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Low-energy monopole strength in spherical and axially deformed nuclei: Cluster and soft modes
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Background: Several recent experiments report significant low-energy isoscalar monopole strength, below
the giant resonance, in various nuclei. In light α-conjugate nuclei, these low-energy resonances were recently
interpreted as cluster vibration modes. However, the nature of these excitations in neutron-rich nuclei remains
elusive.
Purpose: The present work provides a systematic analysis of the low-energy monopole strength in isotopic
chains, from neon to germanium, in order to monitor and understand its nature and conditions of emergence.
Methods: We perform covariant quasiparticle random phase approximation calculations, formulated within the
finite amplitude method, on top of constrained relativistic Hartree-Bogoliubov (RHB) reference states.
Results: Neutron excess leads to the appearance of low-energy excitations according to a systematic pattern
reflecting the single-particle features of the underlying RHB reference state. With the onset of deformation,
these low-energy resonances get split and give rise to more complex patterns, with possible mixing with the
giant resonance. At lower energy, clusterlike excitations found in N = Z systems survive in neutron-rich nuclei,
with valence neutrons arranging in molecularlike orbitals. Finally, at very low energy, pair excitations are also
found in superfluid nuclei, but remain negligible in most of the cases.
Conclusions: The low-energy part of the monopole strength exhibits various modes, from cluster vibrations
(≈5–10 MeV) to components of the giant resonance downshifted by the onset of deformation, including soft
modes (≈10–15 MeV) as well as pair excitation (<5 MeV), with possible mixing, depending on neutron excess,
deformation, and pairing energy.
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I. INTRODUCTION

The complex nature of nuclear many-body systems is re-
flected in the vast diversity of their structure properties and
excitation modes. In stable nuclei, the response to an exter-
nal perturbation is dominated by collective modes, involving
the coherent superposition of particle-hole excitations, coined
giant resonances (GRs). The structural evolution of nuclei
as one drifts away from the valley of β-stability—e.g., the
onset of static correlations responsible for nuclear deforma-
tion, superfluidity, and clustering; the exotic arrangements of
nucleons stemming from an increasing unbalance between the
neutron and proton number; the impact of the loosely bound
nature of nucleon orbitals and proximity of the continuum,
etc.—yields an enrichment of the ways a nucleus responds
to an external probe. Namely, in such cases, one observes a
redistribution of the strength functions towards lower energy,
below the GRs, associated with the emergence of new, exotic
patterns of excitation [1–3]. The nature of these new excita-
tions has been studied in different multipolarities and appears
to be twofold, namely, (i) so-called soft modes involving
neutron excitations [4–9], sometimes associated with resonant
oscillations of a neutron skin against a tightly bound core, and
(ii) cluster vibrations [10–14].

Soft modes have attracted much attention both from
the experimental [2,3,15–20] and theoretical perspectives,
with various approaches used to pin down their properties,
including the (quasiparticle) random phase approximation
[(Q)RPA] [21–23], the (quasiparticle) finite amplitude method
[(Q)FAM] [5,24], and the multiphonon quasiparticle-phonon
model [25–28]. Most of the studies on soft modes have fo-
cused on dipole resonances and/or spherical systems (see,
however, Ref. [29] for a discussion of monopole soft modes in
neutron-rich deformed nuclei). A comprehensive understand-
ing of the evolution of the low-energy part of the isoscalar
monopole (ISM) strength, with isospin asymmetry and defor-
mation, is still lacking.

On the other hand, cluster modes have mostly been investi-
gated in light N = Z nuclei, both within the antisymmetrized
molecular dynamics (AMD) and energy density functional
(EDF) approaches [10–14]. How neutron excess interferes
with such cluster modes remains an open question. From a
more general point of view, the interplay between soft, cluster
and GR modes, and their evolution with isospin asymme-
try and deformation, have not been established in a single
approach, mainly because of the lack of a microscopic the-
oretical framework capable of simultaneously tackling these
various modes within a computationally affordable effort.
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Recently, relativistic EDFs were shown to consistently
describe both liquidlike and clusterlike features of nuclei,
be it their ground-state [30–33] or spectroscopic (energies
of excited states, reduced probability transition, elastic and
inelastic form factors, etc.) properties [34,35]. Since a
covariant formulation of the quasiparticle random phase ap-
proximation (QRPA) is known to correctly describe GRs and
soft modes [21,23,36,37], on one hand, as well as cluster vi-
brations [14], on the other hand, it shall be a tool of choice for
achieving a global understanding of the mechanisms driving
the emergence of these modes. In this study, the covariant
QRPA is implemented under the form of the QFAM [37,38],
which significantly lowers the computational cost compared
to the traditional matrix formulation. This approach allows
one to provide an in-depth study of the impact of (i) isospin
asymmetry, (ii) deformation, and (iii) pairing correlations, as
well as their interplay on the structure of the ISM strength.

The paper is organized as follows. In Sec. II, we briefly in-
troduce the covariant QFAM formalism. The evolution of the
ISM strength with isospin asymmetry is extensively discussed
in the simple case of spherical nuclei, in Sec. III. Section IV
is dedicated to the consequences of the onset of deformation
on the properties of the ISM strength. Finally, in Sec. V, we
analyze the role played by pairing correlations in driving the
emergence of another type of low-energy resonance.

II. QFAM THEORETICAL FRAMEWORK

The FAM was first proposed by Ref. [39] for a nonsuper-
fluid spherical system and quickly extended to superfluid ones
[40]. The consideration of the deformation effect was then
added [41] and the framework was extended to covariant
(Q)FAM [36,37]. The present implementation of the covariant
QFAM is based on Ref. [38].

In the QFAM formalism, an external time-dependent field,

F (t ) = η[F (ω)e−iωt + F †(ω)e+iωt ], (1)

with η a real, small parameter, induces a linear response of
the system, characterized by the following equations, in the
quasiparticle (qp) basis:

(Eμ + Eν − ω)Xμν (ω) + δH20
μν (ω) = −F 20

μν , (2a)

(Eμ + Eν + ω)Yμν (ω) + δH02
μν (ω) = −F 02

μν . (2b)

They describe the oscillation of the system around a static
configuration, which is the solution of a constrained relativis-
tic Hartree-Bogoliubov (RHB) equation,(

h(q) − λ 	(q)
−	∗(q) −h∗(q) + λ

)(
Uμ(q)
Vμ(q)

)
= Eμ(q)

(
Uμ(q)
Vμ(q)

)
. (3)

Eμ, Uμ, and Vμ stand for the energy and wave function of
the qp μ. The fields h[ρ] and 	[κ], functionals of the one-
body normal and anomalous density matrices ρ = V ∗V T and
κ = V ∗U T , are the RHB mean potential in the particle-hole
and particle-particle channels, respectively. λ is the chemical
potential and q collects a set of constrained collective coordi-
nates (e.g., deformation parameters, pairing gap, etc.). Xμν (ω)
and Yμν (ω) are the QFAM amplitudes at a given excitation

energy ω, and δH20(02) (F 02(02)) represent the 2qp components
of the induced Hamiltonian (external perturbation). Namely,
if F (ω) is a one-body operator, represented by the matrix
elements f ,

F (ω) =
∑

i j

fi jc
†
i c j = 1

2
(c† c)

(
f 0
0 − f T

)(
c
c†

)
(4)

(where a constant term was neglected), then(
F 11 F 20

F 02 −(F 11)T

)

≡ W†

(
f 0
0 − f T

)
W

=
(

U † f U − V † f T V U † f V ∗ − V † f T U ∗
V T f U − U T f T V V T f V ∗ − U T f T U ∗

)
, (5)

where W is the unitary Bogoliubov transformation, by which
the qp ladder operators β† and β are expressed as linear
combinations of the single-particle (sp) operators c and c†,(

β

β†

)(
U † V †

V T U T

)(
c
c†

)
≡ W†

(
c
c†

)
. (6)

Likewise, by denoting, in the sp basis, the induced fields in
the particle-hole and particle-particle channels by δh(ω) and
δ	(±)(ω), respectively, we have(

δH11 δH20

−δH02 −(δH11)T

)
≡ W†

(
δh δ	(+)

−δ	(−)∗ −δhT

)
W, (7)

i.e.,

δH20(ω) = U †δh(ω)V ∗ + U †δ	(+)(ω)U ∗

−V †δ	(−)∗(ω)V ∗ − V †δhT (ω)U ∗ (8)

and

δH02(ω) = − V T δh(ω)U − V T δ	(+)(ω)V

+ U T δ	(−)∗(ω)U + U T δhT (ω)V. (9)

The perturbed fields δh and δ	(±) can be expressed in terms
of the static RHB fields h and 	 (after linearizing the explicit
density-dependent parts of the covariant energy density
functional) and the induced normal and anomalous density
matrices, that is,

δh(ω) = h[δρ(ω)], (10a)

δ	(+)(ω) = 	[δκ (+)(ω)], (10b)

δ	(−)(ω) = 	[δκ (−)(ω)], (10c)

and

δρ(ω) = UX (ω)V T + V ∗Y T (ω)U †, (11a)

δκ (+)(ω) = UX (ω)U T + V ∗Y T (ω)V †, (11b)

δκ (−)(ω) = UY ∗(ω)U T + V ∗X †(ω)V †. (11c)

The latter depend on the QFAM amplitudes X and Y ,
making the master equations (8) and (9) self-consistent.

In the QFAM formalism, the strength function derives from

S( f , ω) = − 1

π
ImTr[ f †δρ(ω)]. (12)
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The electric isoscalar multipole operator reads

f IS
JK =

A∑
i=1

fJK (ri ), (13)

with fJK (r) = rJYJK (θ, φ). In the case of the monopole mode,
f00(r) = r2. For an even-even axially symmetric nucleus, the
operators fJK and fJ−K yield identical strength functions.
QFAM calculations can therefore be simplified by using the
operator f (+)

JK = [ fJK + (−1)K fJ−K ]/
√

2 + 2δK0, and assum-
ing K � 0.

In this study, the QFAM calculations are based on the
DD-PC1 energy density functional [42], complemented by
a separable pairing force in momentum space [43,44]:
〈k|V 1S0 |k′〉 = −Gp(k)p(k′) in the particle-particle channel.
By assuming a simple Gaussian ansatz p(k) = e−a2k2

, the two
parameters G and a were adjusted to reproduce the density
dependence of the pairing gap at the Fermi surface, obtained
in nuclear matter with the Gogny D1S parametrization [45]. In
practice, we first compute the U and V RHB matrices and qp
energies Eμ, after solving the RHB equations for a nucleus of
interest, expanded in an axially symmetric harmonic oscillator
basis. The QFAM procedure then consists of starting with
a trial set of X ’s and Y ’s, computing the induced density
matrices (11a)–(11c), then the perturbed mean fields (10a)–
(10c), and, finally, H20 and H02, according to Eqs. (8) and (9).
Solving (2a) and (2b) then yields a new set of X ’s and Y ’s,
from which the previous steps are repeated until convergence.
Further details on the QFAM solver DIRQFAM can be found in
Ref. [38].

The obtained QFAM amplitudes [Eqs. (2a) and (2b)] and
the strength function (12) are defined in the whole complex ω-
plane, except at the QRPA eigenenergies where they diverge.
In practice, calculations are performed for excitation energies
ω + iγ , with a fixed imaginary part γ : this corresponds to a
Lorentzian smearing of the strength function, with the width
� = 2γ [40]. The smearing is fixed to � = 0.5 MeV for all the
calculations. The size of the basis, in which the RHB-QFAM
equations are expanded, runs from 13 to 15 shells, depending
on the mass of the nucleus. It ensures the convergence of our
results below 1%. As explained in [14], the part of the strength
with ω > 20 MeV may not be stable with respect to the size
of the basis. However, the position of the Giant Monopole
Resonance (GMR) centroids remains stable and we aim to
focus on the low-energy part of the strength.

We have checked that the single qp spectrum and, hence,
the QFAM results are not strongly impacted by the choice of
the constraint operator. For this purpose, Fig. 1 shows the dif-
ference in the single qp spectrum and on the QFAM response,
using two different ways to constrain the calculation: either
with a quadrupolar moment on both neutron and proton or a
constraint rms radius. The difference is negligible and does
not impact the QFAM response very much.

III. EVOLUTION OF LOW-ENERGY ISOSCALAR
MONOPOLE MODES WITH ISOSPIN ASYMMETRY

We start by investigating the impact of the isospin asym-
metry on the properties of low-energy ISM modes by first

FIG. 1. Differences in the qp proton energies obtained with
quadrupolar constraint on neutron and proton vs constraint on the
rms radius.

focusing on the single open-shell Z = 20 and Z = 28 nuclei:
the vanishing of deformation, at the mean-field level, sim-
plifies the pattern of excitation. Moreover, the abundance of
both experimental and theoretical results shall enable one to
benchmark the present calculations.

A generic pattern of emergence of low-energy ISM modes,
as the neutron over proton numbers ratio rises, can be traced
back to the mismatch between the neutron and proton Fermi
energies due to increasingly bound protons and, conversely,
last occupied neutron orbitals getting closer to the continuum.
As a result, valence neutrons decouple from the other nucleons
and participate to excited modes of a rather noncollective na-
ture. These modes appearing with neutron (or proton) excess
will be hereafter referred to as soft modes. In other words, the
emergence of new low-energy ISM modes, with increasing
neutron number, can be understood from the single-particle
(sp) structure, i.e., the sp spectrum of the reference RHB state,
on top of which the QRPA response is built: the appearance of
a peak, in the low-energy strength, coincides with the filling
of an orbital with spherical quantum numbers n, j, l, m, from
which an additional 2qp configuration [n jlm; (n + 1) jlm]J=0

becomes available. The ISM strength therefore reflects the en-
ergy pattern of the sp spectrum: (i) appearance of low-energy
resonances, on top of the main part of the strength, whenever
an orbital inaugurating a new major shell starts to get filled,
and (ii) increase of the strength in a small energy window, as
long as orbitals of the same major shell are getting filled. The
decrease of the corresponding excitation energy, as one goes
from a major shell to the next one, mainly stems from the
weakening of the binding energies of valence neutrons, i.e.,
the shrinking of the gap between the occupied n and empty
n + 1 orbitals involved in the ISM transition. This specific
pattern shall be illustrated on the Z = 20 and Z = 28 isotopic
chains, in the next two sections.

A. Calcium isotopes

The distribution of ISM strength computed with the covari-
ant QFAM in the even-even 40−62Ca isotopes is displayed in
Fig. 2. While the GMR (ω ≈ 18 MeV) remains quite stable
along the isotopic chain, the structure of the low-energy part
of the ISM strength changes with neutron excess. This can
be understood with the Ca canonical single-neutron spectra,
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FIG. 2. Distribution of the isoscalar monopole strength in the Ca isotopic chain obtained within the covariant QFAM with the DD-PC1
parametrization, split into total (solid line), neutron (dashed line), and proton (dotted line) contributions.

plotted against mass number, in Fig. 3: in 42Ca, two neutrons
fill the 1 f7/2 orbital, opening the 1 f7/2 → 2 f7/2 transition as
a possible contribution to the ISM response. A decomposition
of 42Ca monopole resonances into 2-qp components shows
that the 1 f7/2 → 2 f7/2 transition mainly contributes to a peak
located at ω ≈ 20 MeV, which is in the GMR. As discussed
above, going to the next major shell, i.e., adding two neu-
trons in the 2p3/2 orbital after filling the 1 f7/2 orbital—that
is, 50Ca—is expected to generate a low-energy resonance
separated from the main part of the ISM strength. As also
discussed above, filling the orbitals inside the same major

FIG. 3. RHB single-particle spectrum in Ca isotopes. The neu-
tron (proton) Fermi energy is represented by a black solid (dashed)
line. Empty (occupied) orbitals are designated by small (large) mark-
ers. Numbers indicate the energy of the resonance associated to the
filled orbital.

shell, i.e., from the 2p3/2 to the 1g9/2 levels, is expected
to generate contributions to the strength in the same energy
window. Indeed, the filling of each of the orbitals, from
2p3/2 to 1g9/2, gives rise to excitations close in energy (see
Fig. 3), each of them dominated by a single 2qp configuration.
Namely, in 50Ca, one finds a 12.8 MeV excitation mode (see
Fig. 2 and Table I) for which the dominant 2qp contribution
(carrying 40% of the total 2qp contributions) is 2p3/2 →
3p3/2, in agreement with the results of Refs. [6,7,46]. In
54Ca, a small peak appears at 14.7 MeV, corresponding
to the 2p1/2 → 3p1/2 transition. In 56Ca, a resonance at
11.5 MeV emerges from the filling of the 1 f5/2 orbital and the
1 f5/2 → 2 f5/2 transition. In 62Ca, the filling of the 1g9/2 and,
hence, the 1g9/2 → 2g9/2 transition triggers a resonance at
12 MeV. This last excitation is, however, not dominant and is
not clearly visible in the strength. However, the details of the
qp contributions indicate that this transition holds for about
10% of the strength between 10 and 13 MeV. It should be
noted that another resonance is visible around 4 MeV in 62Ca,
whose nature will be discussed in Sec. V.

The properties of the low-energy neutron modes can be
further studied by computing their corresponding transition
densities defined as

δρ tr(r) = − 1

π
Im[δρ(r)], (14)

where δρ(r) is computed using Eq. (11a). These transition
densities are plotted in Fig. 4. For the sake of comparison, the
upper left panel displays the transition densities of the GMR
in 40Ca, with its typical in-phase oscillation of protons and
neutrons. The properties of the different modes are detailed
in Table I. The transition densities associated to the low-lying
modes at ω = 12.8 MeV in 50Ca and at ω = 12.6 MeV in
60Ca show a very different behavior compared to the GMR
in 40Ca. As described in Ref. [7], the valence neutrons seem
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TABLE I. Properties of the monopole modes found in Ca isotopes at excitation energy ω. The 2qp decomposition (column transitions
α → β), contribution to the strength |Xαβ |2 − |Yαβ |2, and unperturbed energy Eβ + Eα , with Eμ the energy of the quasiparticle state μ, are
displayed. The |X |2 − |Y |2 measure has been normalized such that

∑
αβ |Xαβ |2 − |Yαβ |2 = 1. Transitions contributing less than 5% to the ISM

strength are not reported.

Nucleus ω (MeV) Transition α → β Eβ + Eα (MeV) |Xαβ |2 − |Yαβ |2
50Ca 12.8 2p3/2 → 3p3/2 14.2 0.4
60Ca 12.6 2p1/2 → 3p1/2 12.4 0.34

2p3/2 → 3p3/2 13.8 0.11
1 f5/2 → 2 f5/2 14.2 0.05

62Ca 4.3 1g9/2 → 1g9/2 2.6 0.30
2d5/2 → 2d5/2 5.4 0.25
2s1/2 → 2s1/2 5.3 0.19

to be decoupled from the protons, with neutron excitations
extending over the whole volume of the nucleus. The proton
contribution decreases with neutron excess, going from 15%
for 50Ca to less than 5% in the case of 62Ca. The 4.3 MeV
mode in 62Ca, driven by pairing correlations, will be discussed
in Sec. V.

B. Nickel isotopes

The previously discussed pattern of the emergence of low-
energy resonances, with increasing isospin asymmetry, can
also be tested in the nickel isotopic chain. The previously
discussed pattern of the emergence of low-energy resonances,
with increasing isospin asymmetry, can also be tested in the
nickel isotopic chain. Figure 5 displays the monopole strength
of 46−86Ni, obtained within the covariant QFAM. First focus-
ing on the neutron-rich Ni isotopes, we expect new low-lying
structures to emerge at N = 30 and N = 52, where orbitals
that Fig. 5 displays show the monopole strength of 46−86Ni,
obtained within the covariant QFAM. First focusing on the
neutron-rich Ni isotopes, we expect new low-lying structures
to emerge at N = 30 and N = 52, where orbitals that inaugu-

FIG. 4. Neutron (black) and proton (red) transition densities for
40,50,60,62Ca. Excitation energies ω are given in MeV. The vertical
blue line shows the ground-state rms matter radius of the nucleus.

rate new major shells start to be filled, i.e., the 2p3/2 and the
2d5/2 states, respectively. As illustrated in Fig. 6, filling the
2p3/2 to 1g9/2 orbitals yields resonances with energies around
18 MeV, while the occupation of the 2d5/2 and 3s1/2 states
gives rise to monopole excitations around 11 MeV.

To better understand the evolution of the monopole
strength in the neutron-rich 58,68,79,80,86Ni isotopes, Fig. 7
relates each low-energy mode with its dominant 2qp contri-
butions, while Table II further details the energy gap between
the two single-particle states of the transition, as well as the
weight of the 2qp configuration. Hence, a new major shell,
inaugurated by the 2p3/2 orbital, gets filled, going from 56Ni
to 58Ni. Concomitantly, a new low-energy mode emerges at
ω = 18.1 MeV, dominated by the 2p3/2 → 3p3/2 transition
(42%; see Table II). Likewise, in 62,68,70Ni, the occupation
of the 2 f5/2, 2p1/2, and 1g9/2 orbitals comes with new res-
onances, located at ω = 19.9, ω = 15.6, and ω = 18 MeV,
respectively. Their dominant 2qp contributions come from
the 1 f5/2 → 2 f5/2, 2p3/2 → 3p3/2, and 1g9/2 → 2g9/2 tran-
sitions, respectively. Adding more neutrons in the 2d5/2 and
3s1/2 orbitals opens a new major shell, and thus new peaks
appear in 80,86Ni at ω = 10.5 and ω = 9.9 MeV. Their dom-
inant 2qp contributions come from the 2d5/2 → 3d5/2 (32%)
in the former, and are more evenly distributed between the
2d5/2 → 3d5/2 (12%) and 3s1/2 → 4s1/2 (14%) in the latter.

From a general point of view, the evolution of the
monopole strength, in both Ca and Ni isotopic chains, is
quite similar, mainly driven by the single-particle spectrum
features. We have checked that these similarities are also
present at the level of the transition densities. Interestingly, the
low-energy part of the 68Ni monopole strength is in agreement
with the experimental results reported in Ref. [47], where a
peak around 15 MeV is measured. Also, the structure of the
strength obtained in 68−78Ni isotopes is in agreement with
the calculations reported in Ref. [9], where the coupling to
the continuum was considered. Therefore, this last effect does
not impact the qualitative features of the monopole strength.
However, it strongly impacts the width of the low-energy
resonances and enhances their collectivity. Finally, the pro-
ton counterpart of low-energy modes can be observed in the
neutron-deficient 46−56Ni (see Fig. 5) with the same mech-
anism of emergence. Decreasing the neutron number drives
the proton Fermi energy towards the continuum, decorrelating
protons that used to be bound, into a core in the case of the
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FIG. 5. Same as Fig. 2, but for Ni isotopes.

neutron-rich isotopes. As a result, the neutron contribution to
the monopole strength between 15 and 20 MeV decreases,
and new purely proton modes emerge, e.g., at ω = 15.5 and
ω = 17.3 MeV in 46Ni.

C. Soft modes contribution to the total strength

A possible way to quantify the evolution of soft modes
with isospin asymmetry is to evaluate their global contribution
to the total strength. For this purpose, Fig. 8 displays the
evolution of the ratio of integrated strengths of the soft modes
to the total one,

R ≡
∫ ωsm

0 dωS(ω)∫ ωtot

0 dωS(ω)
, (15)

FIG. 6. Same as Fig. 3, but for Ni isotopes.

where ωsm stands for the energy of the last soft mode, and
ωtot = 30 MeV. The choice has been made here to use a
nonenergy weighted sum rule in order to study in detail the
low-energy excitations. This ratio is displayed for various
isotopic chains, ranging from Ne to Ge. It should be noted
that deformed nuclei have been constrained to a spherical
shape, since it is relevant to keep the study of the impact of

FIG. 7. Monopole strength of 56,58,68,79,80,86Ni, with the main 2qp
contributions indicated for the low-energy modes.

034343-6



LOW-ENERGY MONOPOLE STRENGTH IN SPHERICAL AND … PHYSICAL REVIEW C 105, 034343 (2022)

TABLE II. Same as Table I, for Ni isotopes.

Nucleus ω (MeV) Transition α → β Eβ + Eα (MeV) |Xαβ |2 − |Yαβ |2
58Ni 18.1 2p3/2 → 3p3/2 16.0 0.42

2p1/2 → 3p1/2 15.4 0.02
68Ni 15.6 2p1/2 → 3p1/2 11.8 0.33

2p3/2 → 3p3/2 10.0 0.13
70Ni 18.0 2p3/2 → 3p3/2 7.0 0.22

1g9/2 → 2g9/2 15.9 0.19
80Ni 10.5 2d5/2 → 3d5/2 9.5 0.32

3s1/2 → 4s1/2 9.0 0.06
2d3/2 → 3d3/2 9.1 0.04

86Ni 9.9 3s1/2 → 4s1/2 8.4 0.14
2d3/2 → 3d3/2 8.0 0.12

deformation, for the next section. When there are multiple soft
modes, separated by few MeV, the sum of the soft modes up
to the last one is considered.

The general trend corresponds to a systematic increase of
the proportion of the soft mode in the total monopole strength
with neutron excess. This ratio can reach close to 80% of the
total strength for nickel, iron, or sulfur in very neutron-rich nu-
clei. Here again, the relation between the opening of a major
shell and the emergence of soft neutron modes is visible, i.e.,
adding neutrons on top of configurations with N = 14, 28, 50
yields a sudden increase of the contribution of soft modes.
On the other hand, adding neutrons on top of the N = 20 shell
closure has little impact, although an inflexion in the evolution
of the soft modes’ proportion can be observed in a sulfur and
neon isotopic chain (Fig. 8). In the case of argon and calcium
isotopes, the mismatch between the proton and neutron Fermi

FIG. 8. Evolution of the ratio (15), with the neutron number N ,
for various isotopic chains. The integration over soft neutron modes
is performed up to ωsm ≈14–18 MeV, depending on the position of
the GR for each nuclei.

energies is not large enough to trigger a low-energy resonance
at N = 22.

Another feature is that substructures stemming from the
opening of subshells have negligible effects in the evolution
of this ratio: when the occupation of an orbital opens a new
possible monopole transition, the studied ratio is not im-
pacted. However, one exception occurs with the 2s1/2 orbital:
its filling gives rise to the first appearance of a neutron soft
mode in neon, magnesium, silicone, and sulfur at N = 16.
This may be related to the fact that N = 14 is a strong subshell
closure [48].

Finally, it is relevant to compare these results to the ones
previously obtained in the case of isovector dipole (IVD)
excitation, where a similar low-energy pattern has also been
identified. In the case of IVD resonance, it is possible to
interpret the fraction of strength carried by the soft modes
in terms of low- and high-l orbitals filling [24]. In particular,
between N = 34 and 50, where high-l orbitals are filled, we
have checked that there is no sharp increase of the strength
fraction due to the low-energy mode. However, in the present
case of ISM, such an effect is not visible and, hence, an
interpretation in terms of low- and high-l orbital filling does
not seem to apply.

IV. EVOLUTION OF LOW-ENERGY ISOSCALAR
MONOPOLE MODES WITH DEFORMATION

We now wish to investigate the impact of deformation
on the structure of the low-energy part of the monopole
strength. The splitting of these modes, with the onset of
deformation, is a known feature in different multipolar-
ities both experimentally and theoretically [49–52]. The
role played by deformation, in the appearance of so-called
cluster modes at very low energy, was also studied in de-
tail in N = Z nuclei [14]. The aim of this section is to
extend the analysis to neutron-rich systems. In order to as-
sess how nuclear deformation affects the structure of the
monopole strength, we performed QFAM calculations on top
of RHB reference states, constrained to different axial de-
formations, parametrized by the axial quadrupole parameter
β2 ∈ [−0.2, 0.8] on the total neutron + proton density. This
allows one to monitor the various monopole resonances as
the deformation of the system is changed, both for soft and
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FIG. 9. Evolution of the monopole strength distribution, in Mg isotopes, with the deformation of the reference RHB state, on top of which
the QRPA response is built. The red lines show the ground-state deformation for each nuclei at the RHB level.

cluster modes, each of them addressed separately in the next
two sections.

A. Evolution of soft modes with deformation and neutron excess

The evolution of soft modes with deformation, and isospin
asymmetry, involves generic patterns, which will be illustrated
in the specific case of Mg isotopes. We start by examining
the evolution of the monopole strength in Mg isotopes as
the constrained axial quadrupole deformation of the RHB
reference state varies from β2 = −0.2 to β2 = +0.8 (Fig. 9).
The evolution of the monopole strength with neutron excess,
in spherically constrained Mg isotopes (β2 = 0 slice in each

panel of Fig. 9), is in agreement with the previous discussion
on the emergence of neutron low-energy modes. Namely, a
low-energy mode appears in 28Mg, related to the filling of
the 2s1/2 orbitals. Then, the width of the strength increases
in 30Mg due to an additional excitation from 1d3/2 to 2d3/2.
In 34,36Mg, a new soft mode at ω ≈ 13.5 MeV emerges, stem-
ming from the filling of the 1 f7/2 orbital.

The impact of deformation in the low-energy part of the
monopole strength can be studied by tracking the soft modes
as the deformation switches on, and increases. Focusing on
32Mg (see the corresponding panel in Fig. 9 as well as in
Fig. 10), the onset of deformation causes a splitting of the soft
modes, similarly to what is known for the GMR. For instance,

FIG. 10. Left: evolution of 32Mg monopole strength distribution with the deformation of the reference RHB state, split into total (solid
line), neutron (dashed line), and proton (dotted line) contributions. Right: total energy curve of 32Mg, with respect to the axial quadrupole
deformation parameter β2.
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FIG. 11. Subset of 32Mg neutron canonical single-particle ener-
gies (left) and their occupation number (right), plotted against the
axial quadrupole deformation parameter β2. The black line shows
the neutron Fermi level.

the resonance found at ω = 15.5 MeV, in the spherical 32Mg,
splits into four components in the deformed β2 = 0.1 case,
located at ω = 14.0, 15.4, 16.5, and 17.5 MeV, respectively.
A fifth component is visible at ω ≈ 11.8 MeV, the latter ac-
quiring more strength as the deformation increases.

Because of the noncollective nature of these soft modes,
one can draw a correspondence between the splitting in the
strength and the splitting induced by the axial deformation at
the level of the canonical single-particle spectrum (Fig. 11).
For instance, the dominant 2qp contributions of the 15.7 MeV
monopole mode of 32Mg, at β2 = 0 (see Fig. 10), are 2s1/2 →
3s1/2 and 1d3/2 → 2d3/2. With the onset of deformation, the
spherical 1d3/2 orbital splits into nondegenerate �π = 1/2+
and �π = 3/2+ states, where � stands for the projection of
the total angular momentum J on the symmetry axis [chosen
to be the (Oz) axis] and π the parity of the state. With the
breaking of the rotational symmetry, these states do not belong
to an irreducible representation of the SU(2) group labeled by
the eigenvalues of J2, but rather mix the m = � component
of positive parity spherical orbitals (provided reflection sym-
metry remains unbroken): the �π = 1/2+ axially symmetric
state results from the mixing of the m = 1/2 component of the
s, d , g, etc. orbitals.

In 32Mg, as the 1d3/2 orbital splits into a �π = 1/2+ state
and a �π = 3/2+ state, new transitions take place between
the occupied 1/2+ (3/2+) and all the other unoccupied 1/2+
(3/2+) begotten by the SU(2) symmetry breaking. Therefore,
many more transitions are available, as compared to the spher-
ical case, causing an enhancement of the collectivity of the
low-energy resonances. For instance, in the case of 32Mg
at β2 = 0.1, between ω = 11 and ω = 16 MeV, almost 10
transitions are involved and carry a non-negligible part of
the strength (more than 5% of the total strength each). In
appears that what is called a monopole mode, in such a de-

FIG. 12. Neutron (left part of each panel) and proton (right part
of each panel) transition densities, associated to resonances with
excitation energy ω (in MeV) of 32Mg constrained at deformation
β2. The black dashed lines show the contour of the unperturbed total
density (solution of the static, constrained RHB equation) around
which the nucleus vibrates.

formed framework, should be understood as a mixing between
monopole, quadrupole, etc. transitions.

In the case of a larger deformation, Fig. 10 shows that the
GMR is shifted to lower energy, as expected, and starts to
merge with the soft modes. However, the distinction between
soft modes, and GMR, can be made by looking to the proton
contribution to the total strength (dotted lines in Fig. 10).
When the latter is nonzero, there is a coherent excitation of
both protons and neutrons, corresponding to the GMR. Based
on these criteria, we deduce that the soft modes vanish for
β2 > 0.7 due to the spreading of the GMR (Fig. 10).

Transition densities are shown in Fig. 12 for the mode
located at ω = 15.7 MeV in the spherical 32Mg, as well as
for the modes at ω = 11.8, 14.2, 15.1, 16.8 MeV in 32Mg,
constrained to β2 = 0.2. Deformation generates localization
on the transition densities, as shown by the proton one in the
core of the nucleus, and the neutron one both in the core and
in the surface of 32Mg.

The spatial properties of the transition densities, shown in
Fig. 12, can be further analyzed in terms of the 2qp contri-
butions to the corresponding modes, and of the shape of the
canonical orbitals, involved in the corresponding monopole
transitions. The first column of Fig. 13 corresponds to the
monopole mode at ω = 15.7 MeV, in the spherical 32Mg. It
displays the canonical states participating in the dominant 2qp
configuration, i.e., the 2 and 3s1/2 orbitals, as well as the 1 and
2d3/2 orbitals. The corresponding configurations contribute
about 50% to the monopole strength. The second column of
Fig. 13 corresponds to the excitation at ω = 11.8 MeV in
32Mg, constrained at β2 = 0.2. The main 2qp contribution to
this mode involves the 1/2+(4) state, which coincides with

034343-9



F. MERCIER, J.-P. EBRAN, AND E. KHAN PHYSICAL REVIEW C 105, 034343 (2022)

FIG. 13. Canonical neutron orbitals, involved in the dominant
monopole transitions contributing to the modes found at excitation
energy ω (in MeV) in 32Mg, with axial quadrupole deformation β2.
The percentage which the transition contributes to the monopole
strength is indicated by the number and the surface area of the circle
on top of the level, with a color giving the occupation number of
the orbital. The number in parentheses shows the principal quantum
number of each level. Partial densities of the orbitals, involved in the
monopole transitions, are plotted on top of the total nucleon density.

the m = 1/2 component of the 1d3/2 in the β2 = 0 limit. Here,
only some features of the transition density can be related to
the 2qp configuration, namely, the localization of the neutron
transition density on the radial axis, visible on the fourth
1/2+ orbital. It should be noted that one cannot expect a
full correspondence between the main 2qp configurations and
the transition densities since the contribution of the former is
about 30%.

The third and fourth columns of Fig. 13 correspond to
the ω = 14.2 and ω = 15.1 MeV monopole modes, found
in 32Mg constrained at β2 = 0.2. Both modes are slightly
more collective than the ones located at ω = 11.8 and ω =
16.8 MeV. The major 2qp contribution to the resonance lo-
cated at 14.2 MeV comes from the 1/2+(3) → 1/2+(5)
transition, where the 1/2+(3) state coincides with the 2s1/2

orbital, in the β2 = 0 limit. In this case again, the shape of the
partial densities associated to this sole transition allows one
to understand the main spatial properties of the corresponding
transition density in Fig. 12, and to interpret this mode as a
cluster vibration. On the other hand, the excitation found at
ω = 15.1 MeV is dominated by the 3/2+(2) → 3/2+(5) tran-
sition, where the 3/2+(2) state coincides with the m = 3/2
component of the 1d3/2 orbital in the β2 = 0 limit, together
with a contribution coming from the 1/2+(4) → 1/2+(9)
transition. In that case also, one can trace back the spatial
properties of the corresponding neutron transition density
(Fig. 12), namely, a pronounced contribution on the horizontal
axis, to the shape of the canonical partial densities. Finally,
the last column of Fig. 13 shows the mode at ω = 16.8 MeV,
where the state matching the 1/2 component of the 2s1/2, in
the β2 → 0 limit, is involved. The main corresponding 2qp

FIG. 14. Ground-state density (left) and localization function
(right) of 20Ne.

contribution comes from the 1/2+(3)→ 1/2+(7) transition,
with again a shape of the transition density, which can be
understood by looking at the canonical partial densities.

B. Evolution of cluster excitation with deformation
and neutron excess

Cluster vibrations, described as coherent excitation of neu-
trons and protons localized in clusters, are expected to occur
in N = Z nuclei at low energies—typically between 5 and
10 MeV—and large deformations [14]. In this section, we
investigate the impact of neutron excess on these modes.

In order to study cluster excitations, it is relevant to explain
how they could be traced. Figure 14 displays the ground-
state density and localization function of 20Ne, where cluster
structures can be identified, while Fig. 15 shows the transition
density in a so-called cluster mode (on the left), compared to
the one of the GMR (on the right), located at larger energy. In
the case of the low-energy mode, the main contribution to the
excitation is located close to the clusters ones and in the core
of the nucleus, which can be interpreted as a cluster oscillation
with respect to the core. In the case of the GMR transition
density, the clusters, located in the surface of the nucleus,
also contribute to the excitation, but at the same time, deplete
the core, which corresponds to the usual breathing mode.
Therefore, in the same way that a broad neutron contribution
far from the core, in the transition density of neutron rich
nuclei, is interpreted as a neutron skin oscillation, the spatial
excitation patterns of the transition density in Fig. 15 here
is interpreted as a cluster vibration, namely, a large contri-
bution to the vibration from the cluster, oscillating against
the core. It should be noted that during the excitation, the
clusters partially merge with the core. Hence this mode does
not represent a proper oscillation of cluster against a core, but
a more complex pattern. However, in the present work, we
define such modes as cluster vibration and cluster oscillation,
which, of course, remains subjective.

For all the Mg isotopes considered in Fig. 9, there is a
systematic occurrence of low-energy modes, starting from
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FIG. 15. Comparison between transition densities at h̄ω =
6.75 MeV corresponding to the cluster region (left panel) and h̄ω =
17.9 MeV corresponding to the GMR region (right panel) of 20Ne
under ISM excitation.

β2 ≈ 0.4. The analysis of these modes, in terms of 2qp config-
urations, and the computation of the time-dependent density,
allows one to tag them as cluster oscillations. Let us fo-
cus again on one typical example, from 32Mg. In Fig. 10,
a new structure in the monopole strength starts to develop
around ω = 6 MeV, from β2 ≈ 0.2, and increases with de-
formation. The emergence of this mode can be traced back
to the shell structure of 32Mg in Fig. 11: the 1/2-(3) and
3/2-(2) states, responsible for localizing neutrons in clus-
ters along the symmetry axis, quickly fall towards the Fermi
energy as the quadrupole deformation increases. They even
become fully occupied from β2 ≈ 0.4 for the former and
β2 ≈ 0.7 for the latter (see, also, the corresponding occupation
numbers plotted against β2 in the right panel of Fig. 10).
As for proton orbitals, the dominant transitions contributing
to the mode at ω ≈ 6 MeV are the same for all Mg iso-
topes, namely, 1/2+(2)→1/2+(3), 1/2-(2)→ 1/2-(3), and
3/2+(1)→3/2+(3). Again, these levels are the ones localiz-
ing the protons in clusterized structures along the symmetry
axis.

In order to understand the interplay between deformation
and neutron excess in cluster modes, the transition densities
of these modes in 24−32Mg isotopes are displayed in Fig. 16.
The cluster structure, which can be interpreted as a 12C +12C
oscillation in the excited state, can be seen on the transition
densities of 24Mg, where the neutron and proton oscillate in
phase, in the cluster’s location. However, even if the cluster
structure is clear, this interpretation in terms of 12C +12C
oscillation remains a conjecture, and a more in-depth work
would be needed to determine the exact nature of the clusters,
especially the behavior of the density of the core. To empha-
size the use of “cluster vibration,” it is important to notice that

FIG. 16. Transition densities for some magnesium isotopes. Ex-
citation energies are given in MeV. Deformation is constrained to
take the value of β2 = 0.7 for all nuclei. On the left of each plot
is shown the neutron density, and on the right the proton one. The
dashed black lines represent the rms radius for the matter ground
state as well as the maximum of density in the ground state to
emphasize the cluster structure.

the contribution of the transition densities is mainly located
in the poles where preformed clusters are present, meaning
that mainly the cluster structure will be impacted during the
excitation. This feature can be seen in Fig. 16, where the
ground-state densities are shown by a dashed line.

When the neutron number increases, the neutron and pro-
ton transition densities get slightly shifted with respect to
each other, but the main effect occurs closer to the center of
the nucleus: additional peaks appear in the neutron transition
density. This implies more complex vibrations than a mere
oscillation of the clusters, namely, small additional contribu-
tions to the excitation, mainly at an average distance between
the center and the surface of the nucleus, on the symmetry
axis. However, it should be noted that the 12C +12C oscillation
is still present in all the considered isotopes.

V. EVOLUTION OF LOW-ENERGY ISOSCALAR
MONOPOLE MODES WITH PAIRING

As mentioned in the case of 62Ca, another kind of
low-energy mode appears below 5 MeV, driven by pair-
ing correlations. Such excitations have been discussed both
theoretically and experimentally; see, e.g., [53–55]. Pair-
ing vibration modes refers to coherent excitations involving
particle-particle, particle-hole, and hole-hole contributions.
Their properties were analyzed within the QRPA framework
both for spherical [56–58] and deformed [59] nuclei. In the
present work, we investigate the possible interplay between
pairing and cluster modes.
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FIG. 17. Evolution of the monopole strength function of 54Ca
with the pairing energy of the RHB level. The red horizontal line
shows the pairing energy of the ground-state 54Ca.

A. Spherical case

How pairing correlations influence the monopole strength
distribution can be studied along the same lines as in the
deformed case, i.e., by constraining the amount of pairing
correlation captured by the reference RHB state and then mon-
itoring the monopole strength as pairing correlations increase.
Following Ref. [60], the constraint on pairing is implemented
by varying the strength of the pairing interaction, from 0 to
twice its normal value, both at the RHB and QFAM levels.
We define the total pairing energy per nucleon (Epair/A) as an
acceptable order parameter for the normal to superfluid phase
transition and plot our result against the latter.

We first focus on the evolution of the ISM strength distri-
bution with pairing correlation at zero deformation. As soon
as the pairing energy reaches a threshold value, the last oc-
cupied orbitals will start to deplete, enabling low-energy pair
excitations.

This typical behavior is illustrated in the case of 54Ca.
Figure 17 shows the evolution of the ISM strength function
with the pairing energy per nucleon associated to the RHB
reference state (the total pairing energy in the RHB ground
state being 7.6 MeV). With the increase of pairing correla-
tions, a new mode appears below 1 MeV, stemming from the
fact that the 2p1/2 orbital becomes partially occupied. This
mode already appears in 54Ca ISM strength built on top of
the RHB ground state, however with a negligible contribution:
the maximum strength of 54Ca, corresponding to the GMR, is
≈600 fm4 MeV−1, while this low-energy mode has a peak
of only ≈5 fm4 MeV−1. For large pairing correlations, this
excitation carries more strength, up to ≈100 fm4 MeV−1

within the range considered for the constrained calculations.
This typical behavior is quite general and has been checked

for several nuclei, both in the calcium and nickel isotopic
chains. The contribution of pairing-type excitations to the total
ISM strength remains very low, but increases if the pairing
is constrained to larger values. The typical excitation energy
range depends on the pairing energy since this resonance
can be considered as a pure pairing mode: the energy of the
excitation is then expected to be of the order of ≈2	, where
	 stands for the pairing gap, explaining why the excitation

FIG. 18. Evolution of the monopole strength function of 34Mg
with the pairing energy of the RHB level. The deformation is fixed
to β2 = 0.31 which is the ground-state (GS) deformation of this
nucleus. The red horizontal line shows the pairing energy of the
ground-state 34Mg.

energy of the pairing mode increases with the pairing energy
itself. A typical transition density is plotted in Fig. 4 in the
bottom right corner for 62Ca. The corresponding state is also
visible on the strength of 62Ca in Fig. 2. While the proton
contribution is negligible, the neutron part displays a behavior
similar to what was observed for pure neutron modes at higher
energy, i.e., a very broad neutron skin oscillation.

B. Deformed case

The appearance of a very low-energy pairing mode in
deformed and neutron-rich nuclei was already discussed in
Ref. [59] for quadrupole excitations. In the case of monopole
excitations in deformed nuclei, a mixing with the quadrupole
modes is expected and shall lead to similar results. Since the
onset of pairing correlations is likely to reduce the amount
of deformation, the latter is fixed during the calculation in
order to focus on the effect of pairing only, in the presence
of clusterized structures.

Taking 34Mg as a representative of both deformed and
superfluid light nuclei, Fig. 18 displays the evolution of the
corresponding ISM strength distribution with the amount of
pairing correlations captured by the RHB reference state, with
a quadrupole deformation parameter fixed to the ground-state
value (β2 = 0.31). It has to be remembered here that a sub-
traction of the spurious states is performed and can impact the
very low-energy part of the strength since numerical subtrac-
tions are never perfect. However, our results on the low-energy
pairing resonances in the monopole channel are in agreement
with results of Ref. [29]. Since this last approach is some-
what different from ours (for instance, QRPA vs QFAM or
covariant EDF vs Skyrme), this may suggest that the present
numerical uncertainties, related to the subtraction scheme,
remain negligible.

At zero pairing energy, a few peaks are already visible,
mainly around 4 MeV. This excitation corresponds to the pre-
viously studied cluster excitation, where proton and neutrons
behave coherently, generating a cluster oscillation around a
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FIG. 19. Same as Fig. 16, but for 34Mg. Excitation energy ω are
given in MeV. The top left plot corresponds to a pairing excitation,
and the top right one to a cluster excitation. The bottom left is a pure
neutron mode and the bottom right is a GR mode.

core. Two other cluster excitations, at 7 and 9 MeV, carry
much less strength and are barely visible in the figure.

Increasing the pairing energy triggers new resonances at
very low energy, below 2 MeV. They correspond to pure pair
excitation. Interestingly, these transitions involve both protons
and neutrons. A calculation of the free response (without
the residual interaction) shows that the proton strength, at
these very low energies, is negligible. Hence, the residual
interaction plays an important role for the pair excitation in
neutron-rich nuclei by involving protons. However, this is not
a generic property since, for a calcium isotopic chain, for
instance, no contribution from protons to the strength was
found.

In the case of 34Mg, the origin of these excitations can
be traced back to different orbitals, depending on the pair-
ing intensity. For a total pairing energy below 10 MeV, the
low-energy excitations are dominated by the 3/2+(2) and
1/2-(3) single-particle states for neutrons, and the 3/2+(1)
single-particle state for protons. For larger pairing energies,
the neutron contribution to the pairing modes is dominated by
the 1/2-(3) and 3/2-(2) orbitals, while the proton contribution
is dominated by the 3/2+(1) and 1/2+(2) orbitals.

The transition densities of low-energy monopole modes
in 34Mg are displayed in Fig. 19. Neutrons and protons
contribute similarly to the transition density for the two
lowest-energy modes, i.e., the pairing (ω = 1.6 MeV) and the
cluster (ω = 5 MeV) modes, whereas neutrons dominate the
transition density in the ω = 14 and ω = 16.8 MeV modes,
corresponding to the GMR and its low-energy tail.

As for the interplay between pairing and cluster modes, we
observe a modification of the structure of the cluster excitation
(located at ω = 5 MeV in the unconstrained ISM strength)
as pairing correlation gets stronger. From the decomposition

FIG. 20. Schematic view of a typical ISM strength landscape for
low mass nuclei (N < 120). See the main text for more details.

of the cluster mode into its 2qp component, we observe a
transition between a mixture of particle-hole transitions and
pair excitation to a pure pair excitation, which dominates
because of the partial depletion of the occupied orbitals near
the Fermi level.

VI. CONCLUSION

A systematic analysis of the low-lying ISM strength distri-
bution in neon to germanium isotopic chains, and especially
of the interplay between isospin asymmetry, deformation, and
superfluidity, was performed within a microscopic approach,
namely, the covariant quasiparticle finite amplitude method.
The nature and characteristics of the encountered monopole
resonances are sketched in Fig. 20.

Neutron-rich systems feature pure neutron low-energy
modes, usually located between 5 and 15 MeV. A detailed
analysis of these modes in terms of 2qp contributions showed
that they are built from a single or a couple of single-particle
configurations. This is explained by shell opening effects due
to neutron excess. In particular, it has been shown that magic
numbers play an important role: adding two neutrons on top of
a magic core shall lead to the appearance of a new peak at low
energy in the monopole strength. The additional appearance
of peaks can occur due to subshell opening. The collective
nature of the corresponding excitation depends on the number
of levels involved in a major shell. These soft neutron modes
exhibit a neutron skin, which has been successfully interpreted
in terms of the canonical densities involved in the excitation.
However, the effect of the coupling to the continuum might
change the quantitative results presented here by increasing
the width of the different low-energy resonances. A proper
treatment of this coupling would be needed to obtain more
reliable results. Similarly, taking into account the couplings is
expected to quantitatively modify the results presented here,
although the conclusions remain very similar [7].

The impact of deformation has been studied by constrain-
ing the value quadrupole parameter β20 over a significant
range. This method allows for a better understanding of the
evolution of the different excitations with the deformation. In

034343-13



F. MERCIER, J.-P. EBRAN, AND E. KHAN PHYSICAL REVIEW C 105, 034343 (2022)

particular, the soft neutron mode remains stable with defor-
mation in most of the cases, and mixes with the GR around
β2 = 0.3, due to the shift of the GR to lower energy, with
deformation. Splittings of these soft modes are also visible
and were interpreted as additional excitations, allowed by
shell opening, due to the deformation. Different modes were
studied and two classes of excitations coexist: a mode cor-
responding to an oscillation along the deformation axis and
another one to an oscillation perpendicular to this one. Evolv-
ing toward very large deformations destroys the soft neutron
mode and favors the cluster ones. It should be noted that
the above-defined “cluster vibration and oscillation” remain
subjective definitions and the behavior of the clusters with
respect to the core of the nuclei is still to be determined with
a more in-depth study.

Finally, pair excitations also emerge below 5 MeV and
correspond to excitation mixing pp, ph, and hh channels,
inside a single level. These kinds of transitions are possible
thanks to pairing, which can modify occupation numbers,
allowing for partly occupied levels. The energy related to such
an excitation would be ≈	, where 	 refers to the pairing gap.
A mixing between pairing and cluster excitations is predicted,
with the latter transforming into the former with increas-
ing pairing effects. However, since pairing and deformation
are generally competing effects, it is unlikely to find both
significant cluster and pairing modes in the same nucleus.
All these results show that the low-energy spectrum of the
monopole strength exhibits a rather complex and specific
behavior with respect to neutron excess, deformation, and
pairing.
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[35] P. Marević, J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar,
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[38] A. Bjelčić and T. Nikšić, Comput. Phys. Commun. 253, 107184

(2020).
[39] T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76,

024318 (2007).
[40] P. Avogadro and T. Nakatsukasa, Phys. Rev. C 84, 014314

(2011).
[41] M. Stoitsov, M. Kortelainen, T. Nakatsukasa, C. Losa, and W.

Nazarewicz, Phys. Rev. C 84, 041305(R) (2011).
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