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Systematics of E2 strength in the sd shell with the valence-space in-medium
similarity renormalization group

S. R. Stroberg,1,2,3,* J. Henderson ,1,4,5,† G. Hackman,1 P. Ruotsalainen,6 G. Hagen,7,8,1 and J. D. Holt 1,9

1TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
2Department of Physics, University of Washington, Seattle, Washington, USA

3Physics Division, Argonne National Laboratory, Lemont, Illinois, USA
4Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

5Lawrence Livermore National Laboratory, Livermore, California 94550, USA
6University of Jyväskylä, Department of Physics, P. O. Box 35, FI-40014 Jyväskylä, Finland

7Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
8Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

9Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec H3A 2T8, Canada

(Received 4 January 2022; accepted 3 March 2022; published 28 March 2022; corrected 2 June 2022)

Background: Recent developments in ab initio nuclear theory demonstrate promising results in medium- to
heavy-mass nuclei. A particular challenge for many of the many-body methodologies, however, is an accurate
treatment of the electric-quadrupole, E2, strength associated with collectivity.
Purpose: The valence-space in-medium similarity renormalization group (VS-IMSRG) is a particularly power-
ful method for accessing medium- and high-mass nuclei but has been found to underpredict E2 strengths. The
purpose of this work is to evaluate the isospin dependence of this underprediction.
Methods: We perform a systematic comparison of VS-IMSRG calculations with available literature. We
make use of isoscalar and isovector contributions to the E2 matrix elements to assess isoscalar and isovector
contributions to the missing strength.
Results: It is found that the E2 strength is consistent throughout Tz = | 1

2 |, Tz = |1|, Tz = | 3
2 |, and Tz = 2 pairs

within the sd shell. Furthermore, no isovector contribution to the deficiency is identified.
Conclusions: A comparison with toy-models and coupled-cluster calculations is used to discuss potential origins
of the missing strength, which arises from missing many-particle, many-hole excitations out of the model space.
The absence of any significant isovector contribution to the missing E2 strength indicates that the E2 strength
discrepancy, and therefore any correction, is largely independent of the isospin of the nuclei in question.
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I. INTRODUCTION

Modelling the atomic nucleus for all but the lightest sys-
tems requires an approximate many-body method in order
to make the problem computationally tractable. The approx-
imation used will naturally result in some deficiencies in
the reproduction of observable properties. Understanding how
these deficiencies behave and can be corrected for is essential
in ensuring no loss of predictive power arising from the choice
of many-body method. This is especially true as a model is
used to probe unexplored regions of the nuclear landscape
where experimental data is completely absent. The region
about the line of N = Z therefore provides an exceptional test-
ing ground for models, allowing for any isospin-dependence
of model deficiencies to be identified through careful compar-
ison with high-precision data. This gives confidence that at
extreme isospin (i.e., approaching the proton and neutron drip
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line), corrections for deficiencies in the many-body method
can still reliably be employed.

The strength of electric quadrupole (E2) transitions be-
tween excited states in nuclei is closely related to the
collective motion of nucleons arising from deviations of the
nucleus from sphericity. The theoretical reproduction of this
E2 strength has long been problematic for, for example, the
phenomenological nuclear shell model. The shell model be-
gins with a spherical potential, and collectivity has therefore
to be introduced through multiparticle multihole (mp-mh) ex-
citations with large contributions from configurations outside
the shell-model, or valence, space. In a recent work [1], we
investigated the ability of modern, microscopically derived
nuclear theory to reproduce E2 strength without the use of
adjustments to the nucleon charges (effective charges) that
are required in shell-model methodologies. It was found that
the symplectic no-core shell model (NCSpM) [2] reproduced
the experimental data well using an appropriate subset of
mp-mh excitations to account for the collective motion of
the nucleons. Ab initio valence-space in-medium similarity
renormalization group (VS-IMSRG) calculations meanwhile
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failed to reproduce the absolute E2 strengths in Ref. [1] but
provided superior qualitative description of the experimental
evolution of E2 strength in the sd shell, as compared to
phenomenological shell-model calculations.

In low-mass systems, where quasiexact methodologies
such as the no-core shell model (NCSM) can be employed,
effective charges can be reliably calculated and indeed studied
[3–5]. Beyond this region however, some approximation must
be employed. While the use of symmetry adjusted methods
such as the NCSpM and the closely related symmetry-
adjusted no-core shell model allow for calculations beyond the
limits of, for example, the NCSM, they remain tractable only
for nuclei below about mass 40. The VS-IMSRG methodol-
ogy, however, is far more widely applicable, with calculations
approaching convergence even in the vicinity of 132Sn [6] and
beyond [7], and spanning both proton and neutron driplines
[8]. It is therefore imperative that the model deficiencies
(and corrections thereof) are well understood, especially with
regards to the isospin degree of freedom as future studies
move into heavier, more neutron-rich regions of the nuclear
landscape.

In this work, we perform a systematic comparison be-
tween experimental E2 strengths and both shell model and
VS-IMSRG calculations. By making use of the isoscalar and
isovector matrix element formalism of Brown et al. [9], we
are able to assess not only the E2 strength deficiency with a
wider selection of data, but also to isolate any isovector terms
that might be introduced in the many-body approximation.

II. CALCULATIONS AND DATA

B(E2) values extracted in the recent work are presented
in Table I, along with the present state of knowledge for
Tz = ± 1

2 nuclei with 19 � A � 31. Also shown are the results
of calculations using the a ab initio VS-IMSRG methodol-
ogy [10–13], with a consistently evolved valence-space E2
operator [14] which does not rely on the use of any effective
charges. The VS-IMSRG calculations were performed using
the EM1.8/2.0 interaction [15,16], which was generated by
SRG evolution [17] of the chiral N3LO NN interaction of
Entem and Machleidt [18], and adding a nonlocally regulated
N2LO 3N interaction with the low energy constants adjusted
to reproduce the triton binding energy and the 4He matter
radius. While only constrained with A � 4 data, this inter-
action gives a remarkable reproduction of binding energies
and spectroscopy up to at least A ≈ 100, with a general un-
derprediction of radii [8,19,20]. Calculations are performed
in a harmonic oscillator basis of h̄ω = 20 MeV with 2n +
� � emax = 12 and an additional truncation on the three
body matrix elements e1 + e2 + e3 � E3max = 16. Following
a Hartree-Fock calculation, all operators are truncated at the
normal-ordered two-body level. Also shown are shell-model
calculations performed with the USDB interaction [21]. In
both cases, shell model diagonalizations are performed using
the code NUSHELLX [22], and the transition densities needed
for the VS-IMSRG operators are computed using the NUTBAR

code [23]. The nominal USDB effective charges of ep = 1.36
and en = 0.45 were used for all phenomenological shell-

TABLE I. B(E2) values for transitions in |Tz = 1
2 | nuclei in

the sd shell, comparing experimental values with those calculated
using VS-IMSRG with the EM1.8/2.0 interaction and with the
USDB shell-model interaction. Shell-model calculations used effec-
tive charges of ep = 1.36 and en = 0.45.

B(E2) ↓ [e2fm4]

Isotope Jπ
i Jπ

f Expt. VS-IMSRG USDB Ref. (Expt.)

19Ne 5
2

+
1

1
2

+
1

39.8 (15) 25.0 36.9 [25]
19F 5

2

+
1

1
2

+
1

20.9 (2) 9.8 19.4 [25]
21Na 5

2

+
1

3
2

+
1

136.5 (92) 56.1 90.2 [25]
21Ne 5

2

+
1

3
2

+
1

87.5 (58) 39.1 76.1 [25]
23Mg 5

2

+
1

3
2

+
1

135 (15) 75.2 117.3 [26]
23Na 5

2

+
1

3
2

+
1

106 (4) 56.9 109.1 [26]
25Al 1

2

+
1

5
2

+
1

13.2 (3) 7.6 15.6 [25]
25Mg 1

2

+
1

5
2

+
1

2.44 (4) 1.09 3.8 [25]
27Si 1

2

+
1

5
2

+
1

55.7 (64) 58.2 81.0 [25]
27Al 1

2

+
1

5
2

+
1

37.8 (11) 38.1 54.6 [25]
29P 3

2

+
1

1
2

+
1

14.3 (27) 17.2 45.8 [25]
29Si 3

2

+
1

1
2

+
1

21.7 (21) 7.4 31.0 [25]
31S 3

2

+
1

1
2

+
1

40.5 (116) 24.1 39.6 [25]
31P 3

2

+
1

1
2

+
1

24.3 (35) 16.7 35.2 [25]
31S 5

2

+
1

1
2

+
1

45.1 (127) 28.7 46.8 [25]
31P 5

2

+
1

1
2

+
1

37.0 (29) 23.3 44.4 [25]

model calculations. Shown in Table II are Tz = ±1 nuclei, in
Table III are Tz = ± 3

2 nuclei and in Table IV Tz = ±2 nuclei.

III. DISCUSSION

The experimental and calculated values for |Tz| = 1
2 , |Tz| =

1 and |Tz| = 2 are shown in Figs. 1–3, respectively. Due to

TABLE II. As Table I but for |Tz = 1| nuclei.

B(E2) ↓ [e2fm4]

Isotope Expt. VS-IMSRG USDB Ref. (Expt.)

18Ne 49.6 (50) 19.0 29.8 [25]
18O 9.3 (3) 0.7 3.3 [25]
22Mg 76.2 (92) 45.0 65.8 [1]
22Ne 46.9 (5) 22.7 49.0 [1,25]a

26Si 70.0 (69) 45.6 47.1 [25]
26Mg 61.3 (26) 36.2 69.0 [25]
30S 68.7 (40) 42.0 59.5 [25]

43.7 (44) [27]b

30Si 49.9 (65) 24.4 48.0 [25]
34Ar 44.5 (59) 30.6 46.3 [25]
34S 40.8 (11) 24.9 37.6 [25]

a- Weighted average of values in Refs. [1,25].
bTwo experimental values for 30S disagree significantly. The analysis
in the present work uses the evaluated value from Ref. [25].
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TABLE III. As Table I but for |Tz = 3
2 | nuclei.

B(E2) ↓ [e2fm4]

Isotope Jπ
i Jπ

f Expt. VS-IMSRG USDB Ref. (Expt.)

21Mg 1
2

+
1

5
2

+
1

131.1 (14) 94.6 132.0 [24]
21F 1

2

+
1

5
2

+
1

54.0(55) 23.6 60.5 [25]
21Mg 9

2

+
1

5
2

+
1

83.7 (140) 21.3 55.6 [24]
21F 9

2

+
1

5
2

+
1

14.3 (21) 6.4 16.8 [28]
33Ar 3

2

+
1

1
2

+
1

40.2(94) 19.8 33.6 [29]
33P 3

2

+
1

1
2

+
1

62.9 (252) 18.6 39.7 [25]
33Ar 5

2

+
1

1
2

+
1

36.5 (101) 25.4 45.4 [25]
33P 5

2

+
1

1
2

+
1

32.1 (50) 13.6 31.5 [25]

the limited available experimental data, values for |Tz| = 3
2 are

not plotted here, but a similar plot can be found in Ref. [24].
Clearly, from the results presented in Tables I to IV and
Figs. 1–3, the VS-IMSRG calculations underpredict absolute
B(E2) strength, as was previously reported [1,24]. As would
be expected, the USDB calculations with nominal effective
charges reproduce the absolute strength relatively well.

In order to understand the nature of the missing strength
in the VS-IMSRG calculations, it bears briefly summarizing
the many-body method. An approximately unitary transfor-
mation is performed on the Hamiltonian in the large Hilbert
space (here, 13 major oscillator shells) so as to decouple a
tractable valence space—analogous to a shell-model space—
from the full space. The result is an effective Hamiltonian
in which couplings to excitations out of the valence space
are suppressed. The use of a unitary transformation means
that, in principle, no physics is lost in this process. One can
then perform configuration interaction calculations within the
decoupled model space and capture all physics, even that
which might have involved couplings between the core and
the external model space in the original Hamiltonian. The
appeal of this method is clear, as it provides a computationally
tractable valence-space Hamiltonian without losing physics
information from the larger space. It is also necessary to
consistently evolve all operators for use in the transformed
model space. This evolution inevitably induces three- and

TABLE IV. As Table I but for |Tz = 2| nuclei.

B(E2) ↓ [e2fm4]

Isotope Expt. VS-IMSRG USDB Ref. (Expt.)

20Mg 35.4 (64) 26.3 37.6 [25]
20O 5.8 (2) 0.9 4.1 [25]
24Si 19.1(59) 41.4 47.3 [25]
24Ne 28.0(66) 13.8 40.6 [25]
28S 36.2(60) 45.1 50.6 [25]
28Mg 67.7(61) 28.4 63.5 [25]
32Ar 53.7(139) 37.1 53.5 [25]
32Si 32.0(91) 21.3 44.5 [25]

FIG. 1. B(E2) ↓ values for (top) Tz = − 1
2 and (bottom) Tz = + 1

2
nuclei. See text for details of the theoretical VS-IMSRG and USDB
calculations.

higher-body components, which in practice must be truncated
to make the problem tractable. The operator evolution is
therefore truncated at the normal-ordered two-body level—the
IMSRG(2) approximation—resulting in an inevitable loss of
information.

FIG. 2. B(E2) ↓ values for (top) Tz = −1 and (bottom) Tz = +1
nuclei. See text for details of the theoretical VS-IMSRG and USDB
calculations.
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FIG. 3. B(E2) ↓ values for (top) Tz = −2 and (bottom) Tz = +2
nuclei. See text for details of the theoretical VS-IMSRG and USDB
calculations.

Any disagreement with experiment will be due to one
of two sources: deficiencies in the input Hamiltonian (e.g.,
truncation of the EFT expansion), and truncations in the
many-body solution. It is likely that a large fraction of the
missing strength in the VS-IMSRG calculations arises from
the many-body side (though there will at least be some
impact from the small radii). We might expect, however, that
the inclusion of two-body elements in the operator evolution
will suppress the isovector component of this deficiency. The
first-order contribution from out-of-space effects couples an
in-space nucleon with an out-of-space nucleon. Due to the
dominance of the T = 0 channel over T = 1 in the interac-
tion, the coupling is strongest between np pairs. Since the E2
operator couples to the charge of the nucleon, this first-order
correction might be expected to predominantly affect out-
of-space protons coupling to in-space neutrons, as has been
discussed in terms of perturbation theory [30]. These effects
are captured by the IMSRG(2) approximation. For higher
orders, the out-of-space couplings become more numerous,
necessarily involving multiple nucleons and more configura-
tions, meaning any individual isovector coupling contributes
proportionally less to the ensemble of configurations and
yielding an approximately isoscalar net effect.

To investigate this effect, we employ the isoscalar (M0) and
isovector (M1) matrix element formalism of Brown et al. [9],
where

M0 =
√

B(E2; Tz < 0) + √
B(E2; Tz > 0)

2
(1)

and

M1 =
∣∣∣∣
√

B(E2; Tz < 0) − √
B(E2; Tz > 0)

�Tz

∣∣∣∣. (2)

FIG. 4. (Top) Ratio of M0 calculated from VS-IMSRG calcu-
lations and extracted from experimental data for sd-shell nuclei.
A fit to a constant (solid line) is also shown, along with the 1σ

uncertainties (dashed lines) on the result. The fit yields a deficiency in
the VS-IMSRG M0 value of approximately 75%. (Bottom) Residuals
for the fit.

Ratios of experimental to theoretical M0 values are shown in
Fig. 4 for the VS-IMSRG calculations and in Fig. 5 for the
USDB results. As expected, the VS-IMSRG results underpre-
dict the experimental data, with M0(IMSRG)

M0(Expt ) ≈ 75% on average.
By comparison, on average the USDB calculations reproduce
M0 well, with a modest overprediction. Of note is that, while
the VS-IMSRG calculations are unable to reproduce the M0

values, they provide a slightly improved description to the
shell-model calculations, as highlighted by the reduced scatter
in the residuals shown in the bottom panels of Figs. 4 and 5.
Note, for comparison, that without the use of effective charges
the USDB calculations yield M0(USDB)

M0(Expt ) ≈ 55%.
Figure 6 shows the differences between experimental and

calculated |M1| values for both the VS-IMSRG and USDB
calculations. Both VS-IMSRG and USDB calculations yield,
on average, |M1| values consistent with experiment. There are
some notable deviations, in particular in the A = 29, |Tz| =
1
2 case. Here, the experimental data are rooted in a single
excited-state lifetime measurement in 29Si [31], and a pair
of mixing ratio measurements [32,33] for the decay of the
first-excited state in 29P. Based on the significant deviation
in isovector matrix elements found here for both USDB and
VS-IMSRG calculations, these decays may merit further ex-
perimental study. This indicates that, to the level of presently
available experimental and theoretical uncertainty, the miss-
ing strength in the VS-IMSRG calculations is isoscalar, in
line with naive expectations. In previous work [1] we noted
a potential isovector component to the missing VS-IMSRG
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FIG. 5. (Top) Ratio of M0 calculated from USDB calculations
and extracted from experimental data for sd-shell nuclei. A fit to a
constant (solid line) is also shown, along with the 1σ uncertainties
(dashed lines) on the result. The fit indicates that the USDB M0

values approximately consistent with experiment on average, with
M0 (USDB)

M0Expt = 1.032(26). (Bottom) Residuals for the fit.

FIG. 6. Differences between experimentally determined M1 val-
ues and those calculated using the VS-IMSRG (top) and shell-model
with USDB (bottom). A fit to a constant (solid) line is also shown,
along with the 1σ uncertainties. Both USDB and VS-IMSRG results
are consistent with zero—indicating no missing isovector contribu-
tion at the level of the presently achieved uncertainties.

strength from a study of |Tz| = 1 nuclei. In light of the present,
comprehensive study of the sd shell, however, we find that this
effect is in fact due to a deficiency of isoscalar strength, rather
than any excess of isovector.

One can estimate the contribution of the Hamiltonian to
the deficiency in isoscalar strength through comparison with
charge radii. As previously mentioned [19] it has been found
that VS-IMSRG calculations using the EM1.8/2.0 interaction
underpredict charge-radii, with the underprediction being ap-
proximately 7%. The corresponding underprediction of the
E2 matrix element would then be 13%. Clearly, as shown in
Fig. 4, the underprediction in the calculations is larger than
can be explained by the small radii.

Prior to further discussion of the origins of the missing
E2 strength it is worth recalling the text book picture, ex-
emplified by the book of Bohr and Mottelson [34], in which
effective charges arise primarily due to coupling to a giant res-
onance. In that work, the E2 effective charge is estimated with
particle-vibration coupling in first order perturbation theory.
The vibration is described in the random phase approxima-
tion (RPA), obtained with a schematic quadrupole-quadrupole
interaction. To the extent that this treatment captures the dom-
inant collective enhancement, any model that incorporates
these degrees of freedom should successfully reproduce E2
strength. The present IMSRG method, as well as the coupled-
cluster method introduced shortly, naturally capture all RPA
correlations. We also comfortably include the most important
�N = 2 excitations, thanks to the 13 major oscillator shells
employed in the IMSRG evolution.

Inspired by the treatment in Ref. [34], we estimate the ef-
fective charge for a d5/2 nucleon above 16O using a schematic
model, consisting of a harmonic oscillator single-particle
spectrum and a quadrupole-quadrupole residual interaction
(see Appendix A for more detail), working in a space emax =
3, i.e., all orbits up to and including the p f shell. We compute
the effective charge at first-order in the particle-vibration cou-
pling. We treat the vibration at three levels of approximation:
“core polarization”, corresponding to noninteracting particle-
hole excitations, Tamm-Dancoff approximation (TDA), and
the RPA. See Appendix B for more details. We also compute
the effective charge with the VS-IMSRG by decoupling the sd
shell valence space. Finally, we employ a direct configuration
interaction (CI) diagonalization, performed with the KSHELL

code [35] with a truncation on the number Nmax of excitation
quanta out of the naive ground state. (We stop at Nmax = 6
because the dimension for Nmax = 8 is over 109.) The results
are listed in the top two rows of Table V.

We see that the effective charge obtained with the IMSRG
is comparable to—in fact slightly larger than—that obtained
with the RPA. (We also note that the CI calculation does not
show clear evidence of convergence in the Nmax truncation.)
It is clear that if the textbook picture were the full story, then
the IMSRG should not dramatically underpredict E2 strength.
A natural suspicion is that the schematic interaction is not
sufficiently realistic.

We repeat the exercise, replacing the schematic Hamilto-
nian with the chiral NN interaction plus the intrinsic kinetic
energy in the emax = 3, h̄ω = 16 MeV space. We also include
the chiral 3N interaction, normal ordered with respect to the
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TABLE V. Effective charge for a d5/2 nucleon above an 16O
core for different approximation schemes and interaction models.
The model space is defined by emax = 3, h̄ω = 16 MeV. The last
three columns give results of direct diagonalization truncated to Nmax

quanta of excitation.

VS- CI Nmax

int. CP TDA RPA IMSRG 2 4 6

Q · Q en 0.23 0.29 0.42 0.43 0.26 0.32 0.41
ep 1.25 1.31 1.44 1.49 1.30 1.37 1.46

NN en 0.16 0.17 0.17 0.17 0.14 0.17 0.19
only ep 1.05 1.09 1.10 1.04 1.04 1.05 1.05

NN en 0.24 0.31 0.33 0.26 0.20 0.23 0.29
+3N ep 1.07 1.16 1.19 1.02 1.04 1.05 1.05

Hartree-Fock 16O reference obtained within that model space.
(Because we work in the Hartree-Fock basis, the Nmax trunca-
tion does not strictly count oscillator quanta.) The results are
given in Table V. Here, we observe that the IMSRG yields a
smaller effective charge than the RPA, especially for protons.
This indicates that other non-RPA contributions act to reduce
the effective charge, consistent with the findings of Siegel and
Zamick [30] at second order in perturbation theory.

In fact, only a subset of the terms in the IMSRG(2)
flow equation contribute to RPA topologies. These are the
[η2b,O1b]1b part1 of the flow equation for O(s), and the
particle-hole part of the [η2b, H2b]2b flow equation for H (s)
which in turn defines η(s). If we neglect all terms other than
those mentioned above, the IMSRG effective charges for the
NN + 3N interaction increase to en = 0.28 and ep = 1.14.
On the other hand, for the schematic Q · Q interaction, the
effective charges are only slightly modified to en = 0.43 and
ep = 1.40.

The RPA effective charges includes all TDA contributions
as well as 2p2h, 4p4h, 6p6h, etc. excitations in the “zero-
phonon” 16O ground state, leading to 1p1h, 3p3h, 5p5h, etc.
excitations in the “one-phonon” excited states. The difference
between TDA and RPA is an indication of the importance of
the RPA ground-state correlations. While these correlations
have a large effect with the schematic Q · Q interaction, they
appear to be much less important with the realistic NN + 3N
interaction.

The Nmax = 2 CI effective charge includes all TDA con-
tributions, as well as 2p2h excitations from the p shell to the
sd shell and terms where both the initial and final state have
1p1h or 2p2h excitations. In addition, the CI wave function is
normalized, while the TDA wave function is only normalized
to first order in the particle-vibration coupling. The difference
between these two columns indicates the importance of these
additional effects, which are also missing in the RPA. For the
schematic and NN-only interactions, these corrections lead
to a minor reduction, while for the NN + 3N interaction the
effect is more dramatic.

1The subscripts 1b and 2b denote the one-body and two-body parts,
respectively, of the given operator.

TABLE VI. Contribution to the 0d5/2 effective charges broken
down by sub-block of the operator Oab. We use the EM1.8/2.0 NN +
3N interaction at h̄ω = 16, emax = 3. The CI calculations correspond
to Nmax = 6. The last row gives the summed isovector and isoscalar
contributions.

δen δep

RPA IMSRG CI RPA IMSRG CI

p → p f 0.248 0.192 0.175 0.135 0.051 0.058
s → sd 0.085 0.071 0.075 0.051 0.031 0.033
p → p 0 0.002 0.023 0 0.011 0.023
sd → sd 0 −0.014 0.001 0 −0.083 −0.074
f p → f p 0 0.012 0.012 0 0.009 0.009

δen + δep δen − δep

p → p f 0.383 0.243 0.233 0.112 0.141 0.116
s → sd 0.137 0.102 0.108 0.034 0.040 0.042
p → p 0 0.014 0.046 0 −0.009 0.000
sd → sd 0 −0.097 −0.073 0 0.070 0.075
f p → f p 0 0.021 0.021 0 0.003 0.003∑

0.520 0.283 0.335 0.146 0.245 0.235

More insight may be gleaned by inspecting the individ-
ual contribution of each operator matrix element Oab to the
effective charge for each combination of orbits a and b.
This is summarized in Table VI for each oscillator shell
sub-block (e.g., the p → p f row is the sum of all contribu-
tions Oab + Oba with a in the 0p shell and b in the 1p0 f
shell). By construction, the RPA effective charges only receive
contributions from s → sd and p → p f . The IMSRG and
CI calculations, however, also receive contributions from the
“diagonal” p → p, sd → sd , p f → p f terms. Because the
comparison with experiment indicates that missing IMSRG
strength is of isoscalar nature, we also present in Table VI the
contributions to the isoscalar and isovector effective charges.

We see that, compared to the CI result, the RPA overes-
timates the isoscalar effective charge and underestimates the
isovector charge. The IMSRG underestimates the isoscalar
charge and slightly overestimates the isovector charge, with
the largest discrepancy coming from the isoscalar p → p
sub-block.

Because the p orbits are occupied in the zero-order wave
function, a p → p transition requires particle-hole excitations
in both the initial and final state. In the particle-vibration
coupling picture, this would correspond to terms which are at
least second order in the particle-vibration interaction. If we
restrict the CI calculation to Nmax = 4, the isoscalar p → p
contribution is reduced by nearly half to 0.027, indicating
the importance of either 3p3h p → p f excitations, or 6p6h
p → sd (or something in between). Repeating the calculation
with the f p shell excluded leaves the p → p contribution
essentially unchanged. Finally, with the p f shell excluded we
are able to extend the CI calculation to Nmax = 8, where we
find that the p → p contribution is essentially unchanged from
the Nmax = 6 calculation. We conclude that the p → p term
has a significant contribution from 6p6h p → sd excitations,
while 8p8h are less important.
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As noted above, our CI calculations are not fully converged
with respect to the Nmax truncation, and so it is not clear
how much the IMSRG result deviates from the exact one.
To address this, we consider a more tractable problem where
an exact diagonalization is possible, namely 14C, using the
psdmwk interaction [36,37].

The choice of 14C also enables a comparison with coupled-
cluster (CC). Full configuration interaction (FCI) calculations
were performed in NUSHELLX. Quadrupole transition ampli-
tudes were therefore determined for protons and neutrons (Ap

and An, respectively) such that

B(E2; 2+ → 0+) = (Apep + Anen)2

5
, (3)

where ep and en correspond to the proton and neutron ef-
fective charges, respectively. Because we use a Hamiltonian
with phenomenologically determined matrix elements, the
corresponding radial wave functions are arbitrary. We use a
harmonic oscillator basis and present the amplitudes in units
of the oscillator length squared, b2. In the VS-IMSRG calcu-
lations, the IMSRG transformation is used to decouple the p
shell from the sd shell, and the resulting p-shell interaction
is diagonalized. We also present CC calculations in which
the 14C 2+ excited state is computed using the equation-
of-motion coupled-cluster (EOM-CC) formalism [38] which
amounts to an expansion in particle-hole excitations out of
the CC solution for the 0+ ground state. The order of the
expansions used is denoted in parentheses with the first value
indicating the highest order ground-state expansion and the
second indicating the EOM expansion used to calculate the
excited state. Ground-state expansions are CCSD, CCSDT-1
and CCSDT-3, corresponding to singles-doubles, singles-
doubles and leading-order triples, and singles-doubles and up
to third-order triples [39,40], respectively. The order of the
excited-state expansion is given as S, D, or T for 1p-1h, 2p-2h,
and 3p-3h expansions out of the ground state, respectively.
For example, CC(D/S) corresponds to a CCSD ground state
with the 2+ state expanded in terms of 1p-1h excitations, and
CC(T-1/T) corresponds to a CCSDT-1 ground state with the
2+ state expanded in terms of excitations up to 3p-3h.

It is found that the FCI ground- and excited-state ener-
gies are already well reproduced at the EOM-CCSD level
and by the VS-IMSRG calculations. On the other hand, we
find that the quadrupole amplitudes are consistently underpre-
dicted by VS-IMSRG, consistent with the comparison with
experimental data. The EOM-CC calculations show improved
reproduction of the FCI interactions with increasing order of
expansion, but still significantly underpredict the quadrupole
amplitudes even at the CC(T-3/T) order. Since all calculations
were performed with the same initial Hamiltonian, this miss-
ing strength must arise from the many-body approximation.
To further investigate this underprediction, the microscopic
behavior of the configuration interaction was controlled using
a series of CI calculations, with a truncation on the total
number of nucleon excitations out of the p shell. Figure 7
shows the results of these calculations.

The VS-IMSRG calculations yield a larger quadrupole
amplitude than that obtained with 0p0h (i.e., p-shell only)
calculations. This is as expected: the VS-IMSRG evolution

FIG. 7. Absolute 0+
1 and 2+

1 state energies (top row), neu-
tron quadrupole-excitation amplitudes (middle row), and proton
quadrupole-excitation amplitudes (bottom row) for 14C calculated
in a full configuration interaction diagonalization with the psdmwk
interaction, plotted against the number of excitations permitted from
the p to sd shell. Also shown are the values calculated using the
VS-IMSRG method, as well as using an equation-of-motion coupled-
cluster methodology. See text for details of calculations.

approximately decouples the p shell from the sd shell and
then diagonalizes within the p shell, so the amplitude within
the p shell should be completely accounted for. As the trun-
cation conditions are relaxed and excitations into the sd
shell are permitted, the VS-IMSRG calculations soon fail
to capture the additional strength, indicating that the SRG-
decoupling of the spaces has resulted in information relevant
to the quadrupole amplitude being lost. The CC calcula-
tions do not fully reproduce the pure p-shell amplitude for
the open-shell protons (bottom panel, Fig. 7). Perhaps more
interestingly, however, is a comparison to the closed-shell
neutrons (middle panel, Fig. 7). Increasing the order of the
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CC-EOM calculations—effectively allowing for correlated
3p-3h excitations, in the case of CC(T/T)—clearly helps re-
store missing strength. Due to the exponential ansatz, the CC
wave functions at CC(T/T) contain a fraction of up to 10p-
10h excitations, however beyond 3p-3h these excitations are
limited to disconnected cluster terms, i.e., products of lower
rank excitations. The above, combined with the observation
that most of the strength is reproduced at the 4p-4h level, sug-
gests that accurate treatment of E2 observables in the IMSRG
or CC frameworks will require including at least four-body
operators.

While a straightforward inclusion of four-body operators
would lead to an intractable n12 scaling, where n is the number
of single-particle states, one would hope that the relevant
contributions could be captured within a manageable approx-
imation scheme. For example, one could imagine including
effective phonon degrees of freedom. The present work also
suggests that additional isovector degrees of freedom would
be less important.

IV. CONCLUSIONS

Consistent with previous work, it was found that the
VS-IMSRG calculations significantly underpredict the E2
transition strength. This underprediction must arise from the
two-body truncation to the operator evolution applied to make
the method computationally tractable. A comprehensive sur-
vey of the literature was performed and compared with the
VS-IMSRG and shell-model results. It is found that the miss-
ing strength is predominantly isoscalar in nature, while the
missing isovector contribution is consistent with zero within
presently available experimental and theoretical uncertainties.
We provided a brief discussion on the VS-IMSRG calcula-
tions, presenting a potential explanation for the apparent lack
of isovector contribution to the missing E2 strength.

Inspired by textbook descriptions of effective charges, we
compared VS-IMSRG calculations with a number of ap-
proximations, including the RPA, using both a schematic
quadrupole-quadrupole interaction and the chiral interactions
used previously. We found that the effective charge calcu-
lated from the VS-IMSRG exceeded those of the approximate
methods for the schematic interaction. In the case of the chiral
interactions, we found evidence of non-RPA contributions
acting to reduce the effective charge for the VS-IMSRG,
while also showing that the effect of including 3N forces
when employing the RPA was effectively negligible. Finally,
full- and truncated-configuration interaction calculations of
14C were performed and compared with both VS-IMSRG and
coupled-cluster calculations. These calculations help identify
that connected 4p-4h excitations, missing in the VS-IMSRG
and CC calculations and typically unimportant for energies,
need to be included for accurate reproduction of quadrupole
observables.

ACKNOWLEDGMENTS

This work has been supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC), The
Canada Foundation for Innovation and the British Columbia

Knowledge Development Fund. TRIUMF receives federal
funding via a contribution agreement through the National
Research Council of Canada. Computations were performed
with an allocation of computing resources on Cedar at West-
Grid and Compute Canada, and on the Oak Cluster at
TRIUMF managed by the University of British Columbia
department of Advanced Research Computing (ARC). Work
at LLNL was performed under Contract No. DE-AC52-
07NA27344. This work was supported by the Office of
Nuclear Physics, U.S. Department of Energy, under Grant
no. desc0018223 (NUCLEI SciDAC-4 collaboration) and
by the Field Work Proposal No. ERKBP72 at Oak Ridge
National Laboratory (ORNL). S.R.S. was supported by the
U.S. Department of Energy office of Science, Office of Nu-
clear Physics, under Contract Nos. DE-FG02-97ER41014 and
DEAC02-06CH11357. J.H. is supported at the University of
Surrey under UKRI Future Leaders Fellowship Grant No.
MR/T022264/1. The codes IMSRG++ [41] and NUTBAR [23]
used in this work make use of the Armadillo library [42].

APPENDIX A: SCHEMATIC MODEL FOR EFFECTIVE
CHARGE CALCULATION

We take a harmonic oscillator single-particle spectrum
with a residual quadrupole-quadrupole interaction. Specifi-
cally, the Hamiltonian is

H =
∑

i

εia
†
i ai + 1

4

∑
i jkl

Vi jkl a
†
i a†

j alak, (A1)

where εi = 2ni + �i and

Vi jkl = κ (QikQjl − Qil Qjk ). (A2)

Here, Q is the quadrupole operator r2Y2(θ, φ), and κ is a
strength parameter. Following the estimate in [34], we take

κ = −ξ
4π

5

Mω2

A〈r2〉 (A3)

with ξ = 1, well below the critical value ξcrit ≈ 9/4 at which
the RPA solution for excitation energy collapses, signaling
instability against static deformation.

APPENDIX B: RPA EFFECTIVE CHARGE
CALCULATIONS

In this section we outline the calculation of effective
charges in the random phase approximation (see, e.g., [30]).
We use the convention that a, b, c label particles, i, j, k label
holes, and p, q run over all orbits. In a J-coupled representa-
tion, the RPA effective operator corresponding to a one-body
operator Oλ of spherical-tensor rank λ with reduced matrix
elements Oλ

pq = 〈p‖Oλ‖q〉 is given by [43]

Oλ,eff
ab = Oλ

ab +
∑

pq

(nq − np)
V̄ λ

ab̄pq̄

�qapb
Oλ,eff

pq , (B1)

where we have used a shorthand for the energy denominator
�pars ≡ εp + εq − εr − εs, np is the occupation of orbit p, and
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the Pandya-transformed interaction matrix elements

V̄ λ
pq̄rs̄ = −

∑
J

(2J + 1)

{
jp jq λ

jr js J

}
V J

psrq. (B2)

The bar on an index denotes a time-reversed state. Next, we
form the matrix Mab with elements

〈pq̄λ|Mab|rs̄λ〉 = (ns − nr )
V̄ λ

pq̄rs̄

�sarb
(B3)

and the vector 
O of matrix elements, in terms of which
Eq. (B1) becomes

Oλ,eff
ab = [ 
O + Mab 
Oeff ]ab. (B4)

The RPA resummation is performed by matrix inversion

Oλ,eff
ab = [(I − Mab)−1 
O]ab. (B5)

TDA corresponds to Eq. (B3) multiplied by δnpnr δnqns ,
and first-order core-polarization is obtained from Eq. (B1)
with the replacement Oλ,eff → Oλ on the right-hand
side.
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