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Pfaffian formulation for matrix elements of three-body operators
in multiple quasiparticle configurations
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We present a Pfaffian formula to calculate matrix elements of three-body operators in symmetry-restoration
beyond-mean-field methods, including the case of multiple quasiparticle (qp) configurations. Detailed derivation
is provided and the validity of the new formula is checked numerically. The corresponding efficiency is discussed,
which turns out to be about five times (one order of magnitude) higher than the conventional method when four
(less than four) qp operators are considered.
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I. INTRODUCTION

Successful descriptions of nuclear structures rely heav-
ily on the solution of the nuclear many-body problem [1],
which is difficult due to two aspects: the complexity of a
nucleon-nucleon interaction and the troublesome many-body
techniques. On one hand, fundamental progress has been
achieved during the past decades for modern understandings
of nuclear forces, based on, for example, the chiral effective
field theory [2,3] where three-body nuclear forces are found
to play important roles in nuclear structure physics.

A lot of nuclear many-body techniques, on the other hand,
employ the philosophy that reduces the nuclear many-body to
effective one-body problems with the help of the concept of
quasiparticles (qp) and single-particle mean-field calculations
in the intrinsic frame, such as the Hartree-Fock-Bogoliubov
(HFB) theory [4–6]. Residual many-body correlations could
be included reasonably through beyond-mean-field methods
[7–12], which provide a description of nuclear many-body
wave functions in the laboratory frame.

One kind of popular nuclear model, the generator coordi-
nate method (GCM) [1,13–25] or related angular-momentum
projection (AMP) based method [26–35], usually starts from
single-particle HFB calculations in the intrinsic frame where
some symmetries are broken, which can be restored exactly
by the projection technique from which the description of
nuclear systems in the laboratory frame can be achieved.
Further nucleon-nucleon correlations are then included by di-
agonalizing the Hamiltonian in the nonorthonormal projected
basis, which leads to the solution of the Hill-Wheeler-Griffin
equation. The central ingredients (kernels) of these models
turn out to be different projected (or rotated) matrix elements
generated by AMP, particle-number projection (PNP), parity
projection, etc., where the AMP usually dominates analytical
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and numerical efforts. During the past decades, the GCM or
AMP (PNP) based methods have been applied successfully
to researches on nuclear low-lying states [13,16–18,36,37],
high-spin physics [26,29–31,38–45], β decay [46,47], neutri-
noless double-β decay [15,19,24,48–50], astrophysical weak
process [51,52], nuclear fission [53–57], etc., with different
effective interactions or schematic interactions.

In the above applications, collective degrees of free-
dom (such as shape fluctuations) [13,16,17], single-particle
(such as qp excitations) degrees of freedom [26,29,38],
or both of them [22] are included, according to the un-
derlying physical problems of interests and the practical
computational burden simultaneously. The computational bur-
den concentrates on the kernels in the Hill-Wheeler-Griffin
equation, i.e., the rotated norm overlap of HFB qp vac-
uum, the rotated norm overlap of multi-qp configuration,
and the rotated matrix elements of Hamiltonian (including
one-body, two-body, and potentially three-body operators).
Historically, these kernels could be calculated by the Onishi
formula [58], the generalized Wick’s theorem [26], Hara’s
prescription (see the Appendix of Ref. [26]), etc., which,
unfortunately, encountered the sign problem, the problem of
combinatorial complexity and extremely computational cost,
respectively.

During the past decade or so, after the pioneering work
of Robledo [59] who solved the sign problem of the Onishi
formula in a mathematically elegant way in terms of Pfaffian
by making use of Grassmann numbers and Fermion coher-
ent state, the Pfaffian formulations (algorithms) have been
developed rapidly for all three kinds of kernels in the Hill-
Wheeler-Griffin equation [59–70]. In particular, the problem
of combinatorial complexity for the norm overlap of multi-qp
configuration can be avoided with the help of the Pfaffian
formula by Mizusaki et al. [66] and the calculation of ro-
tated matrix elements of one-body and two-body operators
can be optimized to a large extent according to the Pfaffian
formula by Hu et al. [68]. These achievements of Pfaffian
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formulations, then, would make the GCM method one of the
optimal nuclear many-body techniques from both physical
(with broken symmetries restored) and numerically practical
perspectives.

Recently, the GCM methods based on shell-model Hamil-
tonians have been developed for studies on nuclear low-lying
states and neutrinoless double-β decay [21,33,71,72], and
the in-medium similarity-renormalization group (IMSRG)
method has been updated by employing symmetry-restored
states or GCM calculations as the reference states with shell-
model Hamiltonian [14] and the chiral Hamiltonian [73] to
describe low-lying states of deformed light nuclei and the neu-
trinoless double-β decay among them. On the other hand, for
many interesting nuclear-structure and decay problems such
as the high-spin physics and astrophysical weak-interaction
process, ab initio methods for both low-lying and relatively
highly excited states of medium-heavy and heavy nuclei are
demanded. One of the potential candidates may be a GCM
method with both collective (such as shape fluctuations) and
single-particle (such as multi-qp configurations) degrees of
freedom by realistic nuclear forces such as the chiral forces.
The evaluation of matrix elements of three-body operators
is then indispensable. Besides, for neutrinoless double-β de-
cay, the nature of neutrinos can be well understood provided
that the corresponding nuclear matrix elements M0νββ =
〈�F |Ô0νββ |�I〉 can be evaluated as precisely as possible.
There are two sources of uncertainties for M0νββ , the one from
nuclear many-body wave functions |�I〉 and |�F 〉, and the one
from the decay operator Ô0νββ . The uncertainty in the former
can be reduced to a large extent by taking into account as
many correlations as possible in the nuclear wave function,
such as the shape fluctuations [48,49], pairing fluctuations
[19,74], qp excitation [50], etc., for which the GCM method
serves as the optimal candidate model. The uncertainty from
the decay operator can be reduced effectively by studying the
roles of chiral two-body currents [15], which would lead to
three-body and even four-body decay operators. Therefore, to
provide reliable M0νββ , matrix elements of three-body decay
operators in GCM methods with/without qp configurations
are indispensable.

In this work, we provide a Pfaffian formula for evalua-
tion of matrix elements of general three-body operators in
symmetry-restoration beyond-mean-field methods such the
GCM or AMP-based methods, for cases with or without mul-
tiple qp configurations. In Sec. II we briefly introduce the
basic logics of GCM or AMP (PNP) based methods. In Sec. III
we provide the Pfaffian formula for evaluation of matrix ele-
ments of three-body operators, and we finally summarize our
work in Sec. IV.

II. BASIC LOGIC OF GCM OR AMP-BASED METHODS

For completeness of discussion, we first give a concise in-
troduction of the logic of GCM or AMP(PNP)-based methods
[1]. The starting point of these methods is usually solutions
of single-nucleon HFB mean-field equations with constraints
(on quantities with respect to related coordinates q, such as the
total quadrupole moments, etc.) in the intrinsic frame, from
which one can get different configurations based on Slater

determinants with or without qp excitations, i.e.,

|�κ (q)〉 = {|�(q)〉, β̂
†
i (q)β̂†

j (q)|�(q)〉, · · · }, (1)

where |�(q)〉 labels the HFB qp vacuum and the correspond-
ing qp operators are denoted by {β̂i(q), β̂†

i (q)}. In Eq. (1) the
index κ reflects the information of qp excitations.

The wave functions in Eq. (1) broke some symmetries
which can be recovered by projection operators. Here, we
take the AMP and PNP operators as examples since the parity
projections, etc., are relatively trivial. The PNP operator is

P̂τ = 1

2π

∫ 2π

0
dφτ ei(N̂τ −Nτ )φτ , (2)

where N̂τ is the particle-number operator for neutrons (τ =
n) or protons (τ = p) and φτ is the gauge angle. The AMP
operator reads as

P̂J
MK = 2J + 1

8π2

∫
d
DJ∗

MK (
)R̂(
) (3)

with DJ
MK being the Wigner D function, R̂ the rotation opera-

tor with respect to the Euler angle 
.
The AMP and PNP operators can recover the broke

symmetries in |�κ (q)〉 and provide description of nuclear
many-body systems in the laboratory frame, i.e.,

P̂J,NZ
MK |�κ (q)〉 ≡ P̂J

MK P̂N P̂Z |�κ (q)〉. (4)

Besides, more nucleon-nucleon correlations could be included
by diagonalizing Hamiltonian in the nonorthonormal pro-
jected basis in Eq. (4), so that one can write the nuclear
many-body wave functions as

∣∣�σ
JM

〉 =
∫

dq
∑
Kκ

f Jσ
Kκ (q)P̂J,NZ

MK |�κ (q)〉, (5)

where σ denotes the σ th eigenstate for angular momentum J .
This corresponds to the solution of the Hill-Wheeler-Griffin
equation,∑
K ′κ ′q′

[
HJ

KκK ′κ ′ (q, q′) − Eσ
J N J

KκK ′κ ′ (q, q′)
]

f Jσ
K ′κ ′ (q′) = 0, (6)

from which the coefficient f Jσ
Kκ (q) in Eq. (5) can be obtained

and the nuclear many-body wave functions |�σ
JM〉 can be well

defined.
Then, physical quantities in the laboratory frame can be

calculated and compared with measurements. Let us take
typical transitions and decays as examples. With the cor-
responding operator T λμ, the (reduced) transition strengths
could be obtained by means of〈

�
(S )σ
JM

∣∣T λμ
∣∣� (S ′ )σ ′

J ′M ′
〉
, (7)

where (S ) and (S ′) can represent the same nuclear system
(such as, for electromagnetic transitions) or two different nu-
clear systems (such as, for β decay and double β decay, etc.).

In Eq. (6) H and N read as

HJ
KκK ′κ ′ (q, q′) = 〈�κ (q)|ĤP̂J,NZ

KK ′ |�κ ′ (q′)〉, (8a)

N J
KκK ′κ ′ (q, q′) = 〈�κ (q)|P̂J,NZ

KK ′ |�κ ′ (q′)〉. (8b)
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As mentioned in the Introduction, the central ingredients (ker-
nels) of the GCM methods are three kinds of rotated matrix
elements generated by projection techniques. From Eqs. (2),
(3), (5), (7), 8(a), 8(b) it is seen that the three kinds of (kernels)
rotated matrix elements are

〈�a| R̂ |�b〉, (9a)

〈�a|α̂1 · · · α̂m R̂ β̂
†
1 · · · β̂†

m′ |�b〉, (9b)

〈�a|α̂1 · · · α̂m ÔR̂ β̂
†
1 · · · β̂†

m′ |�b〉, (9c)

i.e., the norm overlap of HFB qp vacuum, the norm overlap
of multi-qp configuration, and the rotated matrix elements of
operators, respectively. In Eq. (9), the indices a ≡ {S, q} and
b ≡ {S ′, q′} can represent the same or different nuclear sys-
tems with corresponding qp operators α̂i and β̂ j , and R̂ labels
the total unitary (rotation) operator, i.e., R̂ ≡ R̂(
)eiN̂τ φτ in
the AMP + PNP case considered here. The operator Ô can
be the Hamiltonian (one-body, two-body, and even three-body
scalar operators) and the transition or decay operators (one-
body, two-body, and even three-body tensor operators).

Fortunately, the norm overlap of HFB qp vacuum in
Eq. 9(a) can be calculated by the Pfaffian formula in
Refs. [59,60,62,63,65,67,69,70] avoiding the notorious sign
problem in the Onishi formula, the norm overlap among
multi-qp configurations in Eq. 9(b) can be evaluated with the
help of the Pfaffian formula in Refs. [62,64,66,68] which do
not suffer from the problem of combinatorial complexity in
the generalized Wick’s theorem any more, and the Pfaffian
formula for evaluation of rotated matrix elements of one-body
and two-body operators are provided in Ref. [68]. In the next
section, we follows the techniques in Refs. [64,68] to provide
the Pfaffian formula for rotated matrix elements of three-body
operators.

III. THE PFAFFIAN FORMULATION FOR
THREE-BODY OPERATORS

As mentioned previously, the Pfaffian formula for rotated
matrix elements of one-body and two-body operators are de-
rived by Hu et al. [68]. The derivations are achieved in a much
mathematical way by adopting the expansion properties of the
Pfaffian with respect to rows and columns. In the following we
adopt the similar techniques to derive the Pfaffian formula for
rotated matrix elements of three-body operators, and discuss
the underlying physics and treatments in potential applica-
tions in nuclear structure physics. In the second quantization
representation we can write three-body operators as

V̂ (3) =
M∑

μνδωργ

Wμνδωργ ĉ†
μĉ†

ν ĉ†
δ ĉγ ĉρ ĉω, (10)

where the factor 1/36 is absorbed to the antisymmetric matrix
W , ĉ†, and ĉ denote the particle creation and annihilation
operators in the spherical harmonic oscillator basis and M
labels the dimension of the single-particle model space.

To derive and better understand the Pfaffian formula for
physical operator, we need to rely on the following general-
ized Pfaffian formula of norm overlaps which is derived in
Ref. [68] and which actually corresponds to the generalized

Wick’s theorem, i.e.,

〈�|ẑ1 · · · ẑ2N |�′〉 = Pf(S)〈�|�′〉, (11)

where S is a 2N × 2N skew-symmetric matrix with the ele-
ments

Si j ≡ 〈�|ẑi ẑ j |�′〉
〈�|�′〉 (i < j). (12)

Note that in Eq. (11) 〈�|�′〉 �= 0 is assumed [68] and can
be calculated by the Pfaffian formulas in the literatures
[59,60,62,63,65,67,69,70]. |�〉 and |�′〉 can be the same or
different HFB vacua [as in Eqs. (1), (9)], or some unitary
transformation of HFB vacua (see below), or even the true
vacuum |−〉. Besides, the single-fermion operators ẑi could
be the qp creation (annihilation) operators for either |�〉 or
|�′〉, or any unitary transformation between them (such as the
particle operators ĉ† and ĉ, etc.). Equation (11) is equivalent
to the generalized Wick’s theorem that considers all possible
contractions among ẑi [with (2N − 1)!! contractions in total].
The norm overlap of multi-qp configuration in Eq. 9(b) repre-
sents a simple example of Eq. (11).

As illustrated by Eqs. (6), (7), (8), (9) we now treat the
rotated matrix elements of three-body operators

I3 =
M∑

μνδωργ

Wμνδωργ

× 〈�a|α̂1 · · · α̂Lĉ†
μĉ†

ν ĉ†
δ ĉγ ĉρ ĉωR̂β̂

†
L+1 · · · β̂†

2N |�b〉
(13)

which can be written as

I3 =
M∑

μνδωργ

Wμνδωργ

× 〈�|ẑ1 · · · ẑLĉ†
μĉ†

ν ĉ†
δ ĉγ ĉρ ĉω ẑL+1 · · · ẑ2N |�′〉 (14)

by defining

ẑk =
{
α̂k, 1 � k � L
R̂β̂

†
k R̂−1, L + 1 � k � 2N

, (15a)

|�〉 = |�a〉, (15b)

|�′〉 = R̂|�b〉. (15c)

Now the evaluation of rotated matrix elements for physical
operators is much more straightforward actually. Taking the
three-body operator case I3 as an example, one can calcu-
late each 〈�|ẑ1 · · · ẑLĉ†

μĉ†
ν ĉ†

δ ĉγ ĉρ ĉω ẑL+1 · · · ẑ2N |�′〉, multiplied
by corresponding Wμνδωργ and finally consider the six-fold
loops (summations) for indices {μνδωργ } in Eq. (14). The
〈�|ẑ1 · · · ẑLĉ†

μĉ†
ν ĉ†

δ ĉγ ĉρ ĉω ẑL+1 · · · ẑ2N |�′〉 can be calculated by
the generalized Wick’s theorem, or equivalently by the Pfaf-
fian formula in Eq. (11) for which a (2N + 6) × (2N + 6)
skew-symmetric matrix (say M) should be defined first. In ei-
ther of the two ways, basic contractions among {ẑi, ĉ†

μ, ĉν} (the
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matrix elements of M) should be calculated in advance. The
basic contractions among {ẑi} themselves have been defined
in Eq. (12). For the basic contractions involving ĉ† and/or ĉ
we define them in the following:

S(+)
μk =

⎧⎨
⎩

−〈�|ẑk ĉ†
μ|�′〉

〈�|�′〉 1 � k � L

〈�|ĉ†
μ ẑk |�′〉

〈�|�′〉 L + 1 � k � 2N
, (16a)

S(−)
μk =

⎧⎨
⎩

−〈�|ẑk ĉμ|�′〉
〈�|�′〉 1 � k � L

〈�|ĉμ ẑk |�′〉
〈�|�′〉 L + 1 � k � 2N

, (16b)

C(+)
μν = 〈�|ĉ†

μĉ†
ν |�′〉

〈�|�′〉 , (16c)

C(0)
μν = 〈�|ĉ†

μĉν |�′〉
〈�|�′〉 , (16d)

C(−)
μν = 〈�|ĉμĉν |�′〉

〈�|�′〉 . (16e)

Although one can calculate I3 in the above straightforward
way, it should be much time-consuming due to the six-fold
loops in large model space and the non-negligible CPU time
for computation of the Pfaffian of (2N + 6) × (2N + 6) ma-
trix [61] for each loop. In the following we derive a compact
form for the evaluation of I3 in terms of Pfaffians. The deriva-
tion can be done by either Hara’s prescription or the expansion
properties of Pfaffian with respect to six neighboring rows. We
would adopt the former way and leave the equivalent latter
way in the Appendix.

For the 〈�|ẑ1 · · · ẑLĉ†
μĉ†

ν ĉ†
δ ĉγ ĉρ ĉω ẑL+1 · · · ẑ2N |�′〉 in the

calculations of I3 in Eq. (14), by either the generalized Wick’s
theorem or the Pfaffian formula in Eq. (11) we need to con-
sider (2N + 6 − 1)!! terms, each of the terms corresponds to
a possible contraction way for {ẑ, ĉ†, ĉ}. From Hara’s pre-
scription one can classify these (2N + 6 − 1)!! terms into four
classes, and get

I3

〈�|�′〉 = O(0) + O(1) + O(2) + O(3). (17)

The first class O(0) corresponds to contractions among
{ĉ†

μĉ†
ν ĉ†

δ ĉγ ĉρ ĉω} themselves multiplied by contractions among
{ẑi, 1 � i � 2N}, i.e.,

O(0) = W0Pf(S), (18)

where

W0 =
∑

μνδωργ

Wμνδωργ Cμνδγ ρω, (19)

Cμνδγ ρω = C(+)
μν C(0)

δγ C(−)
ρω − C(+)

μν C(0)
δρ C(−)

γω + C(+)
μν C(0)

δω C(−)
γ ρ

− C(+)
μδ C(0)

νγ C(−)
ρω + C(+)

μδ C(0)
νρ C(−)

γω − C(+)
μδ C(0)

νω C(−)
γ ρ

+ C(0)
μγ C(+)

νδ C(−)
ρω − C(0)

μγ C(0)
νρ C(0)

δω + C(0)
μγ C(0)

νω C(0)
δρ

− C(0)
μρC(+)

νδ C(−)
γω + C(0)

μρC(0)
νγ C(0)

δω − C(0)
μρC(0)

νω C(0)
δγ

+ C(0)
μωC(+)

νδ C(−)
γ ρ − C(0)

μωC(0)
νγ C(0)

δρ + C(0)
μωC(0)

νρ C(0)
δγ .

(20)

The second class O(1) corresponds to contractions between
one pair of operators in {ĉ†

μĉ†
ν ĉ†

δ ĉγ ĉρ ĉω} and one pair of oper-
ators in {ẑi, 1 � i � 2N}, multiplied by contractions among
the remaining two pairs in {ĉ†

μĉ†
ν ĉ†

δ ĉγ ĉρ ĉω} then multiplied by
contractions among the remaining N − 1 pairs in {ẑi, 1 � i �
2N}, i.e.,

O(1) =
2N∑
i j

W (1)
i j (−1)i+ jαi jPf(S{i, j}), (21)

where

W (1)
i j =

∑
μνδωργ

Wμνδωργ Di j
μνδγ ρω, (22)

Di j
μνδγ ρω = S(+)

μi S(+)
ν j

(
C(0)

δγ C(−)
ρω − C(0)

δρ C(−)
γω + C(0)

δω C(−)
γ ρ

)
+ S(+)

μi S(+)
δ j

( − C(0)
νγ C(−)

ρω + C(0)
νρ C(−)

γω − C(0)
νω C(−)

γ ρ

)
+ S(+)

μi S(−)
γ j

(
C(+)

νδ C(−)
ρω − C(0)

νρ C(0)
δω + C(0)

νω C(0)
δρ

)
+ S(+)

μi S(−)
ρ j

( − C(+)
νδ C(−)

γω + C(0)
νγ C(0)

δω − C(0)
νω C(0)

δγ

)
+ S(+)

μi S(−)
ω j

(
C(+)

νδ C(−)
γ ρ − C(0)

νγ C(0)
δρ + C(0)

νρ C(0)
δγ

)
+ S(+)

νi S(+)
δ j

(
C(0)

μγ C(−)
ρω − C(0)

μρC(−)
γω + C(0)

μωC(−)
γ ρ

)
+ S(+)

νi S(−)
γ j

( − C(+)
μδ C(−)

ρω + C(0)
μρC(0)

δω − C(0)
μωC(0)

δρ

)
+ S(+)

νi S(−)
ρ j

(
C(+)

μδ C(−)
γω − C(0)

μγ C(0)
δω + C(0)

μωC(0)
δγ

)
+ S(+)

νi S(−)
ω j

( − C(+)
μδ C(−)

γ ρ + C(0)
μγ C(0)

δρ − C(0)
μρC(0)

δγ

)
+ S(+)

δi S(−)
γ j

(
C(+)

μν C(−)
ρω − C(0)

μρC(0)
νω + C(0)

μωC(0)
νρ

)
+ S(+)

δi S(−)
ρ j

( − C(+)
μν C(−)

γω + C(0)
μγ C(0)

νω − C(0)
μωC(0)

νγ

)
+ S(+)

δi S(−)
ω j

(
C(+)

μν C(−)
γ ρ − C(0)

μγ C(0)
νρ + C(0)

μρC(0)
νγ

)
+ S(−)

γ i S(−)
ρ j

(
C(+)

μν C(0)
δω − C(+)

μδ C(0)
νω + C(0)

μωC(+)
νδ

)
+ S(−)

γ i S(−)
ω j

( − C(+)
μν C(0)

δρ + C(+)
μδ C(0)

νρ − C(0)
μρC(+)

νδ

)
+ S(−)

ρi S(−)
ω j

(
C(+)

μν C(0)
δγ − C(+)

μδ C(0)
νγ + C(0)

μγ C(+)
νδ

)
.

(23)

In Eq. (21) S{i, j} is defined as a submatrix of S with its ith
and jth rows and columns removed, the phase (−1)i+ j and the
permutation phase αi j come from the contractions regarding
ẑi and ẑ j , in which αi j = 1 when i < j and αi j = −1 when
i > j.

Similarly, the third class O(2) corresponds to contractions
between two pairs of operators in {ĉ†

μĉ†
ν ĉ†

δ ĉγ ĉρ ĉω} and two
pairs of operators in {ẑi, 1 � i � 2N}, multiplied by contrac-
tions among the remaining one pair in {ĉ†

μĉ†
ν ĉ†

δ ĉγ ĉρ ĉω} then
multiplied by contractions among the remaining N − 2 pairs
in {ẑi, 1 � i � 2N}, i.e.,

O(2) =
2N∑
i jkl

W (2)
i jkl (−1)i+ j+k+lαi jkl Pf(S{i, j, k, l}), (24)
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where

W (2)
i jkl =

∑
μνδωργ

Wμνδωργ Ei jkl
μνδγ ρω, (25)

Ei jkl
μνδγ ρω = S(+)

μi S(+)
ν j S(+)

δk S(−)
γ l C(−)

ρω − S(+)
μi S(+)

ν j S(+)
δk S(−)

ρl C(−)
γω

+ S(+)
μi S(+)

ν j S(+)
δk S(−)

ωl C(−)
γ ρ + S(+)

μi S(+)
ν j S(−)

γ k S(−)
ρl C(0)

δω

− S(+)
μi S(+)

ν j S(−)
γ k S(−)

ωl C(0)
δρ + S(+)

μi S(+)
ν j S(−)

ρk S(−)
ωl C(0)

δγ

− S(+)
μi S(+)

δ j S(−)
γ k S(−)

ρl C(0)
νω + S(+)

μi S(−)
ω j S(+)

δk S(−)
γ l C(0)

νρ

− S(+)
μi S(+)

δ j S(−)
ρk S(−)

ωl C(0)
νγ + S(+)

μi S(−)
γ j S(−)

ρk S(−)
ωl C(+)

νδ

+ S(+)
νi S(+)

δ j S(−)
γ k S(−)

ρl C(0)
μω − S(+)

νi S(−)
ω j S(+)

δk S(−)
γ l C(0)

μρ

+ S(+)
νi S(+)

δ j S(−)
ρk S(−)

ωl C(0)
μγ − S(+)

νi S(−)
γ j S(−)

ρk S(−)
ωl C(+)

μδ

+ S(+)
δi S(−)

γ j S(−)
ρk S(−)

ωl C(+)
μν . (26)

In Eq. (24) S{i, j, k, l} is defined as a submatrix of S with its
ith, jth, kth, and lth rows and columns removed, the phase
(−1)i+ j+k+l and the permutation phase αi jkl come from the
contractions regarding ẑi, ẑ j , ẑk , and ẑl , where αi jkl = 1 when

i < j < k < l and changes its sign one time for each permu-
tation among the indices i, j, k, l .

The last class O(3) reflects the last possible contraction way,
i.e., each of the (all) three pairs of operators in {ĉ†

μĉ†
ν ĉ†

δ ĉγ ĉρ ĉω}
are contracted with each of the three pairs of operators in
{ẑi, 1 � i � 2N}, multiplied by contractions among the re-
maining N − 3 pairs in {ẑi, 1 � i � 2N}, for this way one has

O(3) =
2N∑

i jklmn

W (3)
i jklmn(−1)i+ j+k+l+m+nαi jklmn

× Pf(S{i, j, k, l, m, n}), (27)

where

W (3)
i jklmn =

∑
μνδωργ

Wμνδωργ F i jklmn
μνδγ ρω, (28)

F i jklmn
μνδγ ρω = S(+)

μi S(+)
ν j S(+)

δk S(−)
γ l S(−)

ρm S(−)
ωn . (29)

Here, the matrix S{i, j, k, l, m, n} and the phases
(−1)i+ j+k+l+m+n, αi jklmn are defined in a similar way as
the O(2) case.

From Eqs. (17), (18), (21), (24), (27) we can get a Pfaffian
formula for the three-body operator matrix elements as

I3

〈�|�′〉 = O(0) + O(1) + O(2) + O(3)

= W0Pf(S) +
2N∑
i j

W (1)
i j (−1)i+ jαi jPf(S{i, j}) +

2N∑
i jkl

W (2)
i jkl (−1)i+ j+k+lαi jkl Pf(S{i, j, k, l})

+
2N∑

i jklmn

W (3)
i jklmn(−1)i+ j+k+l+m+nαi jklmnPf(S{i, j, k, l, m, n}). (30)

Such an algorithm in Eq. (30) can also be obtained by adopt-
ing the expansion property of Pfaffian with respect to six
neighboring rows (see Appendix).

In most cases of practical applications, the norm overlaps
are nonzero, so that we have Pf(S) �= 0 from Eqs. (9), (11).
For these cases the inverse of the matrix S would exist and we
can then get a more compact and efficient expression for I3 by
applying the following Pfaffian identity (the Pfaffian version
of the Lewis Carroll formula) which is derived by Mizusaki
and Oi (see Eq. 49 of Ref. [64]):

Pf(X)Pf[(X−1)I ] = (−1)|I|Pf(XĪ ), (31)

which holds for any skew-symmetric matrix X. Let the ma-
trix X has 2N × 2N elements as the matrix S in the above
discussions, and employ [2N] ≡ {1, 2, 3, . . . , 2N} to denote a
set of integers which correspond to the numbers of rows and
columns of the matrix X. We divide [2N] in two groups, with
I ≡ {i1, i2, i3, . . . , i2n} denote a set of indices which corre-
sponds to a subset of [2N] with 1 � {i1, i2, i3, . . . , i2n} � 2N ,
the rest of the indices are denoted as Ī = [2N] − I mean-
ing the complementary group of I in [2N]. In Eq. (31)
|I| = ∑2n

k=1 ik , X−1 labels the inverse matrix of X and XI

represents a 2n × 2n skew matrix with its matrix elements

being expressed as (XI )k,l = Xik ,il . The notation XĪ labels a
2(N − n) × 2(N − n) submatrix of the matrix X by removing
the rows and columns of {i1, i2, i3, . . . , i2n} from the original
matrix X.

From the Pfaffian identity shown in Eq. (31), the Pfaffians
of submatrix in Eq. (30) can be avoided and the expression of
I3 in Eq. (30) can by further written as (see Appendix)

I3

〈�|�′〉 = W0Pf(S) − Tr(W (1)S−1)Pf(S)

+
2N∑
i jkl

W (2)
i jkl

(
S−1

i j S−1
kl − S−1

ik S−1
jl + S−1

il S−1
jk

)
Pf(S)

+
2N∑

i jklmn

W (3)
i jklmnS−1

i jklmnPf(S), (32)

where

S−1
i jklmn = S−1

i j S−1
kl S−1

mn − S−1
i j S−1

km S−1
ln + S−1

i j S−1
kn S−1

lm

− S−1
ik S−1

jl S−1
mn + S−1

ik S−1
jm S−1

ln − S−1
ik S−1

jn S−1
lm

+ S−1
il S−1

jk S−1
mn − S−1

il S−1
jm S−1

kn + S−1
il S−1

jn S−1
km
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− S−1
im S−1

jk S−1
ln + S−1

im S−1
jl S−1

kn − S−1
im S−1

jn S−1
kl

+ S−1
in S−1

jk S−1
lm − S−1

in S−1
jl S−1

km + S−1
in S−1

jm S−1
kl . (33)

Now let us remark the differences between the calcula-
tion of three-body operator matrix elements I3 by Eq. (14)
directly and the evaluation of I3 by the Pfaffian formula in
Eq. (32). For the former way, due to the six-fold loops of
{μνδωργ } in large model space (with dimension M), as many
as M6 Pfaffians of (2N + 6) × (2N + 6) matrices need to be
calculated numerically, which would turn out to be too time-
consuming for large model space as the calculation time of
Pfaffian is non-negligible [61]. On the other hand, we note the
fact that for either the spectroscopy or the transition and/or
decay problems, the norm overlaps in Eqs. 9(a), 9(b) should
be calculated first before the evaluation of matrix elements of
physical operators in Eq. 9(c) (or I3 in the above discussions).
This indicates that, as seen from Eq. (11), the matrix S, its
Pfaffian Pf(S) and its reverse S−1 have already been prepared
and stored to the memory before the evaluation of I3, which
means that the Pfaffian formula in Eq. (32) should be much
efficient than Eq. (14) since taking data from memory and then
making manipulation is usually much faster than preparing
matrices and then calculating their Pfaffians.

More interestingly, one can further reduce the Pfaffian
formula in Eq. (32) according to the underlying physics in
practical applications. As discussed in Eqs. (17), (18), (21),
(24), (27), the four terms in Eq. (32) correspond to con-
tractions of the three-body operator with no pair, one pair,
two pairs, and three pairs of operators in the configurations
{ẑi, 1 � i � 2N}, respectively. Therefore, for even-even nu-
clei, if only the collective degrees of freedom are of interest
for studies of low-lying states so that only qp vacua are
included in the configuration space (as for most of the cur-
rent GCM methods [13,16,17]), we would have 2N = 0 and
only the first term W0Pf(S) survives in Eq. (32). Similarly,
for low-lying states of odd-mass nuclei, when only the 1-qp
configurations [70] are considered we then have 2N = 2 and
only the first two terms in Eq. (32) would survive. For an
ambitious GCM method that considers both collective and
single-particle degrees of freedom taking into account up to
2-qp configurations as in Ref. [22], one has 2N � 4 and does
not need to worry about the last term in Eq. (32).

Finally, we discuss a rare case in which S−1 does not exist
so that Eq. (32) is no longer valid. For such case we can
get another expression for I3 readily in the similar way as in
Ref. [68] (see Eqs. (38, 39, 53) of Ref. [68] for details):

I3

〈�|�′〉 = W0Pf(S) −
2N∑
i j

(−1)i+ j+1αi jS̃
i
i jPf(S̃i{i, j}) +

2N∑
i j

(−1)i+ j+1αi j

2N∑
kl

(−1)k+l+1αkl S̃
i jk
i jkl Pf(S̃i jk{i, j, k, l})

+
2N∑

i jklmn

W (3)
i jklmn(−1)i+ j+k+l+m+nαi jklmnPf(S{i, j, k, l, m, n})

= W0Pf(S) −
2N∑
i

Pf(S̃i ) +
2N∑
i j

(−1)i+ j+1αi j

2N∑
k

Pf(S̃i jk{i, j})

+
2N∑

i jklmn

W (3)
i jklmn(−1)i+ j+k+l+m+nαi jklmnPf(S{i, j, k, l, m, n}), (34)

where we have adopted the relation Pf(X) =∑
j (−1)i+ j+1αi jXi jPf(X{i, j}) [68] so that the matrix S̃i

is constructed in the way that only replacing the ith row and
column of matrix S by the ith row of W (1), i.e., S̃i

i j = W (1)
i j

and keep the skew symmetry. The matrix S̃i jk is the same
as S except for replacing the kth row and column by the
matrix elements of W (2), i.e., S̃i jk

i jkl = W (2)
i jkl and keep the

skew symmetry of S̃i jk .
The validity of the new Pfaffian formula in Eq. (32) can be

checked numerically, for which we constructed a testing FOR-
TRAN90 code which can calculate one matrix element I3 by
both the conventional method in Eq. (14) and the new Pfaffian
formula in Eq. (32), where the matrix elements for W, S, C
in Eqs. (10), (12), (16) are adopted as random numbers. The
above two methods are found to give exactly the same values
for I3 and the validity of the new Pfaffian formula in Eq. (32)
is then confirmed.

Besides, the efficiency of the Pfaffian algorithm in Eq. (32)
can also be evaluated roughly by the testing code. In Fig. 1 we
show the elapsed CPU time for the conventional method in
Eq. (14) t1, and for the new Pfaffian formula in Eqs. (19),
(22), (25), (28), (32) t2 which includes both the calculations
of W0, W (1), W (2), W (3) and the calculation of I3 by Eq. (32),
as a function of the number of qp 2N and the dimension
of model space M, where the calculations are performed on
an Intel CPU with 2.6GHz. For the results shown in Fig. 1,
which correspond to calculations of only one matrix element
I3 each time, the calculation time for I3 by Eq. (32) is neg-
ligible (less than 3 × 10−4 s) so that the calculation time for
W0, W (1), W (2), W (3) dominates completely t2. In this case,
as seen from Fig. 1(a), the new algorithm (t2) is more efficient
than the conventional one (t1) by about one order of magnitude
when 2N = 0 where no qp configuration is considered. One
can see that the new algorithm (t2) is about 20 times faster
than the conventional one (t1) when 2N = 2, and about 5
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FIG. 1. The elapsed CPU time for the conventional method in
Eq. (14) t1 and the new Pfaffian formula in Eqs. (19), (22), (25), (28),
(32) t2 which includes the calculations for W0, W (1), W (2), and W (3),
as a function of 2N and M.

times faster than the conventional one (t1) when 2N = 4, as
seen from Figs. 1(b) and 1(c) which correspond to including
1-qp and 2-qp configurations, respectively. Including further
higher-order qp configurations is unpractical for three-body-
operator problems, since the elapsed CPU time for even one
matrix element I3 is as time-consuming as 1000 s when 2N =
6 and M = 50 as seen from Fig. 1(d), for which the new
algorithm is a little bit slower than the conventional one.

On the other hand, different from the cases of calcu-
lating only one matrix element I3 each time in Fig. 1, in
practical nuclear-structure applications, fortunately, a lot of
matrix elements with different qp configurations need to be
calculated. Many of them would then share the common
W0, W (1), W (2), W (3) which then need to be evaluated just
one time for given |�〉 and |�′〉 [26,68]. As the calculation
time for W0, W (1), W (2), W (3) dominates completely t2, this

then implies that the new Pfaffian formula in Eq. (32) should
be much more efficient than the effects shown in Fig. 1.

IV. SUMMARY

To summarize, we present a compact and efficient Pfaf-
fian algorithm for evaluation of matrix elements of general
three-body operators in beyond-mean-field nuclear models
such as the generator coordinate method (GCM) or angular-
momentum-projection (AMP) based methods, for cases with
or without qp configurations. Further optimization of the
Pfaffian algorithm in practical nuclear-structure problems is
discussed for cases such as the low-lying states of even-even
or odd-mass nuclei. The validity of the new Pfaffian algorithm
is confirmed numerically by a testing code, from which the
efficiency of the new Pfaffian algorithm is tentatively explored
in different cases. The new Pfaffian algorithm turns out to
be about five times (one order of magnitude) faster than the
conventional method when four qp operators (less than four
qp operators) are considered, and much higher efficiency of
the Pfaffian algorithm in practical nuclear-structure models is
expected.
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APPENDIX

First, we show that the Eq. (30) can be obtained equiva-
lently by the expansion property of the Pfaffian with respect
to six neighboring rows or columns which can be derived
in the similar way as in Refs. [68] based on Lemma 2.3 of
Ref. [75]. The derivation is complicated and tedious so that
we only provide the conclusion in the following.

The expansion property of the Pfaffian for a matrix X with
respect to the neighboring i0th, j0th, k0th, l0th, m0th, and n0th
rows reads as

Pf(X ) = Yi0 j0k0l0m0n0 Pf(X {i0, j0, k0, l0, m0, n0})

+
∑

i j

(−1)i+ jαi jZ
i j
i0 j0k0l0m0n0

Pf(X {i0, j0, k0, l0, m0, n0, i, j})

+
∑
i jkl

(−1)i+ j+k+lαi jklW
i jkl

i0 j0k0l0m0n0
Pf(X {i0, j0, k0, l0, m0, n0, i, j, k, l})

+
∑

i jklmn

(−1)i+ j+k+l+m+nαi jklmnU
i jklmn
i0 j0k0l0m0n0

Pf(X {i0, j0, k0, l0, m0, n0, i, j, k, l, m, n}), (A1)

where

Yi0 j0k0l0m0n0 = Xi0 j0 Xk0l0 Xm0n0 − Xi0 j0 Xk0m0 Xl0n0 + Xi0 j0 Xk0n0 Xl0m0 − Xi0k0 Xj0l0 Xm0n0 + Xi0k0 Xj0m0 Xl0n0 − Xi0k0 Xj0n0 Xl0m0

+ Xi0l0 Xj0k0 Xm0n0 − Xi0l0 Xj0m0 Xk0n0 + Xi0l0 Xj0n0 Xk0m0 − Xi0m0 Xj0k0 Xl0n0 + Xi0m0 Xj0l0 Xk0n0 − Xi0m0 Xj0n0 Xk0l0

+ Xi0n0 Xj0k0 Xl0m0 − Xi0n0 Xj0l0 Xk0m0 + Xi0n0 Xj0m0 Xk0l0 , (A2)
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Zi j
i0 j0k0l0m0n0

= Xi0iXj0 jXk0l0 Xm0n0 − Xi0iXj0 jXk0m0 Xl0n0 + Xi0iXj0 jXk0n0 Xl0m0 − Xi0iXk0 jXj0l0 Xm0n0 + Xi0iXk0 jXj0m0 Xl0n0

− Xi0iXk0 jXj0n0 Xl0m0 + Xi0iXl0 jXj0k0 Xm0n0 − Xi0iXl0 jXj0m0 Xk0n0 + Xi0iXl0 jXj0n0 Xk0m0

− Xi0iXm0 jXj0k0 Xl0n0 + Xi0iXm0 jXj0l0 Xk0n0 − Xi0iXm0 jXj0n0 Xk0l0 + Xi0iXn0 jXj0k0 Xl0m0 − Xi0iXn0 jXj0l0 Xk0m0

+ Xi0iXn0 jXj0m0 Xk0l0 + Xj0iXk0 jXi0l0 Xm0n0 − Xj0iXk0 jXi0m0 Xl0n0 + Xj0iXk0 jXi0n0 Xl0m0

− Xj0iXl0 jXi0k0 Xm0n0 + Xj0iXl0 jXi0m0 Xk0n0 − Xj0iXl0 jXi0n0 Xk0m0 + Xj0iXm0 jXi0k0 Xl0n0 − Xj0iXm0 jXi0l0 Xk0n0

+ Xj0iXm0 jXi0n0 Xk0l0 − Xj0iXn0 jXi0k0 Xl0m0 + Xj0iXn0 jXi0l0 Xk0m0 − Xj0iXn0 jXi0m0 Xk0l0

+ Xk0iXl0 jXi0 j0 Xm0n0 − Xk0iXl0 jXi0m0 Xj0n0 + Xk0iXl0 jXi0n0 Xj0m0 − Xk0iXm0 jXi0 j0 Xl0n0 + Xk0iXm0 jXi0l0 Xj0n0

− Xk0iXm0 jXi0n0 Xj0l0 + Xk0iXn0 jXi0 j0 Xl0m0 − Xk0iXn0 jXi0l0 Xj0m0 + Xk0iXn0 jXi0m0 Xj0l0

+ Xl0iXm0 jXi0 j0 Xk0n0 − Xl0iXm0 jXi0k0 Xj0n0 + Xl0iXm0 jXi0n0 Xj0k0 − Xl0iXn0 jXi0 j0 Xk0m0 + Xl0iXn0 jXi0k0 Xj0m0

−Xl0iXn0 jXi0m0 Xj0k0 + Xm0iXn0 jXi0 j0 Xk0l0 − Xm0iXn0 jXi0k0 Xj0l0 + Xm0iXn0 jXi0l0 Xj0k0 , (A3)

W i jkl
i0 j0k0l0m0n0

= Xi0iXj0 jXk0kXl0lXm0n0 − Xi0iXj0 jXk0kXm0lXl0n0 + Xi0iXj0 jXk0kXn0lXl0m0 + Xi0iXj0 jXl0kXm0lXk0n0

− Xi0iXj0 jXl0kXn0lXk0m0 + Xi0iXj0 jXm0kXn0lXk0l0 − Xi0iXk0 jXl0kXm0lXj0n0 + Xi0iXn0 jXk0kXl0lXj0m0

− Xi0iXk0 jXm0kXn0lXj0l0 + Xi0iXl0 jXm0kXn0lXj0k0 + Xj0iXk0 jXl0kXm0lXi0n0 − Xj0iXn0 jXk0kXl0lXi0m0

+ Xj0iXk0 jXm0kXn0lXi0l0 − Xj0iXl0 jXm0kXn0lXi0k0 + Xk0iXl0 jXm0kXn0lXi0 j0 , (A4)

U i jklmn
i0 j0k0l0m0n0

= Xi0iXj0 jXk0kXl0lXm0mXn0n. (A5)

from Eqs. (14), (A1) one can then obtain Eq. (30) readily.
Secondly we show that from Eq. (31) we get

Pf(S{i, j}) = (−1)i+ jαi jS
−1
i j Pf(S), (A6a)

Pf(S{i, j, k, l}) = (−1)i+ j+k+lαi jkl
(
S−1

i j S−1
kl − S−1

ik S−1
jl + S−1

il S−1
jk

)
Pf(S), (A6b)

Pf(S{i, j, k, l, m, n}) = (−1)i+ j+k+l+m+nαi jklmn
(
S−1

i j S−1
kl S−1

mn − S−1
i j S−1

km S−1
ln + S−1

i j S−1
kn S−1

lm − S−1
ik S−1

jl S−1
mn

+S−1
ik S−1

jm S−1
ln − S−1

ik S−1
jn S−1

lm + S−1
il S−1

jk S−1
mn − S−1

il S−1
jm S−1

kn + S−1
il S−1

jn S−1
km − S−1

im S−1
jk S−1

ln

+S−1
im S−1

jl S−1
kn − S−1

im S−1
jn S−1

kl + S−1
in S−1

jk S−1
lm − S−1

in S−1
jl S−1

km + S−1
in S−1

jm S−1
kl

)
Pf(S) (A6c)

with the help of which we can obtain Eq. (32) from Eq. (30).
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