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Relativistic random-phase-approximation description of M1 excitations
with the inclusion of π mesons
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Based on the covariant density functional theory, the magnetic dipole (M1) resonance is described in the
framework of relativistic random-phase approximation with density-dependent meson-nucleon coupling. The
isovector-pseudovector interaction channel, represented by the exchange of π meson, is included in the residual
interaction to describe unnatural parity transitions. The strength distributions of M1 resonances are studied in
doubly magic nuclei 48Ca, 90Zr, and 208Pb, in comparison with their analog Gamow-Teller (GT) excitations. It is
found that the π meson and its zero-range counterterm are responsible for almost all of the energy shift caused
by residual interaction, which is similar to the case of GT excitation. However, the strength of the counterterm
suggested by the GT study is not suitable to simultaneously reproduce the experimental M1 peak energies from
48Ca to 208Pb. To improve the descriptions of M1, effects caused by adjusting the strength of pionic counterterm
and introducing the density dependence of the π meson channel are explored. Finally, from the analyses of
dominant transition configurations of GT and M1 resonance, we find that the proper spin-orbit splitting is the
key to simultaneously reproduce the M1 strength distributions from light to heavy nuclei.
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I. INTRODUCTION

Magnetic dipole (M1) resonance is the lowest-order exci-
tation induced by the electromagnetic field which couples the
spin of the nucleon through the nuclear magnetization current
[1–3]. The study of M1 resonance is of great interest not
only for nuclear structure but also for nuclear astrophysics.
Since the M1 transition is mostly isovector and mostly a spin
excitation, it is especially useful for probing the spin-isospin
channel of nuclear effective interaction, which is difficult to
obtain from ground-state properties of nuclei [1,3]. The spin
part of M1 operator induces spin-flip transitions between the
spin-orbit partners, so it also serves as a good test ground
for the description of spin-orbit splitting in nucleus [3]. In
astrophysics, the transition strength induced by the isovector
spin part of the M1 operator determines the cross section of
neutral-current inelastic neutrino-nucleus scattering, which
is important for supernova simulation [4–7]. Based on the
strength distribution of electric dipole (E1) and M1 excita-
tion, one can obtain the γ -ray strength function (γ SF) that
determines the neutron capture cross sections [8–10].

In a simple picture, M1 transition is composed of two
parts [3,11]. One is the orbital magnetic dipole structure,
i.e., the scissors mode, which locates in the low-energy re-
gion with transition strength proportional to the square of
the quadrupole deformation [12,13]. The other part is the
spin-flip M1 transition in the higher-energy region, and it
is mostly determined by single-particle excitation of spin
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partner states near the Fermi surface. For spherical nuclei,
experiments suggest that the scissors motion is strongly sup-
pressed and the spin-flip one is the primary component of M1
resonance. In fact, the spin-flip mode is the analog state of
the Gamow-Teller (GT) state in the parent nucleus, which
provides the spin-orbit splitting information and determines
the cross section of inelastic neutrino-nucleus scattering, as
mentioned above. In this work, we will focus on the study of
M1 excitation in doubly magic spherical nuclei.

Experimentally the M1 excitation can be realized using
electromagnetic and hadronic probes, such as (γ , γ ′), (e, e′),
and (p, p′) reactions [3,11,14–16]. After decades of explo-
ration, large amounts of data have been accumulated [17],
which serves a good test ground for nuclear structure mod-
els. On the other hand, the benchmarked nuclear models can
also be used for predictions of M1 transitions, especially
for those nuclei far from stability line, which are useful for
astrophysical applications, such as neutron capture rates in
r-process nucleosynthesis [18,19] or inelastic neutrino scat-
tering in core-collapse supernova [4–7].

There are mainly two kinds of microscopic theoretical
model for the study of M1 excitation, i.e., the shell model and
random-phase approximation (RPA) model. Usually large-
scale shell-model calculation is only used for the description
of low-energy 0-h̄ω M1 excitation of light and middle mass
nuclei [20,21]. Until recently it is extended to nuclei with
mass number A > 100 [22]. Compared to the large numeri-
cal efforts taken by shell-model calculation, the RPA model
provides a much simpler way for the study of M1 excita-
tion. In the nonrelativistic framework, self-consistent RPA
model based on Skyrme or Gogny density functional has been
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realized. Based on the Skyrme density functional, the spin-flip
M1 giant resonances were described by the self-consistent
RPA model [23–28]. However, there is no published Skyrme
parametrization which can simultaneously describe well the
M1 excitation in 208Pb and other nuclei [25,27–29]. Even with
the inclusion of correlations beyond the RPA model, the self-
consistent RPA + renormalized time-blocking approximation
(RenTBA) based on the Skyrme density functional cannot
improve much on the basic experimental characteristics of
the M1 excitations in 208Pb but can reproduce the observed
fragmentation, which is missing in RPA calculations, to a
certain extent by some certain Skyrme functionals [30]. Based
on the situation that present parametrizations of the Skyrme
interaction are not suitable for the description of M1 excita-
tions, this calls for a better modeling of spin-orbit term and
spin-spin interaction [28]. Aiming for this, the spin-related
parameters were modified, and as a result, the energies of the
low-lying M1 state and the resonance state in 208Pb were both
well described [27]. The tensor force is also shown to have a
large effect on M1 excitations with the Skyrme RPA frame-
work [31,32], and so do the spin-density-dependent terms in
the extended Skyrme force [26]. Based on the Gogny density
functional, the axially symmetric deformed quasiparticle RPA
(QRPA) model was used to describe the M1 mode of 412
even-even nuclei. With a shift of excitation energies by 0.5–2
MeV, a relatively good agreement with experimental data was
obtained [9]. The role of tensor force and continuum effect
were also investigated by the RPA model using Gogny force
[33]. It can be seen that within the nonrelativistic framework,
it is difficult to well describe the M1 excitations using fully
self-consistent (Q)RPA models.

In the covariant density functional theory (CDFT), Lorentz
invariance allows us to describe the spin-orbit coupling in
a self-consistent way, and this symmetry puts stringent re-
strictions on the number of parameters in the corresponding
functionals without reducing the quality of agreement with
experimental data [34–40]. Based on the spirit of CDFT, the
nucleus is described as a system of Dirac nucleons that inter-
act with each other via the exchange of mesons with the proper
relativistic quantum numbers. It provides an efficient and pre-
dictive tool to explore the structure properties of nuclei over
almost the whole nuclear chart. Varieties of nuclear phenom-
ena have been successfully described: ground-state properties
such as binding energies, nuclear charge radii from spherical
nuclei to deformed ones [41–50], the origin of the pseudospin
symmetry in nucleon single-particle spectrum [51,52], halo
phenomena of nuclei observed near the neutron-drip line [39],
the magnetic [53] and antimagnetic [54] rotations in nearly
spherical nuclei, and the chiral rotation in triaxial nuclei
[55–57].

For a description of nuclear vibrations, based on CDFT
the proton-neutron relativistic random-phase approximation
(pnRRPA) [58–62] and proton-neutron relativistic quasipar-
ticle RPA (pnRQRPA) [63–65] were developed, which have
been successfully applied to the description of spin-isospin
excitations, so do the relativistic random-phase approximation
(RRPA) and relativistic quasiparticle RPA (RQRPA) for giant
resonances [66,67]. However, the existing R(Q)RPA model
for giant resonances only includes the exchanges of σ , ω,

and ρ mesons in the two-body residual interaction. Because
of the parity conservation, π meson has no contribution in
ground-state calculations within the relativistic mean-field
(RMF) model, but it does contribute to the particle-hole (p-h)
residual interaction. It has been shown that in the description
of GT resonances, π meson and its counterterm included in
the residual interaction play essential roles in determining the
centroid energy of the resonance [61,63], i.e., being respon-
sible for almost all the energy shift caused by the residual
interaction. As the analog state of GT excitations, the correct
description of M1 excitations necessitates the inclusion of π

meson and its counterterm in the residual interaction, just like
the pnRQRPA case for charge-exchange excitations. There-
fore, the description of giant resonances has been limited to
electric transitions for a long time, because additional nu-
clear interaction channels such as the isovector-pseudovector
channel contributed by the π meson required for magnetic
transitions are missing in the existing (Q)RPA for giant res-
onances.

Until recently, RQRPA for the description of M1 tran-
sitions [68–72] has been realized based on the CDFT with
density-dependent point-coupling interactions, which are the
simplified zero-range interactions of the finite-range meson-
exchange forces. In order to describe the unnatural-parity M1
excitations, the isovector-pseudovector interaction channel is
included in the residual interactions. The newly introduced
parameter for this interaction channel was determined by min-
imizing the gaps between the theoretically calculated centroid
energy and experimentally determined dominant peak posi-
tion of measured M1 transition strength in 208Pb and 48Ca
[70]. However, the energies of light systems, e.g., 48Ca, still
have some deviations from the experimental data [70]. The
pairing correlations show a significant impact on the major
peak of M1 response functions in open-shell nuclei and its role
is mainly observed at the level of the ground-state calculation
[68–70].

In this work, based on the density-dependent meson-
exchange interactions, we are going to develop the RRPA
model by including the π meson and its counterterm in the
residual interaction in order to describe the unnatural-parity
M1 excitations. The M1 excitations of doubly magic nuclei
48Ca, 90Zr, and 208Pb will be studied, and compared with
their analog GT excitations. The effects of π meson will be
investigated in detail, which would reflect important aspects
of nuclear force and provide guidance for further development
of nuclear effective interaction.

This paper is organized as follows. In Sec. II, we briefly
introduce the theoretical framework of the relativistic random-
phase approximation. Special attentions are paid to the
inclusion of the new interaction channels contributed by π

meson and its counterterm. Section III presents results and
analysis of model calculations. A summary of the present
work is given in Sec. IV.

II. THEORETICAL FRAMEWORK

In the RMF theory, nucleons interact with each other
through the exchange of mesons and photons based on the
one-boson exchange diagram [34,73,74]. The standard form
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of RMF theory is constructed with nucleon field ψ , isoscalar
meson fields σ and ω, isovector meson field ρ, and photon
field A, with the effective Lagrangian density

L = ψ̄ (iγ μ∂μ − M )ψ − ψ̄

(
gσ σ + gωγ μωμ

+ gργ μ�ρμ · �τ + eγ μ 1 − τ3

2
Aμ

)
ψ + 1

2
∂μσ∂μσ

−1

2
m2

σ σ 2 − 1

4

μν


μν + 1

2
m2

ωωμωμ

−1

4
�Rμν · �Rμν + 1

2
m2

ρ �ρμ · �ρμ − 1

4
FμνFμν, (1)

where M is the bare nucleon mass and mi (i = σ, ω, ρ) are
meson masses. The field tensors are defined as


μν ≡ ∂μων − ∂νωμ, (2a)

�Rμν ≡ ∂μ�ρν − ∂ν �ρμ, (2b)

Fμν ≡ ∂μAν − ∂νAμ. (2c)

From the effective Lagrangian Eq. (1), we can derive the
Hamiltonian Ĥ through the Legendre transformation, which
reads

Ĥ =
∫

d3x1ψ̄ (−iγ · ∇ + M )ψ + 1

2

∫∫
d3x1d4x2

×
∑

i=σ,ω,ρ,A

ψ̄ (x1)ψ̄ (x2)�i(1, 2)Di(1, 2)ψ (x2)ψ (x1), (3)

where �i(1, 2) are the interaction vertices

�σ (1, 2) = −gσ (1)gσ (2), (4a)

�ω(1, 2) = +gω(1)γμ(1)gω(2)γ μ(2), (4b)

�ρ (1, 2) = +gρ (1)γμ(1)�τ (1) · gρ (2)γ μ(2)�τ (2), (4c)

�A(1, 2) = +e2

4
[γμ(1 − τ3)]1[γ μ(1 − τ3)]2. (4d)

The propagators Di(1, 2) in the Hamiltonian are

Di(1, 2) = −
∫

d4k

(2π )4
e−ik(x1−x2 ) 1

k2 − m2
i

. (5)

Taking a Slater determinant |0〉 as the trial ground state,
the energy functional can be expressed as

E = 〈0|Ĥ |0〉 = 〈0|T̂ |0〉 + 〈0|V̂ |0〉

=
∑

i

〈i| − iα · ∇ + βM|i〉 + 1

2

∑
i j

〈i j|V (1, 2)|i j〉, (6)

where the sum over i and j runs over all the occupied single-
particle states in the Fermi sea. Note that the Fock term is
neglected in the Hartree approximation, and its contribution
will be taken into account through the parametrization of
the effective interactions. The variation of the energy E with
respect to the single-particle state leads to the single-particle
Dirac equation, which can be solved iteratively. More details
are in Refs. [40,75] as well as the references therein.

The density-dependent form of effective interaction is
adopted in this work [76], i.e., the meson-nucleon coupling
constants are treated as a function of baryonic density ρb. For
σ and ω channel, it is defined as follows:

gi(ρb) = gi(ρ0) fi(ξ ), for i = σ, ω, (7)

where

fi(ξ ) = ai
1 + bi(ξ + di )2

1 + ci(ξ + di )2
(8)

is a function of ξ = ρb/ρ0 and ρ0 is the saturation density in
symmetric nuclear matter. For isovector meson ρ channel, the
ρ-N coupling constants reads

gρ (ρb) = gρ (ρ0)e−aρ (ξ−1). (9)

Note that gi(ρ0), gρ (ρ0), aρ , ai, bi, ci, and di are parameters of
the density-dependent effective interaction [77].

Now let us consider a system under a time-dependent
external field F (t ) = Fe−iωt + F †eiωt . In this case, the wave
function of the system, (t ), is no longer a static one. The
density operator ρ satisfies the following equation of motion:

iρ̇ = [h[ρ] + F (t ), ρ]. (10)

The h[ρ] in Eq. (10) is the single-particle Hamiltonian. With
the small-amplitude limit, the RPA equation can be derived as(

AJ BJ

−BJ∗ −AJ∗

)(
X νJM

Y νJM

)
= E ν

(
X νJM

Y νJM

)
, (11)

where the matrix elements of A and B are defined as

AJ =
[

(εp − εh)δpp′δhh′ 0
0 (εα − εh)δαα′δhh′

]

+
(

V J
ph′hp′ V J

ph′hα′

V J
αh′hp′ V J

αh′hα′

)
, (12)

BJ =
[

(−1) jh′ − jp′ +JV J
pp′hh′ (−1) jh′ − jα′ +JV J

pα′hh′

(−1) jh′ − jp′ +JV J
αp′hh′ (−1) jh′ − jα′ +JV J

αα′hh′

]
. (13)

In the relativistic case with no-sea approximation,
antiparticle-hole configurations denoted by α-h are also in-
cluded in building the RRPA matrix [60]. Hereafter, we use
p-h to denote the configuration constructed by the unoccupied
and occupied states in the Fermi sea. Note that in Eq. (11)
we directly present the angular-momentum coupled form of
the RPA equation, which is convenient for the nuclei with
spherical symmetry; see more details in Ref. [66]. The V J

are angular-momentum coupled two-body interaction matrix
elements in p-h or α-h channel, which are defined as

V J
abcd =

∑
mamcmd mb

CJM
jama jc−mc

CJM
jd md jb−mb

× (−1) jc−mc+ jb−mbVabcd . (14)

We can obtain the eigenvalue E ν and corresponding ampli-
tudes X νJM and Y νJM of collective state |νJM〉 with the angular
momentum JM by diagonalizing the RPA matrix in Eq. (11).
Finally, the transition strength BJM

ν from the ground state |0〉
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to the excited state |νJM〉 induced by the operator ŴJM reads

BJM
ν =

∣∣∣∣Ĵ−1
∑
cd

(
X νJM

cd 〈c||WJM ||d〉

+ (−1) jd − jc+JY νJM
cd 〈d||WJM ||c〉)

∣∣∣∣
2

, (15)

where both the p-h and α-h configurations are considered.
To obtain a smooth strength distribution, the discrete tran-

sition strength BJM
ν is usually folded through a Lorentzian

function, and the response function R(E ) thus reads

R(E ) =
∑

ν

Bν

�/2π

(E − E ν )2 + �2/4
, (16)

where the width � is taken to be 1 MeV in this work.
It is well known that the degree of freedom of π meson

makes no contribution to the ground state under the Hartree
approximation because of the parity conservation. While for
the description of excitations in the relativistic random-phase
approximation, the isovector-pseudovector interaction chan-
nel contributed by exchanging π meson should be involved
in the residual interaction. The Lagrangian Lπ related to the
π -N coupling reads

Lπ = − fπ
mπ

ψ̄γ5γ
μ∂μ �π �τψ. (17)

In addition, to cancel the contact term of the π -N cou-
pling, a Landau-Migdal zero-range counterterm is included
[63,78,79], which reads

V δπ (1, 2) = g′
(

fπ
mπ

)2

�τ1 · �τ2[γ5α]1 · [γ5α]2δ(r1 − r2). (18)

The parameter g′ in the zero-range counterterm is an
adjustable parameter with the value g′ ≈ 0.6 [63,79] to repro-
duce experimental data of GT excitation in pnRRPA approach.
For the RMF effective interactions DD-ME2 [77], DD-ME1
[80], and PKDD [81], the values of g′ are taken as 0.52,
0.55, and 0.56, respectively. In this work, we mainly use the
effective interaction DD-ME2. The value of g′ is first taken as
0.52, which is the same as that for the GT calculation. Then
the optimal values for M1 excitations for three interactions
DD-ME2, DD-ME1, and PKDD will be discussed in Sec. III.
Usually, the pion mass and coupling constant are taken as [63]

mπ = 138 MeV,
f 2
π

4π
= 0.08. (19)

For the M1 transition (Jπ = 1+) induced by external mag-
netic field, the form of transition operator Ŵ (M1) is expressed
as

Ŵ (M1) =
√

3

4π

∑
i

[gl (i)l i + gs(i)si]μN , (20)

where μN = eh̄/2mN is the nuclear magneton with mN being
nucleon mass; l i and si are the orbital and spin angular mo-
menta, respectively; and gl (i) and gs(i) are the corresponding
g factors of nucleons. The values of the g factor for neutron

(ν) and proton (π ) are

gν
s = −3.826, gν

l = 0

gπ
s = 5.586, gπ

l = 1, (21)

where the g factors for free protons and neutrons are used
[16,82].

In analogy to the electric excitation operator, the M1 op-
erator can be separated into isoscalar (IS) and isovector (IV)
components by using the expressions for the g factor in terms
of isospin [16]. With the third component of isospin τ3(i) =
±1 for neutrons and protons, respectively, the M1 operator
can be rewritten as the sum of IS and IV terms:

Ŵ (M1) =
√

3

4π

∑
i

(
gIS

l l i + gIS
s si

)
μN

+
√

3

4π

∑
i

(
gIV

l l i + gIV
s si

)
τ3(i)μN . (22)

The IS and IV combinations of g factors are

gIS
l =gπ

l + gν
l

2
= 1/2, (23)

gIV
l =gν

l − gπ
l

2
= −1/2, (24)

gIS
s =gπ

s + gν
s

2
= 0.880, (25)

gIV
s =gν

s − gπ
s

2
= −4.706. (26)

Since gIV
s is much larger than gIS

s , the M1 operator is domi-
nantly isovector in nature.

Up to now, there has not existed appropriate sum rule of
M1 excitation which is derived from RMF theory. The well-
known Kurath sum rule [83] is one of the available criteria that
we can adopt. It should be noted that the original Kurath sum
rule only refers to the IV components of the M1 excitation,
which reads [83,84]

m1(M1) ∼=3μ2
N

4π

(
gIV

s − gIV
l

)2 ∑
i

(−aso)〈l (i) · s(i)〉. (27)

In Eq. (27), the coefficient aso indicates the strength of non-
relativistic spin-orbit coupling interaction utilized by Kurath
[83], and the bracket means the expectation value for the
ground state. In this work, the M1 operator used for the
calculation of M1 excitation strength, i.e., Eq. (22), consists
of both the IV and the IS components, so the Kurath sum rule
is expressed as

m1(M1) = 3

4π
μ2

N

[(
gIS

s − gIS
l

)2 + (
gIV

s − gIV
l

)2]
∑

i

〈[−aso,i(r)]l i · si〉

+ 3

2π
μ2

N

(
gIV

s − gIV
l

)(
gIS

s − gIS
l

)
∑

i

〈[−aso,i(r)]l i · siτ3(i)〉, (28)
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where the interference term between IV and IS components
also appears in the Kurath sum rule.

Since the Hamiltonian in the RMF theory does not display
the spin-orbit coupling term explicitly, there is not a parameter
corresponding to aso. In order to get the spin-orbit coupling
strength in RMF theory, a Schrödinger-like equation [35,36]
for the large components of Dirac spinors G(r) is deduced,
which reads{

�p 1

2Meff(r)
�p + [V (r) + S(r)] + Vso(r)

}
Gi(r) = εiGi(r).

(29)

In Eq. (29), the spin-orbit term can be expressed as

Vso(r) = 1

2M2
eff(r)

1

r

d

dr
[V (r) − S(r)]l · s, (30)

where the effective mass Meff reads

Meff(r) = M − 1
2 [V (r) − S(r)]. (31)

So the spin-orbit coupling strength aso,i(r) in RMF theory is

aso,i(r) = 1

2M2
eff

1

r

d

dr
[V (r) − S(r)], (32)

which is a function of coordinate r and depends on the
single-particle states. By calculating the expectation value in
Eq. (28), we can get the corresponding aso,i in RMF theory,
which reads

aso,i =
∫

drG2
i (r)

1

2M2
eff

1

r

d

dr
[V (r) − S(r)]. (33)

III. RESULTS AND DISCUSSIONS

In this section, based on the RMF + RPA approach includ-
ing the π meson, we shall study the M1 transition strength
distributions in three magic nuclei 48Ca, 90Zr, and 208Pb.
Density-dependent effective interactions DD-ME2, DD-ME1,
and PKDD are employed in the calculations. To explore the
residual interaction of π -PV coupling in nuclear medium,
the corresponding results by introducing a density-dependent
form of coupling constant fπ are also presented.

In Fig. 1, we show the strength distributions of the M1
excitations in 48Ca, 90Zr, and 208Pb, calculated by RMF+RPA
using interaction DD-ME2. For comparison, the strength dis-
tributions of their analog excitations, i.e., GT excitations,
calculated by RMF+pnRPA are also shown. In order to in-
vestigate the contributions of different interaction channels,
especially the isovector-pseudovector π -N coupling channel,
the results of unperturbed calculation and those calculations
by adding successively the residual interaction from different
meson-nucleon couplings on top of it are also presented in
Fig. 1. For M1 excitation, the ω-, ρ-, and π -meson fields and
photon field contribute to the residual interaction in RRPA
calculations, while for GT excitation, only ρ- and π -meson
fields of isovector nature contribute. Here the parameter g′
in the zero-range counterterm for GT and M1 calculations
is taken as 0.52 for both cases, which is a standard value in
pnRRPA calculations for interaction DD-ME2, suggested in
Ref. [63].
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FIG. 1. Response functions of the GT− (left panel) and M1 (right
panel) excitations in magic nuclei 48Ca, 90Zr, and 208Pb calculated by
the RMF+pnRPA and RMF+RPA approaches, respectively, using
the DD-ME2 interaction (solid line), in which the π meson is in-
cluded and g′ is chosen as 0.52. For comparison, the results of unper-
turbed calculation and those calculations by adding successively the
residual interaction from different meson-nucleon couplings on top
of it are also shown. A Lorentzian smearing parameter � = 1 MeV
is used. The experimental peak energies [85–91] are marked by
vertical arrows.

For GT excitations, the unperturbed calculations, in which
no residual interactions are included, present two distinct
peaks for 48Ca and 90Zr, while the two-peak structure re-
mains in 208Pb but with a broader bump for the low-lying
peak. Without any residual interactions, the experimental en-
ergies are underestimated by 3–4 MeV. By including the
contribution of ρ-N isovector-vector coupling in the residual
interaction, the results have almost no changes compared with
the unperturbed ones. It is the π -N isovector-pseudovector
couplings that make significant changes on the GT transition
strength distributions and finally reproduce the experimental
data. When the contribution of the π meson is included, both

034330-5



CHANG, WANG, NIU, AND LONG PHYSICAL REVIEW C 105, 034330 (2022)

TABLE I. Theoretical and experimental excitation energies with respect to parent nucleus (shifted by binding energy difference between
parent and daughter nucleus) and transition strengths of GT excitations in 48Ca, 90Zr, and 208Pb. The total transition strengths are given in
percentages of the Ikeda sum rule value 3(N − Z), and the theoretical results are calculated by pnRRPA with DD-ME2 interaction including
π meson and pionic counterterm δπ (g′ = 0.52) in the residual interaction.

Nuclei E (MeV) BGT−
∑

(BGT− -BGT+ ) (%)

48Ca Expt. [85] 3.1 – –
∼10.8 – –
0–30 15.3 ± 2.2 43–61

[86] 3.1
∼10.5 (5.0–15.0)

0–17.3 – 43
0–17.3 – ∼70 (after correction)

DD-ME2 1.34 5.09 –
10.32 17.04 –
0–30 26.98 93.2

90Zr Expt. [87] 15.9 – –
0–57 28.0±1.6 93±5

DD-ME2 15.91 20.86 –
0–50 36.88 92.2

208Pb Expt. [88] 19.2 – –
0–50 – ∼68 (

∑
BGT− )

DD-ME2 19.24 87.66 –
0–50 144.88 91.8

of the high- and low-energy peaks of three nuclei are shifted
downwards, and thus the positions of the main peaks are
even further away from the experimental results. However,
the counterterm must be introduced to cancel the hard core
arising from the one-pion exchange [92]. After the countert-
erm of the π meson is also included, with its strength being
adjusted to 0.52, the energies of experimental main peaks can
be reproduced very well for all three nuclei considered here.
It is interesting to notice that for 48Ca, the low-lying GT peak
locates at 0.096 MeV, which is obtained by the single-particle
transition from ν1 f7/2 to π1 f7/2. However, with the inclusion
of ρ and π mesons, this excitation energy becomes negative
due to the attractive nature of their residual interaction. So the
further inclusion of pionic contact term is crucial for obtaining
physical results.

For M1 excitations, the unperturbed results present only
one peak for 48Ca and 90Zr, which is from the spin-flip
transition of j> → j<. Compared to the GT excitations, the
core-polarization transition of j> → j> or j< → j<, which
leads to the lower peak in GT, is no longer possible. For
208Pb, the unperturbed results still present two peaks compa-
rable in strength as the GT case, since there are two possible
spin-flip transitions in 208Pb. Similarly as in the GT case, the
inclusion of ω-N isoscalar-vector coupling, ρ-N isovector-
vector coupling, and photon field in the residual interaction
contribute almost nothing to the M1 transition strength distri-
butions. If the contribution of π meson is included, then the
excitation energies are shifted downwards to the low-energy
region and further diverge from the experimental data, which
shows the residual interaction arising from π -N pseudovector
coupling is attractive for M1, which is the same role as in
GT excitations. For 208Pb, the two-peak structure disappears
and only one peak is merged with the inclusion of π me-
son. As presented in the discussion of GT resonance, the

pionic zero-range counterterm δπ provides appreciable repul-
sive contributions to the RPA residual interaction, which are
crucial to reproduce the experiment data. One may naturally
expect the inclusion of the pionic counterterm can improve
the description of M1 as well. Taking this counterterm into
account with g′ = 0.52, which was determined by reproduc-
ing energies of GT resonance in selected nuclei, we find
that the peak energies of M1 transitions in all these three
nuclei become significantly higher. In particular, the strength
distribution of 208Pb becomes fragmented again, and both
peak energies get quite close to the experimental data. Even
though the peak energies of 48Ca and 90Zr are still lower than
the corresponding data, the difference between the theoretical
and experimental results are less than 2 MeV and 1 MeV,
respectively.

For the convenience of quantitative analysis, the calcu-
lated peak energies, as well as the corresponding transition
strengths of the GT and M1 excitations are displayed in
Tables I and Table II, respectively. Available experimental
values are also presented for comparison. For GT states, the
excitation energies are given with respect to the parent nu-
cleus, so the energies obtained from experiment with respect
to the daughter nucleus are shifted by the binding energy
difference between parent and daughter nucleus. As shown
in Table I, the peak energies of GT− obtained from pnR-
RPA calculation reproduce the experimental data well for all
three nuclei considered here. For 48Ca, 90Zr, and 208Pb, the
theoretical transition strength difference of GT− and GT+

excitations, i.e.,
∑

(BGT− − BGT+ ), calculated by DD-ME2
effective interaction with π meson and its counterterm δπ (g′
= 0.52), exhaust the Ikeda sum rule values 3(N − Z) with the
percentages 93.2% (in the energy range of 0–30 MeV), 92.2%,
and 91.8% (in the energy range of 0–50 MeV), respectively.
The experimental strength is much quenched compared to the
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TABLE II. Peak energies and transition strengths of M1 excita-
tions in 48Ca, 90Zr, and 208Pb with DD-ME2 interaction including
π meson and δπ (g′ = 0.52) in the RRPA residual interaction. The
experimental data from Refs. [89–91,93–100] are also shown for
comparison.

Nuclei Ex(MeV) BM1 (μ2
N)

48Ca Expt. [93] 10.227 4.0 ± 0.3
[96] 10.23 3.9 ± 0.3

7.7–12.7 5.3 ± 0.6
[99] 10.23 6.8 ± 0.5
[89] 10.23 3.85(32)–4.63(38)

DD-ME2 8.46 10.05
90Zr Expt. [94] 8.90 ± 0.15 –

[97] 8.1–10.5 6.7
[90] 9.53 ± 0.06 –
[100] 9(centroid) –

7–11 4.17(56)
DD-ME2 8.26 13.29

208Pb Expt. [98] 7.3 15.6
<6.4 1.9+0.7

−0.4

[91] 5.85 2.0
7.1–8.7 17.9

[89] 6.5–9.0 20.5(13)
DD-ME2 6.18 7.23

7.73 32.92

Ikeda sum rule, which is the famous quenching problem. By
extending the measurement of transition strength up to high
excitation energies like 57 MeV, some strengths are recovered,
for example, for 90Zr, 85–95% of Ikeda sum rule was found
in experiment. Up to 30 MeV, RPA calculations already give
almost the full Ikeda sum rule, and the strengths that RPA cal-
culations overestimate can be shifted to higher energy region
with the inclusion of tensor force [101,102], two-particle–
two-hole configurations [103] or particle-vibration coupling
[104], and the �-isobar excitation [105]. For M1 excitations,
the peak energies cannot be uniformly reproduced with com-
parable accuracy with the same g′, as shown in Table II.
In comparison with the experimental data, the discrepancy
for 208Pb is about 400 keV, while they are about 1.2 MeV
for 90Zr and 1.7 MeV for 48Ca. For the transition strength,
the RPA calculations also overestimate the experimental data
systematically, just as the GT case.

TABLE IV. Energy-weighted sum rule mRRPA
1 (in the energy

range of 0–200 MeV) for M1 transition in 48Ca, 90Zr, and 208Pb with
DD-ME2 interaction including π meson and δπ (g′ = 0.52) obtained
with the RRPA method, in comparison with the Kurath sum rule.

Nuclei mRRPA
1 mKurath

1 mRRPA
1 /mKurath

1

48Ca 102.68 106.91 96.05%
90Zr 129.75 134.53 96.45%
208Pb 347.27 361.20 96.14%

To see the contribution of the α-h configurations, we
calculate the transition strengths by excluding the α-h con-
figurations in Eq. (15). The transition strengths of the main
excitation states of GT and M1 transitions for 48Ca, 90Zr, and
208Pb are shown in Table III, in comparison with the results
of the full calculation using both p-h and α-h configurations.
It can be seen that the effects of the α-h configurations are in
general negligible, since these states are mainly formed by p-h
configurations.

To test the validity of the RRPA for M1 excitations, the
energy-weighted sum rule mRRPA

1 calculated by RRPA with
DD-ME2 is compared with the results of Kurath sum rule
mKurath

1 calculated by Eq. (27). As presented in Table IV,
the theoretical energy-weighted strength of 48Ca, 90Zr, and
208Pb exhaust the Kurath sum rule with percentages 96.05%,
96.45%, and 96.14%, respectively. Such a result indicates
that mRRPA

1 values are well consistent to the Kurath sum rule
mKurath

1 , and thus the validity of the RRPA is sufficiently
supported. The still missing part of the sum rule is supposed
to be found through the M1 strength of the negative-energy
excitation states formed mainly by the α-h configurations.

In the above calculations, the parameter g′ in pionic coun-
terterm was taken as 0.52 for DD-ME2 interaction, which was
determined by best reproducing experimental energy of GT
resonance in 208Pb. However, it turns out that this value is
not the best for M1 excitations. So in Fig. 2, we will study
the effect of pionic counterterm with different g′ values of
0, 0.52, 0.85, and 1.50 on M1 strength distributions in 48Ca,
90Zr, and 208Pb. It is clear that the pionic counterterm is a
repulsive residual interaction, and thus the energies of M1 are
pushed up for all three nuclei. Without the pionic counterterm,
i.e., g′ = 0, the M1 excitation energies are largely underesti-
mated. At g′ = 0.52, the excitation energies for 208Pb are best

TABLE III. Transition strengths of the main GT− and M1 excitation states in 48Ca, 90Zr, and 208Pb calculated without (W/O) α-h
configurations in Eq. (15), in comparison with the results of the calculation with (W/I) both the p-h and α-h configurations. The calculations
are performed by pnRRPA and RRPA with DD-ME2 interaction including π meson and pionic counterterm δπ (g′ = 0.52) in the residual
interaction.

GT− M1a

Nuclei Ex(MeV) BGT− (W/I) BGT− (W/O) Ex(MeV) BM1(W/I) BM1(W/O)

48Ca 10.32 17.04 16.99 8.46 10.05 10.03
90Zr 15.91 20.86 20.80 8.26 13.39 13.35
208Pb 19.24 87.66 87.38 7.73 32.92 32.82

aThe unit μ2
N is neglected for simplicity.
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FIG. 2. The M1 response function in 48Ca (a), 90Zr (b), and
208Pb (c) calculated with different strength of the zero-range pionic
counterterm δπ using DD-ME2 interaction. The calculation exclud-
ing pion ( fπ = 0) (dashed line) is also shown for comparison. The
experimental peak energies in 48Ca [89], 90Zr [90], and 208Pb [89]
are marked by vertical arrows.

reproduced; however, the repulsive effect from the countert-
erm is still insufficient for the M1 transitions in 48Ca and
90Zr. At g′ = 0.85, it gives the minimum root-mean-square
deviation �E of the calculated peak energies with respect to
the corresponding experimental values in these three nuclei,
with �E = 0.98 MeV. It overestimates the main peak energy
of 208Pb by 1.28 MeV, while it still underestimates the peak
energy of 48Ca and 90Zr by 0.98 and 0.53 MeV. At g′ = 1.5,
it reproduces best the peak energy of 48Ca; however, the
repulsion effect is too strong for 90Zr and 208Pb, which sub-
stantially overestimates their excitation energies. Therefore,
it is unlikely to simultaneously describe the peak energies of
M1 transitions in all these three nuclei with the same high
accuracy as in the GT cases by only adjusting the parameter g′
in the counterterm. This is further confirmed by Fig. 3, where
it shows that by increasing the value of g′, the shifted energies
increase almost linearly with similar slopes, and hence the
evolution trends with g′ of discrepancies with experimental
data are always almost parallel with each other for these three
nuclei.
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�
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FIG. 3. The difference of peak energies �E between theoretical
results ERPA and experimental data EExpt. of 48Ca, 90Zr, and 208Pb.
Theoretical results are calculated by DD-ME2 with the counterterm
parameter g′ from 0.0 to 2.0. The light yellow area is the discrepancy
lower than 1 MeV.

To look for a better description of M1 excitations, we also
explored different relativistic density functionals, such as DD-
ME1 and PKDD. Displayed in Fig. 4 are the M1 excitation
strength distributions in 48Ca, 90Zr, and 208Pb calculated using
DD-ME2, DD-ME1, and PKDD. It is generally found that the
pionic counterterm plays the same important role with a repul-
sive effect and that the g′ suggested by the calculation of GT
resonance, i.e., g′ = 0.55 and 0.56 for DD-ME1 and PKDD,
respectively, are proper only for 208Pb but too small for 48Ca
and 90Zr in describing the peak energies of the M1 transition,
just being the same case as DD-ME2. Thus, for effective
interactions DD-ME1 and PKDD, we also find the optimal
value of g′ by minimizing the root-mean-square deviation �E
between theoretical and experimental peak energies of these
three nuclei, like what we have done above for DD-ME2. It
turns out that the optimal values of g′ are 0.97 and 0.75 for
DD-ME1 and PKDD, respectively, and their corresponding
�E = 1.00 and 0.87 MeV, where PKDD gives the best results
compared with experimental data. However, in general, the
three effective interactions, DD-ME1, DD-ME2, and PKDD,
present very similar response functions with the optimal g′, as
shown in Fig. 4. So the present choices of other relativistic
density functionals DD-ME1 and PKDD did not get much
improvement on the description of M1 excitations compared
to DD-ME2.

In order to improve the description of M1 excitation for
all three nuclei at the same time, we try to include medium
effects in the π -meson coupling. For the effective nucleon-
nucleon interaction based on the one-boson exchange, the
medium effects caused by the many-body correlation could
be expressed as the density-dependent coupling strength [92].
The density-dependent form of the π -meson coupling strength
in Eq. (17) and Eq. (18) can take the following exponential
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FIG. 4. The M1 response function in 48Ca, 90Zr, and 208Pb cal-
culated by RMF+RPA theory with effective interactions DD-ME2
(solid line), DD-ME1 (dashed line), and PKDD (dash-dotted line).
The coefficient of counterterm δπ , i.e., g′, are chosen as the op-
timal value by minimizing the difference between theoretical and
experimental peak energies of these three nuclei, which are 0.85
for DD-ME2, 0.97 for DD-ME1, and 0.75 for PKDD. Their root-
mean-square deviations �E between theoretical and experimental
peak energies of these three nuclei are 0.98 MeV, 1.00 MeV, and
0.87 MeV, respectively. See the text for details.

form, as suggested in Refs. [106,107],

fπ (ρb) = fπ (0)e−aπ
ρb
ρ0 , (34)

where ρb denotes the nucleon density, ρ0 is the saturation
nucleon density in symmetric nuclear matter, fπ (0) presents
the coupling strength at zero density, and aπ is the coeffi-
cient of density dependence. When aπ = 0 and fπ (0) = 1.0,
it reduces to the coupling constant of fπ previously taken in
Eq. (19). Adopting this form, we will explore the medium
effect of π meson in the residual interaction by changing
the coefficient of density dependence aπ with different zero-
density coupling strengths fπ (0). So in Fig. 5, based on
interaction DD-ME2, the peak energies of the M1 transitions
of 48Ca, 90Zr, and 208Pb are displayed as a function of aπ , with
fπ (0) = 1.0 (filled squares), 1.5 (filled circles), and 2.0 (filled
triangles). The parameter g′ in the zero-range counterterm is
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FIG. 5. The evolution of M1 excitation peak energy Epeak as a

function of the coefficient of density dependence aπ for three dif-
ferent zero-density coupling constant fπ (0) = 1.0 (filled squares),
1.5 (filled circles), and 2.0 (filled triangles) in 48Ca (a), 90Zr (b), and
208Pb (c). The red dashed lines denote experimental peak energies of
M1 excitation for those three nuclei.

fixed as the optimal value 0.85 determined with constant fπ as
shown in Fig. 4.

For a fixed aπ , the peak energy of M1 excitation for se-
lected nuclei is higher with larger zero-density constant fπ (0).
The difference is bigger at small aπ values and becomes
smaller with increasing aπ . As mentioned above, π -N cou-
pling gives an attractive contribution, and its counterterm δπ

gives a repulsive contribution in the p-h residual interaction.
With g′ = 0.85, the δπ counterterm gives a larger contribution
than the π -N coupling does. As a result, the sum of two terms
gives a repulsive contribution, and the repulsion becomes
stronger with larger fπ (0). For a fixed fπ (0), the peak energy
shifts to lower energy with the increasing of aπ . While aπ is
increasing, the coupling strength fπ (ρb) decreases faster with
density and gets a smaller value. As a result, the repulsion
becomes weaker at large aπ , and the excitation energy is also
decreased.

Compared to experimental data (dashed line) of the M1
peak energy, the most suitable parameters are fπ (0) = 2.0 and
aπ = 0.6 for 48Ca, fπ (0) = 1.5 and aπ = 0.2 for 90Zr, as well
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TABLE V. The main transition configurations as well as their contributions to the total sum of RRPA amplitudes
∑

cd (X 2
cd − Y 2

cd ) for the
GT and M1 excitation states at the peak energies Ex in 48Ca, 90Zr, and 208Pb, which are calculated by DD-ME2 interaction with the same g′ =
0.52.

M1 GT−

Nuclei Ex (MeV) Configurations
∑

cd X 2
cd − Y 2

cd Ex (MeV) Configurations
∑

cd X 2
cd − Y 2

cd

48Ca 8.46 [ν1 f5/2, ν1 f −1
7/2] 99.70% 10.32 [π1 f5/2, ν1 f −1

7/2] 94.77%
[π1 f7/2, ν1 f −1

7/2] 4.29%
90Zr 8.26 [ν1g7/2, ν1g−1

9/2] 99.79% 15.91 [π1g7/2, ν1g−1
9/2] 96.28%

[π1g9/2, ν1g−1
9/2] 3.00%

208Pb 7.73 [ν1i11/2, ν1i−1
13/2] 84.51% 19.24 [π1i11/2, ν1i−1

13/2] 47.76%
[π1h9/2, π1h−1

11/2] 15.17% [π1h9/2, ν1h−1
11/2] 29.56%

as fπ (0) = 1.0 and aπ = 0.8 for 208Pb, which perfectly repro-
duce all the experimental data. However, it cannot reproduce
the experimental data simultaneously with unified parameters.
Although the coefficient of density dependence aπ can take
the same value 0.6 or 0.8, the fπ (0) still needs to take very
different values such as fπ (0) = 2.0, 2.0, and 1.0 for 48Ca,
90Zr, and 208Pb, respectively, in order to give an overall good
description of experimental data. On the other hand, by taking
the same fπ (0) as 2.0, the aπ needs to take different values of
0.6, 0.8, and 2.0 for 48Ca, 90Zr, and 208Pb, respectively. So the
inclusion of density dependence in isovecotor-pseudovector
coupling does not solve the problem of a unified description
of M1 excitations from 48Ca to 208Pb. This forces us to further
explore the deep reasons why the inclusion of π -N coupling
could unifiedly describe very well the GT excitations from
48Ca to 208Pb but fails in the M1 excitations.

In order to understand the problem, in Table V, the domi-
nant p-h excitation configurations and the contribution of each
configuration evaluated by (X 2

cd − Y 2
cd ), where

∑
cd (X 2

cd −
Y 2

cd ) is normalized to one, for GT and M1 excitation states at
the peak energies in 48Ca, 90Zr, and 208Pb are listed. From the
dominant configurations, it is also clear to see that the spin-flip
M1 excitation is the analog state of GT resonance, where the
difference in their dominant configurations only reflects in
isospin space, except a small component of core-polarization
transition in GT state for 48Ca and 90Zr which is absent in M1
state. The dominant configurations involve spin-orbit partner
states near the Fermi surface for all three nuclei.

Taking 48Ca and 208Pb as examples, we show in Fig. 6
the dominant p-h transition configurations calculated with
the effective interaction DD-ME2, and for comparison, the
related experimental single-particle levels are also shown. For
208Pb, due to the limited experimental data, only the main
configuration of [1i11/2, 1i−1

13/2] is shown. For GT state in 48Ca,

the main p-h configuration is [π1 f5/2, ν1 f −1
7/2]. The calculated

unperturbed energy is 8.22 MeV while the experimental da-
tum is 5.40 MeV. For the GT state in 208Pb, the main p-h
configuration is [π1i11/2, ν1i−1

13/2]. The calculated unperturbed
energy is 16.07 MeV, while the experimental datum is 12.65
MeV. The calculations overestimate the experimental values
by about 3 MeV in both cases. Although the unperturbed
energies do not agree well with experimental data, the GT
energy can be well reproduced by the inclusion of residual

interaction. Since for both nuclei the unperturbed energies
are overestimated by a similar value, by taking the same g′
value in the pionic counterterm, the GT resonance energy of
48Ca and 208Pb can be simultaneously reproduced. However,
for M1 excitations, the cases are different. The unperturbed
energy is just the spin-orbit splitting of the f orbital for

FIG. 6. Proton and neutron single-particle spectra in 48Ca (a) and
208Pb (b) obtained from RMF calculation with Lagrangian DD-ME2.
Dominating transition configurations of GT− and M1 excitation for
48Ca and 208Pb are indicated by red and blue arrows. Experimen-
tal single-particle spectra from Ref. [108] are also presented for
comparison.
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48Ca and the i orbital for 208Pb. The spin-orbit splitting of
the f orbital calculated within RMF by DD-ME2 interaction
underestimates the experimental value by 1 MeV, while that of
the i orbital overestimates the experimental value by 1 MeV.
As a result, 48Ca needs a larger repulsive residual interaction,
which is reflected in a larger g′ value, to reproduce the ex-
perimental M1 energy, compared to what 208Pb needs. So it is
difficult to reproduce the experimental data for 48Ca and 208Pb
simultaneously with the same g′ value. This indicates that new
relativistic effective interactions aiming at proper spin-orbit
splitting are appealing to improve the description of the M1
resonance.

IV. SUMMARY

In this work, magnetic dipole (M1) resonances of mag-
ical nuclei 48Ca, 90Zr, and 208Pb have been studied within
the random-phase approximation based on the relativistic
mean-field theory, using the density-dependent effective in-
teractions. The contribution of the π meson, including that
of the zero-range counterterm, is considered in the residual
interaction. Based on the RMF theory, the Kurath sum rule
which consists of the isovector, isoscalar, and their inter-
ference components has been derived. The validity of our
calculation has been certified by producing the Kurath sum
rule. By analyzing the contribution of each meson-nucleon
coupling, we conclude that the π meson plays a very im-
portant role in determining the energy distribution of the M1
resonances. Meanwhile, it is found that the strength of the
counterterm suggested to reproduce the Gamow-Teller reso-

nances properly reproduces the peak energies of M1 in 208Pb
but underestimates the peak energies of 48Ca and 90Zr. By
properly enlarging the strength of the zero-range counterterm
of the π meson, it can shift the peak energies of 48Ca and 90Zr
closer to the experimental value, but the peak energy of 208Pb
is pushed further away. Such a conclusion generally holds
for currently existing density-dependent meson-exchange in-
teractions like DD-ME1, DD-ME2 and PKDD, even with an
inclusion of the density-dependent coupling constant in π -
meson coupling. To explore the underlying reason, we studied
the relevant single-particle structure of main p-h configura-
tions for GT state and M1 state. It is found that the spin-orbit
splitting of the f orbital relevant for M1 excitation in 48Ca
underestimates the experimental data while that of the i orbital
in 208Pb overestimates the experimental data, leading to the
unified description of M1 excitation in 48Ca and 208Pb being
impossible. Therefore, suitable spin-orbit splitting is the key
to simultaneously reproduce the M1 peak energies from light
to heavy nuclei. Work on improving spin-orbit splitting with
a new effective interaction is now in progress.
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[67] N. Paar, P. Ring, T. Nikšić, and D. Vretenar, Phys. Rev. C 67,
034312 (2003).
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