up for the
highest states in energy. This structure can be easily clarified
if one analyzes the plots presented in Fig. 3. For example,
even if the effective potential presents two minima for L = 0,
the energy level for the ground state is below the second
minimum of the potential Fig. 3(a), while its corresponding
density distribution probability of deformation has only a sin-
gle peak centered somewhere around β2 = 0.16 [Fig. 3(b)],
a value predicted also by the CDFT. In the discussion that
follows we will retain the index 1 for the ground-band states
and use explicit β and γ subscripts for the corresponding
theoretical bands. The next excited states, 2+

1 , 4+
1 , and 6+

1 ,
remain above the first minimum of the potential, following
a displacement in deformation toward the second minimum
of the potential, this being achieved for the 8+

1 state for which
the density distribution probability of deformation has a single
peak above the second minimum of the potential. This sudden
change in deformation between 6+

1 and 8+
1 explains the very

small value (0.422 W.u.) for the B(E2; 8+
1 → 6+

1 ) transition
experimentally observed. The point is that the two states are
separated by the barrier, which makes them behave like they
belong to two different bands, leading to small values for
their matrix overlap elements, which otherwise are large in the
absence of the barrier. A similar explanation can be given for
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80Ge
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FIG. 2. Theoretical energy spectrum in keV, quadrupole transitions in W.u. (full arrows), and monopole transition ρ2(E0; 0+
2 → 0+

1 ) × 103

(dashed arrow) compared with the available experimental data [1,2,25].

the β and γ bands as well. From Figs. 3(c) and 3(d), one can
see that the states 0+

β , 2+
β , and 8+

β are positioned above the less
deformed minimum, while 4+

β and 6+
β are above the second

more deformed minimum of the potential. The states 4+
β and

6+
β , being very close in energy, have almost indistinguishable

plots for the density distribution probability and, because of
that, only that for 4+

β has been plotted. Remark that the excited
4+

β , 6+
β , and 8+

β states do not exhibit the usual two-peak den-
sity distribution probability of deformation associated with β

vibration. For L = 4 and 6, the β excited states act as ground
states in the more deformed minimum, whereas, for L = 8,
the situation is changed. This is the first example of shape
coexistence without mixing realized in a Bohr model setting.
Therefore, this change in shape toward the second minimum
and turning to the first minimum explains the unusual varia-
tion of the B(E2) transition in the β band. For the γ band, the
shape changing starts with 7+. An alternative investigation of
this very unusual small B(E2) value, otherwise experimen-
tally observed in many nuclei [29–33], was given recently
in Ref. [34] by using the interacting boson model [35] and
assuming the states in this situation as being of collective
nature, but having different motion modes. Therefore, the
present result opens a door for many applications where such
a behavior is observed.

At this point, it is instructive to discuss how the present
phenomenological model reconciles with previous studies.
Microscopic calculations revealed the importance of the g9/2

neutron orbital for the correct reproduction of data in 80Ge

and its neighboring nuclei [1,2,36,37]. In lighter Ge isotopes,
where shape coexistence is observed in the ground state,
the νg9/2 orbital is the target of the excited quasiparticle
pairs. The harmonic-oscillator N = 40 shell gap is small, such
that the corresponding energy levels come close to ground
state and even mix with it [37]. Also, N = 40 marks the
end of favorable nucleon numbers for the interplay between
harmonic-oscillator and spin-orbit shell closures [38]. In the
80Ge nucleus, the νg9/2 orbital misses two neutrons to be
completely filled, and the most energetically favorable quasi-
particle excitations are from this orbital across the N = 50
spin-orbit shell gap, which is much larger than that at N = 40.
This distinction inevitably pushes the quasiparticle configura-
tions higher in energy and further from the ground state, as can
be attested to by the systematics of low-lying energy levels in
Ge isotopes [1,2,37]. This explains why a low-lying 0+

2 state
is a remote possibility.

The high-spin and intruder nature of the g9/2 orbital pro-
duces a favorable condition for rotational antipairing effects.
For example, the 8+

1 state in 80Ge is well understood as an
isomeric (νg9/2)−2 configuration [25,36]. This assignment is
consistent with the backbending behavior of the experimen-
tal yrast spectrum, which is a consequence of the crossing
between a regular rotational band (ground band) and another
rotational band with a larger moment of inertia (S band) [39].
The structure of the second band is traditionally explained as
being built on a broken nucleon pair with high single-particle
spin alignments. Therefore, the 8+

1 state would then be solely
due to the alignment of two neutron g9/2 holes. The S band can
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FIG. 3. Effective potential in the β variable, energy levels, and density distribution probability of deformation for the ground band [panels
(a) and (b)], β band [panels (c) and (d)], respectively γ band [panels (e) and (f)].

also be interpreted as having a much larger deformation [39].
This image matches the present model calculation, where
the high deformation minimum can be associated with the S
band. Being of a different nature, the second minimum must
be understood as an effective representation of the second
rotational band (with quasiparticle alignments) in the same
quantum space of deformation as the ground state. Hence, one
has a very large deformation of the second potential minimum.
This result is, however, consistent with the large deformation

minimum forming at high spin states in the Hartree-Fock-
Bogoliubov calculations [40] based on the Gogny force [41],
which degenerates into a plateau at lower spin. The distinc-
tion between the microscopic and present phenomenological
potentials for the low-lying states can be put to the restricted
double-well shape defined by the simple sextic polynomial.
We expect that a more general phenomenological potential
will reproduce the data with a shallower and less deformed
second minimum. The anomalous rotational sequence of the
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experimental yrast band cannot be reproduced with an inter-
polation between standard collective vibrational and rotational
spectra. Only adopting a two-well potential can such a feature
be obtained, where a mixing between regular rotational spec-
tra mix into a complex ground-state (yrast) band. As a matter
of fact, even the experimental states of 80Ge only up to 6+

1
are anomalous enough such that a fit to only the two energy
ratios with the present model lead to a double-well shape of
the sextic potential. The phenomenology behind the double-
well potential also explains the increase of experimental level
density above the 8+

1 state [1,25].
The similarity to the backbending phenomenon can be fur-

ther exploited to draw some conclusions. The suggestions that
even lower spin states have a similar structure [36], albeit with
different alignments of the same g9/2 holes, does not actually
explain the hindering of the B(E2, 8+

1 → 6+
1 ) compared with

the quite collective value of B(E2, 2+
1 → 0+

1 ) = 13.6(27).
Microscopical calculations of the transition probabilities are
conspicuously missing. As a matter of fact, in traditional
backbenders from the rare-earth region, only the transition
around the band-crossing point is hindered, due to the overlap
between a fully collective state (with all particles paired) and
a state with a broken pair [42]. This indicates that the 6+

1 state
is of different nature than the isomeric 8+

1 state. The present
model reproduction of the B(E2, 8+

1 → 6+
1 ) transition con-

forms to the simple backbending picture presented above. A
similar mechanism was used to explain the intruder states
in even-even Te nuclei [43] and the low-spin backbending
in the ground band state of the 72Se isotope [20]. The two
potential minima of the present model act as the basis states
in the two-level mixing model employed in shape coexis-
tence and mixing studies [28,37,44]. Note, however, that here
the two minima of the same potential describe the whole
spectrum, unlocking the mixing between different configura-
tions gradually by approaching the energy of the separation
barrier. Moreover, the described mixing takes place in a well-
understood space of deformation, rather than that of abstract
coefficients weighting wave functions of different structure.

IV. CONCLUSIONS

The shape and structure for the lowest states of the
80Ge nucleus were investigated in the framework of two

approaches, namely, the covariant density-functional theory
(CDFT) [12–18] and the Bohr Hamiltonian with sextic poten-
tial (BHSP) [11,19–22], for the β variable with the following
results:

(i) A prolate shape is found for the ground state, which is
in agreement with the most recent experiments [1,2],
supporting the fact that there is no shape coexistence
in the ground state for this nucleus. Instead, a possi-
ble shape mixing is suggested judging by the value
calculated for the monopole transition between the
first-excited 0+ and the ground state.

(ii) The first-excited 0+ state is found very high in en-
ergy at 2208 keV, which is in the limits predicted by
recent shell-model calculations and indirect experi-
mental observations [1,2].

(iii) The anomalous B(E2; 8+
1 → 6+

1 ) transition is very
well reproduced in the frame of the BHSP by the
fact that the two states have different β2 deformation,
being separated by a very high energy barrier. By this
finding, a new mechanism of interpreting this behav-
ior is proposed. This interpretation is in agreement
with similar results obtained recently [34] involving
calculations with the Interacting boson Model [35].

(iv) The structure of the β and γ bands have been con-
structed, coming in the help of future experiments and
theoretical calculations. Shape coexistence of sep-
arate deformation configurations, which is without
mixing, is predicted alternatively for L = 4, 6, and 8
states.

All these findings contribute to a better understanding of
the structure for 80Ge, a current challenging problem, but
also open a door for many applications, there where some
unusually small B(E2) values are experimentally observed.
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