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α-α correlations in nuclei above the doubly-magic 208Pb nucleus

B. D. C. Kimene Kaya ,1,* T. T. Ibrahim ,2,† and S. M. Wyngaardt 1,‡

1Department of Physics, University of Stellenbosch, PO Box 1529, Stellenbosch 7599, South Africa
2Department of Physics, Federal University Lokoja, PMB 1154, Lokoja, Nigeria

(Received 21 December 2021; accepted 4 March 2022; published 25 March 2022)

The properties of the 216Rn nucleus have been investigated using α-212Po and 8Be -208Pb systems with
each interacting via a cluster model local interaction, and with a three-body α-α-208Pb system within the
coupled-channel formalism. The energies, transition probabilities, and cluster decay half-lives are compared with
available experimental data. The two-body configurations are found to yield similar results, in fair agreement
with the existing experimental data. The three-body system yields energy spectra and wave functions whose
lowest energy states provides satisfactory and better description of the nucleus.
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I. INTRODUCTION

Clustering phenomenon plays a significant role in the
structure of both light and heavy nuclei [1,2]. The coexis-
tence of the cluster degree of freedom and the mean-field
in the nuclear ground state has been found as an important
consideration in explaining important experimental obser-
vations [3–6]. In the simplest scenario, the binary cluster
configuration provides an intuitive framework for theoretical
considerations. For the more sophisticated multiple binary
configurations model, one has to deal with the associated
orthogonality and Pauli principle. The recent observation of
a three-cluster system, though of comparable sizes in a fission
process [7–9], together with the successful trinuclear theo-
retical description [10,11], suggest the possible existence of
three-cluster modes of a nuclear system. The importance of
the latter mode is seen in the three-α cluster picture of the
12C Hoyle state [12–15] where the 3-α decay is considered
to proceed from the S-wave motion of the Beg.s. + α system
owing largely to the exceptional binding character of the α

particle and the weakly coupled α-α system in the Beg.s..
In the binary cluster model, important structure informa-

tion has been obtained by treating heavy nuclei with masses
larger than that of the doubly magic Pb isotope either as α

plus 208Pb or as exotic clusters plus Pb isotopes. 216Rn, being
one such nucleus, presents a good case for understanding
how the long-range correlations leading to the formation of
clusters on the nuclear surface can provide further understand-
ing of the structure properties of nuclei. It is well known
that 216Rn undergoes α decay, leaving a short-lived nucleus,
212Po, which in turn exhibits α-like structure on top of the
double-magic nucleus 208Pb, making 216Rn a good candi-
date for a three-cluster treatment. Thus, determining whether
the α-α–208Pb or 8Beg.s. -208Pb configuration persists within
the nuclear mean field is the focus of the current study.
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In the shell-model point of view, the ground state of 216Rn
may be considered as four protons and four neutrons outside
the doubly magic nucleus 208Pb which, in compact notation,
is given by [π (h9/2)4ν(g9/2)4]0+ , where π and ν represent the
protons and neutrons. The incompletely filled outer shells,
which enabled the investigation of this nucleus in the con-
text of seniority symmetry, implies strong pairing correlations
among valence nucleons, as explained in Ref. [16]. The shell-
model extended to the interacting boson approximation (IBM)
studies of 213–216Rn were carried out in which many isomeric
states were analyzed [17]. The calculated spectroscopic prop-
erties such as the energies and the electromagnetic transitions
are compared with experimental data except for the transitions
in the 216Rn isotope that are yet to be measured. The model
predicts also the spins and parities of some experimentally
ambiguous states of the radon isotopes. The narrow gap be-
tween 6+

1 and 8+
1 states belonging to the yrast-band observed

in this mass region of even-even nuclei that is, however, not
observed in the 216Rn nuclei was explained as an effect of
the increase in the quadrupole collectivity. Understanding the
nuclear properties of this nucleus may therefore require the
consideration of collective behavior involving strongly corre-
lated nucleons on the nuclear surface.

Experimental studies using 208Pb(14C, α 2n)216Rn and
208Pb(18O, 2α 2n)216Rn reactions revealed a rich yrast spec-
trum and high-spin states in 216Rn [18,19]. The results show
that the nucleus possesses properties that favor vibrational in-
terpretation as well as those of single particles. The vibrational
character is seen from the alternating parity observed at high
spin, above the 13− state, characteristic of octupole collec-
tivity [18,19]. These findings have been taken to suggest that
the 216Rn nucleus defines a lower mass boundary of N = 130
region, beyond which static intrinsic reflection-asymmetric
shapes may exist in the nuclear ground state, consequence of
α clustering and stable octupole shape component.

This paper attempts to determine which of the three con-
figurations mentioned above best described the structure of
216Rn. This requires a proper consideration for the α-α corre-
lations around the nuclear surface. It is organized as follows:
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FIG. 1. Plots of the nuclear interactions for the 212Po core plus 4He cluster (left), and the 208Pb - 8Be system (right). The normalized
double-folding potential and the hybrid Saxon-Woods potential are represented with dashed blue lines and dash-dotted black lines, respectively.
The density distribution of the 8Be is taken from the Gaussian parametrization of Ref. [29].

In Sec. II, the theoretical framework of the binary cluster
model and that of the three cluster system is presented. Dis-
cussion of the results is given in Sec. III and the concluding
remarks are presented in Sec. IV.

II. MODEL

A. Binary cluster system

The 216Rn nucleus is first modeled as a two-body spinless
systems with α-212Po and 8Beg.s. -208Pb as possible cluster-
core systems. Here the simplest binary-cluster model (BCM)
approach developed by Buck et al. [20,21] is considered for
each configuration, and observables of good interest are com-
pared. The stationary Schrödinger wave equation describing
the relative motion of each system is given by[

− h̄2

2μ
� + V (r)

]
ψnJM (r) = EJψnJM (r), (1)

where

ψnJM (r) = ϕnJ (r)

r
YJM (r̂) (2)

is the state wave function with corresponding energy eigen-
value EJ , and μ = A1A2/(A1 + A2) is the reduced mass of
the system, where A1 and A2 are the mass numbers for the
core and cluster, respectively. The functions ϕnJ (r) and YJM (r̂)
are the radial and the spherical harmonic wave functions. The
quantities n, J , and M are, respectively, the number of nodes,
the orbital and azimuthal quantum numbers. The symbol r̂ =
(θ, φ) denotes the angular coordinates. Equation (1) may be
reduced to the radial component of the Schrödinger wave
equation for the system subject to the constraint 2n + J � G.
A good estimate of the global quantum number G = 5A2 for
clusters heavier than α particle is given in Ref. [21]. The
quantity V (r) is the total interaction between the systems
comprising the nuclear UN (r) and the Coulomb UC (r) inter-
actions. The Coulomb interaction is taken as that between two
spherical nuclei given by

UC (r) = Z1Z2e2

r
, if r � Rc

= Z1Z2e2

2Rc

(
3 −

∣∣∣∣ r

Rc

∣∣∣∣
2)

, if r � Rc, (3)

with the Coulomb radius RC taken as the nuclear radius R [21].
The quantities Z1 and Z2, are respectively the charge numbers
of the two nuclei.

The nuclear potential is in principle obtained from the
double-convolution integral of the renormalized M3Y effec-
tive NN interaction with matter density distributions of the
core and cluster nuclei. This is given by [22,23]:

UN (r) = λ

∫∫
dr1dr′

2ρ1(r1)ρ2(r′
2)g(E , |s|), (4)

where λ is the renormalization constant. The M3Y NN inter-
action is expressed as the sum of a direct finite-range and the
short-range exchange terms,

g(E , |s|) = 7999
exp (−4s)

4s
− 2134

exp (−2.5s)

2.5s

− 276

(
1 − 0.005

E

A2

)
δ(s). (5)

Although the potential model yields a good account of elastic
scattering and ground-state decay half-lives of α-conjugate
nuclei but failed to predict the level structure of the yrast band
of such system correctly. This was traced to the flat shape in
the internal region of the nuclear potential, as shown in Fig. 1.
However, given the successes of the Saxon-Woods interaction
and its variants [22–25], a more handy approach is to construct
a hybrid potential of Saxon-Woods (SW + SW3) type given
by [22]

UN (r) = −V0

[
x

1 + exp
(

r−R
a

) + 1 − x[
1 + exp

(
r−R
3a

)]3

]
, (6)

with fitted parameters for different configurations. The depth
V0, the mixing parameter x, the nuclear radius R, and the
diffuseness a for the α-core and the Be-core systems are listed
in Table I. The fitted parameters are obtained by following
the procedure described in Refs. [22,23,26], where the depth
V0 has been renormalized by fitting to the 2+ state of 216Rn.
In obtaining these parameters the matter densities of the dou-
ble folding interactions for the cluster-core combinations are
taken from Refs. [26–29]. The two-parameter Fermi form

ρ1(r1) = ρ0

1 + exp
(

r−c
a

) , (7)
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TABLE I. The fitted potential parameters for the SW3 nuclear
potential.

Partitions V0 (MeV) a (fm) x R (fm)

α-212
84 Po 237.1 0.730 0.340 6.839

8Be -208
82 Pb 485.0 0.707 0.200 6.947

with c = 1.07A1/3
1 fm and a = 0.54 fm, was used for the core

nuclei while the cluster densities were calculated using the
Gaussian function

ρ2(r2) = αexp(−βr2), (8)

with parameters α = 0.4299 fm−3 and β = 0.7024 fm−2 for
the alpha cluster [28]. For the 8Be cluster we take α =
0.602 fm−3 and β = 0.560 fm−2 [29], where the density has
been appropriately normalized by treating the nucleus as a
single system rather than weakly bound two-alpha systems.
Figure 1 clearly illustrates the difference in the internal region
of the potentials.

The in-band electromagnetic transitions B(E2; J ′ → J )
and quadrupole moments Q(J ), which are good tests of theo-
retical models, are given by

B(E2; J ′ → J ) = 5

4π
β2

2 〈J ′020|J0〉2|〈ϕJ |r2|ϕJ ′ 〉|2,

Q(J ) = − β2
2J

2J + 3
〈ϕJ |r2|ϕJ〉 (9)

where the charge-dependent factor β2 is expressed as

β2 = Z1A2
2 + Z2A2

1

(A1 + A2)2 · (10)

The decay half-life considered as an important indicator of the
clustering signature is defined as [20]

T1/2 = 1

P

2μln2

h̄
exp

[
2

∫ r3

r2

k(r)dr

] ∫ r2

r1

dr

k(r)
, (11)

where r1, r2, and r3 are the turning points for which V (r) =
EJ . The factor P is the probability for a preformed cluster to
exist inside the parent nucleus, and the local wave number
k(r), is given by

k(r) =
√

2μ

h̄2 |EJ − V (r)|· (12)

B. Orbit-orbit coupling of cluster systems

In the present section, 216Rn is treated as a three-body
system with two α particles orbiting around the 208Pb core,
as illustrated in Fig. 2. Following the model developed for
odd-mass parent nuclei and even-even nuclei [30–37], the
α particles are assumed to occupy orbits relative to 208Pb
corresponding to the lowest degenerate levels of 212Po. The
Pauli principle is satisfied by excluding nucleons of an α

particle from orbitals above the 208Pb Fermi surface already
occupied by those of the other α particle. Assume that the
systems remain in their respective ground-states such that the
total Hamiltonian describing the dynamic of the problem may

FIG. 2. A schematic diagram of the three-body configuration
showing the position vectors for α-α-208Pb system.

be written in the weak-coupling limit as

H = H(r1) + H(r2) + V (r1, r2), (13)

where the term H(ri ) are the Hamiltonians accounting for
the relative motion of each α particle around the core 208Pb.
The term V (r1, r2) represents the interaction between the two
α-particle relative motions which mixes together the various
combinations of the two-α orbital motion states coupled to the
total angular momentum J of the parent nucleus. The problem
is thus reduced to a numerically solvable equation of motion
capable of describing the properties of the heavy 216Rn nuclei.

C. The basis states

In the coupled-channel approximation, the state vectors of
good quantum number J in the weak-coupling limit which
diagonalizes the Hamiltonian may be constructed by coupling
the cluster-orbit degenerate states of both α- 208Pb cluster
configurations. These degenerate states are in turn obtained
by coupling the 0+ state of 208Pb to the orbital motion of the
α particle. Thus, the basis state is formed from the coupled
orbital motion as

|J1J2; JM〉 =
∑

M1M2

〈J1M1J2M2|JM〉ψn1J1M1 (r1)ψn2J2M2 (r2),

(14)
where 〈J1M1J2M2|JM〉 are the Clebsch-Gordon coefficients.
The states functions, ψniJiMi (ri ) describing the relative motion
satisfy the eigenvalue problem in Eq. (1).

For each value of the angular momentum J , the energies
and the corresponding eigenstates |JM〉 of the full Hamilto-
nian given in Eq. (13) are obtained by expanding in terms of
the basis states as

|JM〉 =
∑
J1J2

CJ
J1J2

|J1J2; JM〉, (15)

where CJ
J1J2

are the coefficients of expansion such that∑ |CJ
J1J2

|2 = 1. The sum in Eq. (15) runs over various possible
combinations of angular momenta restricted by the selection
rule to yield J . Hence the matrix element of H in the basis
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state |J1J2; JM〉 [defined in Eq. (14)] is given by

〈J1J2; JM|H|J ′
1J ′

2; J ′M ′〉
= δJJ ′δMM ′

[
δJ1J ′

1
δJ2J ′

2

(
EJ1 + EJ2

)
+ 〈J1J2; JM|V (1, 2)|J ′

1J ′
2; J ′M ′〉]· (16)

The matrix-element 〈J1J2; JM|V (1, 2)|J ′
1J ′

2; J ′M ′〉 thus acts
as a correction term to lift the degeneracy of the unper-
turbed energy, EJ1 + EJ2 for the two-α particles with total
angular momentum |J1 − J2| � J � J1 + J2. These are simple
eigenvalue equations that can now be straightforwardly diag-
onalized to yield the energy-eigenvalues EJ corresponding to
the expansion coefficients CJ

J1J2
. The energies EJi can in prin-

ciple be obtained by solving the relative motion equation for
α- 208Pb system. For convenience, their values are taken from
the well-known spectrum of 212Po for both the positive-parity
ground-band and the negative-parity band. However, the equa-
tion is solved to obtain the necessary wave functions in order
to evaluate the matrix elements of the Hamiltonian, the elec-
tromagnetic transitions, and the moments.

D. The interacting potential

The potential V (r1, r2) is taken as a sum of the finite-range
nuclear and the Coulomb interactions,

V (r1, r2) = VN (|r1 − r2|) + VC (|r1 − r2|)· (17)

For the nuclear interaction, the low-energy four-parameter
Ali-Bodmer phenomenological potential is adopted [38]. It
has a Gaussian shape and is parametrized as

VN (|r1 − r2|) = Vrexp
(−μ2

r |r1 − r2|2
)

− Vaexp
(−μ2

a|r1 − r2|2
)
, (18)

where Vr and Va represent the strengths of the repulsive and
the attractive components respectively, while μr and μa cor-
respond to inverse ranges. These four parameters had been
determined to fit the phase shifts of α-α scattering. For
the Coulomb part, we choose the interaction between two
spherically charged particles

VC (|r1 − r2|) = 4e2

|r1 − r2| · (19)

Choosing the center of mass of the core as the coordinate
origin, and since the α-α interaction being a scalar operator
(tensor of rank k = 0), the multipole expansion within a set of
complete functions yields

V (|r1 − r2|) =
∑

λ

Vλ(r1, r2)Yλ(r̂1) · Yλ(r̂2), (20)

where the multipole component is given by

Vλ(r1, r2) = UNλ(r1, r2) + UCλ(r1, r2)· (21)

The nuclear component is defined as

UNλ(r1, r2) = 2π

∫ 1

−1
VN (|r1 − r2|)Pλ(cos θ12)d (cos θ12),

(22)
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0.7764+
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FIG. 3. Experimental and calculated positive-parity energy
levels of 216

86 Rn in MeV. Experimental data are taken from
Refs. [18,19,39].

with θ12 being the angle between r1 and r2 and the relative
distance is given by

|r1 − r2| =
√

r2
1 + r2

2 − 2r1r2 cos θ12· (23)

For the Coulomb component,

UCλ(r1, r2) = 4e2 rλ
2

rλ+1
1

, (24)

with the assumption that r1 > r2 so that the ratios may con-
verge. Therefore, the matrix element of the interaction given
in Eq. (17) within the basis states defined in Eq. (14) is
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FIG. 4. Experimental and calculated negative-parity energy
spectrum of 216

86 Rn in MeV.

expressed as

〈J1J2; JM|V (|r1 − r2|)|J ′
1J ′

2; J ′M ′〉

=
∑

λ

Fλ

4π
(−1)J−J1+J ′

1
Ĵ1Ĵ2Ĵ ′

1Ĵ ′
2

2λ + 1
W (J1J ′

1J2J ′
2; λJ )

× 〈J10J ′
10|λ0〉〈J20J ′

20|λ0〉δJJ ′δMM ′ , (25)

where the Slater integrals Fλ [31], expressing the strength of
the interaction, are written as

Fλ = 2λ + 1

4π

∫∫
dr1dr2ϕn1J1 (r1)ϕn2J2 (r2)Vλ(r1, r2)ϕn′

1J ′
1
(r1)

× ϕn′
2J ′

2
(r2), (26)

TABLE II. Calculated electromagnetic transition B(E2↓) proba-
bilities in units of e2 fm4.

Ji Jf α-212Po 8Beg.s. -208Pb Ref. [17]

2+ 0+ 372.25 1418.55 2199.31
4+ 2+ 518.53 2021.12 3126.71
6+ 4+ 538.73 2196.51 3133.72
8+ 6+ 515.64 2253.77 744.55
10+ 8+ 467.14 2253.08 239.51
12+ 10+ 403.26 2215.47
14+ 12+ 329.20 2150.61
16+ 14+ 249.63 2066.88
18+ 16+ 1962.29

with ϕniJi (ri ) (i = 1, 2) being the relative motion wave func-
tions corresponding to the respective initial and final states.
The symbol Ĵ = √

2J + 1 and the quantity W (J1J ′
1J2J ′

2; λJ )
is the Racah coefficients. Here, only the contributions λ =
0, 2, are retained which means that only the monopole and
quadrupole components of the interaction are considered.

E. Electromagnetic properties

It is well known that the dynamic moments or electro-
magnetic transitions connecting different states and the static
moments which account for the electric and magnetic prop-
erties of individual states are significant tools for describing
the charge distributions and thus the nuclear shape. The ex-
plicit form for the multipole operator from each of the α-core
contributions may be written as

Qλμ(r1, r2) = Qλμ(r1) + Qλμ(r2), (27)

where

Qλμ(ri ) = eβλrλ
i Yλμ(r̂i ), (28)

with

βλ = Z1Aλ
2 + (−)λZ2Aλ

1

(A1 + A2)λ
· (29)

Using the wave functions in the form of Eq. (15), the reduced
matrix elements of the operator, Qλμ, defines the transition

TABLE III. Calculated electromagnetic quadrupole moments
Q(Ji ) in units of e fm2.

Ji α-212Po 8Beg.s. -208Pb Ref. [17]

2+ −39.16 −76.45 −62.9
4+ −49.36 −97.04 −89.0
6+ −53.46 −106.32 −104.6
8+ −55.14 −111.30 −113.5
10+ −55.56 −114.13 −129.8
12+ −55.38 −115.70
14+ −54.93 −116.43
16+ −54.52 −116.59
18+ −54.40 −116.33
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probability

B(Eλ; J ′ → J ) =
(

Ĵ

Ĵ ′

)2
∣∣∣∣∣

∑
J1J2J ′

1J ′
2

CJ
J1J2

CJ ′
J ′

1J ′
2
[(−)J+J ′

1−λ−J2 Ĵ ′Ĵ1W (J1J ′
1JJ ′; λJ2)〈J1‖Qλ(r1)‖J ′

1〉δ(J2, J ′
2)

+ (−)J+J ′
2−λ−J1 Ĵ ′Ĵ2W (J2J ′

2JJ ′; λJ1)
〈
J2

∥∥Qλ(r2)‖J ′
2〉δ(J1, J ′

1)]

∣∣∣∣∣
2

, (30)

where the matrix element

〈Ji‖Qλ(ri )‖J ′
i 〉 = eβλ√

4π
(−1)λλ̂

Ĵ ′
i

Ĵi
〈J ′

i 0λ0|Ji0〉
∫

drir
λ
i ϕniJi (ri )ϕn′

iJ
′
i
(ri ). (31)

The quadrupole moment Q(J ) is defined as

Q(J ) =
√

16π

(2λ + 1)

〈JJλ0|JJ〉√
2J + 1

∑
J1J2

(
CJ

J1J2

)2
[(−)J+J1−λ−J2 Ĵ Ĵ1W (J1J1JJ; λJ2)〈J1‖Qλ(r1)‖J1〉

+ (−)J+J2−λ−J1 Ĵ Ĵ2W (J2J2JJ; λJ1)〈J2‖Qλ(r2)‖J2〉]. (32)

III. RESULTS AND DISCUSSIONS

A. Binary cluster model

The structure of the 216Rn nucleus is currently interpreted
as being composed of the collective ground-state band ter-
minating at the 8+ state, the single-particle 10+ state placed
at about 1.940 MeV and the levels above the 10+ state ex-
hibiting reflection asymmetric structure. However, members
of the ground state band and the levels above the observed
10+ state seem to exhibit harmonic-like structure with ≈0.4
MeV energy spacing. This suggests that the 10+ state member
of the collective band may exist slightly above 2 MeV. Thus,
treating all the positive-parity states connected by E2 transi-
tions as members of the ground-state band, with the exception
of the 10+ state taken to be generated from the single-particle
couplings, members of the band are predicted using both the
α- 212Po and 8Beg.s. - 208Pb configurations. Figure 3 displays
the spectrum of 216Rn modeled with the different two-body
systems interacting via SW + SW3 local potential. Although
the α- 212Po system appears to give better predictions of the
harmonic-like structure with predicted energies lying within

FIG. 5. Relative motion wave functions corresponding to J =
0+, 2+, and 4+ angular momenta of the 4He -212Po system.

the observed energy range. The two configurations generate
similar level schemes for the low-lying states up to the 8+
state in fair agreement with the measured values [18,19,39].
The collective 10+ state is predicted at ≈2.25 MeV by both
configurations respectively. Above the 10+ state however the
α- 212Po system is seen to generate compressed and inverted
states while the other configuration generates a stretched spec-
trum, in clear disagreement with the observed spectrum.

The negative-parity partner bands calculated with
odd-G quantum number and parity-dependent interaction
strengths [40] are shown in Fig. 4. The bands are calculated
with a slightly deeper strength V −

0 = 1.01V0 obtained from
a fit to the experimental 17− state and radius adjusted to
R = 7.019 fm for the α- 212Po system. A shallower depth
V −

0 = 0.967V0, appropriately tuned to generate ordered states,
was used for the 8Beg.s. - 208Pb system. The configurations
are seen to give similar predictions between the 1− bandhead
and the 9− state. Above the 9− state the predicted structures
behave differently and each mimics the structures predicted
by their positive-parity partner bands. One may thus view

FIG. 6. Relative motion wave functions corresponding to J =
0+, 2+, and 4+ angular momenta of the 8Beg.s. -208Pb system.
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TABLE IV. Calculated electromagnetic quadrupole B(E2↓) and
dipole B(E1↓) transition probabilities for the negative-parity band.

B(E2; J → J − 2) e2 fm4 B(E1; J → J − 1) e2 fm2

Jπ
i α-212Po 8Beg.s. -208Pb α-212Po 8Beg.s. -208Pb

1− 0.25 1.339
3− 539.28 1776.43 0.35 1.633
5− 609.27 2071.90 0.39 1.679
7− 605.27 2171.93 0.42 1.663
9− 566.48 2193.13 0.44 1.620
11− 506.33 2170.68 0.47 1.561
13− 432.59 2117.15 0.48 1.491
15− 350.83 2039.57 0.50 1.412
17− 264.70 1942.47 0.52 1.326
19− 176.68 1829.12 0.55 1.233
21− 85.47 1702.09 0.59 1.136

the observed results as being mostly from one of the
cluster-model configurations with admixture from other
possible configurations.

The electromagnetic properties for the positive-parity
bands are given in Tables II and III. The reduced transi-
tion strengths B(E2↓) [=B(E2; J → J − 2)] and the static
moments Q(J ) are calculated without an effective charge.
Due to the unavailability of experimental data, the results are
compared with predictions from shell-model calculations [17]
where however large effective charge is used. The B(E2↓)
values obtained with 8Beg.s. -208Pb system are seen to be ap-
proximately four times larger than those calculated from the
α-212Po system. Similarly, the Q(J ) values of the former are
also a factor of ≈2 greater than those of the latter. These
are understood as the increase in the charge distribution with
cluster size. The surface character and the number of nodes
of the wave functions, shown in Figs. 5 and 6 for the lowest
states, explain the predicted large values of the transitions
and the variation of the B(E2↓) with angular momentum.
The predicted transitions in both configurations are also seen
to follow the expected trend similar to earlier observations.
While the near constant results obtained with 8Beg.s. -208Pb
system are similar to those of 218Rn exhibiting harmonic-like
structure, the α-212Po gives results in agreement with those
of doubly closed structure plus alpha nuclei [41,42]. Also,
the constant Q(J ) predicted by both configuration suggest a
possible structural change for spins above the 8+ state. These
results seems to suggest that the ground band extends beyond
the 8+ state with the 8Beg.s. -208Pb system having a stronger
influence, especially at higher states. The electromagnetic
quadrupole B(E2↓) and dipole B(E1↓) transitions for the
negative-parity bands obtained with the core-cluster systems

TABLE V. Decay half- lives for the two cluster-core systems.

Half-life α- 212Po 8Beg.s. - 208Pb

T expt
1/2 45 μs

T calc
1/2 40 μs 8.6 × 10 8 s

TABLE VI. The Ali-Bodmer interaction parameters used in the
present calculation [38].

Label μa (fm−1) Va (MeV) μr (fm−1) Vr (MeV)

VN1 0.35 30 0.65 125
VN2 0.42 150 0.55 325

are listed in Table IV. The orders of magnitude of the B(E2↓)
transitions are similar to those of the positive-parity bands.
Their variations with spin also agree with the expected trends.
The B(E1↓) values, however, are found to be two orders of
magnitude larger than typical enhanced single-particle value
of 10−3 W.u. We note that similar enhanced E1s have been
observed in other nuclei or nuclear regions such as in the
high-spin state of rare-earth nuclei, some light nuclei, or the
low-lying transitions near closed shells [43]. The values ob-
tained here may be explained by the large and equal number
of nodes of the opposite parity state wave functions involved.
It may account for the observed octupole collectivity, particu-
larly the reflection asymmetry at high spin of 216Rn [19], given
the strong connection between clustering and the octupole col-
lectivity [37,43]. The large B(E1↓) values, which may have
been naturally suppressed by other nuclear structure effects,
explain also the marked deviation of the B(E1) : B(E2) ratios
from the observed values in Ref. [19].

The calculated ground-state α-decay half-life T1
2

= 40 μs,
shown in Table V, is to be compared with the measured
value T1

2
= 45 μs [39]. The corresponding 8Beg.s. decay of

216Rn T1
2

= 8.6 × 108 s shows the stability of the nucleus

against the 8Beg.s. decay. Although the half-lives have been
calculated with preformation probability P = 1, the result is
in good agreement with the findings of Ref. [44] wherein
the possibility of 2α decay mode being more likely than 8Be
decay has been shown. Thus one may view the constituent
particles of 8Be as α-particle condensate located just above
the Fermi sphere of 208Pb nucleus. The trapped condensate
in the mean-field of the spherical core 208Pb may suppress
the single-particle state due to the correlations induced by
interaction between the α particles. However, energetics fa-
vors the successive decay of the α particles because 8Be is
a weakly bound system and hence the possible existence of
the α-core system or systems involving more complicated
configurations.

B. Three-particle systems

Here we considered the mixing of the states generated
by the α-α-core systems in the presence of weak-coupling
interaction as described in Sec. II B. The energies of the core
nuclei are taken from the experimental spectrum of 212Po.
However, the only observed negative-parity state energies for
212Po are Jπ = 11− and 13− states placed at E = 2.411 and
2.772 MeV, respectively. The energies of the remaining low-
spin negative-parity states are taken from Ref. [45], where the
coupling between the lowest 3− excitation of the 208Pb-core
and the relative motion of α-core system has been used to
generate the negative-parity band. Two sets of Ali-Bodmer
potential parameter values denoted by VN1, and VN2 [38] given
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in Table VI have been used in the present calculations. As
an illustration typical diagonalizable Hamiltonian matrices

generated from Eq. (16), for the J = 2+ and J = 19− states
are given by

HJ=2 =

⎛
⎜⎜⎝

E0 + E2 + F 0 0.2F 2 −0.53F 2

0.2F 2 E0 + E2 + F 0 −0.53F 2

−0.11F 2 −0.11F 2 2E0 + F 0 − 0.06F 2

⎞
⎟⎟⎠, (33)

HJ=19 =

⎛
⎜⎜⎝

E11 + E8 + F 0 + 0.19F 2 0.32F 2 −0.10F 2

0.36F 2 E13 + E6 + F 0 + 0.18F 2 −0.10F 2

−0.08F 2 −0.08F 2 E13 + E8 + F 0 − 0.01F 2

⎞
⎟⎟⎠. (34)

Figures 7 and 8 show the lowest energies of the predicted
rich positive- and negative-parity energy spectra obtained after
the diagonalization of the Hamiltonian matrices constructed
for each state. The energies calculated with the two set of
nuclear interaction parameters VN1 and VN2 are denoted by
Cal. I and Cal. II. The repulsive strength Vr of VN2 has
been adjusted to 190 MeV for the positive-parity states. The
values computed are generally in good agreement with the
experimental data when compared with the results obtained
using the binary cluster approach. In particular, the expected
harmonic structure is well reproduced. The missing 10+ mem-
ber of the band is also predicted close to the expected 2
MeV considering the regular harmonic structure of the nuclei
with ≈0.4 MeV spacing. Energy levels above the observed
single-particle 10+ state have also been predicted within few
keV from their experimental counterparts. The energies of the
13−-band negative-parity states have also been reproduced
quite well, as can be seen in Fig. 8. For the negative-parity
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Cal.I
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2.82014+

2.40812+

2.05910+
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0.8694+

0.4782+

0.0000+

FIG. 7. Experimental and calculated positive-parity energy lev-
els (MeV) of 216

86 Rn obtained with α + α + 208Pb system.

band, the good agreement is achieved by adjusting the values
of the repulsive term Vr of the parameter sets VN1 and VN2 to
30 and 190 MeV, respectively, with other parameters fixed.
The figure also shows the predicted values of the unknown
members of the negative-parity band. It would be interesting
to have the corresponding measured data.

Using the expansion coefficients CJ
J1J2

obtained from the
diagonalized matrices and the relative motion wave functions,
the reduced transition probabilities and quadrupole moments
defined in Eqs. (30) and (32) are calculated numerically and
the results are summarized in Tables VII and VIII for the
positive-parity band. The shell-model predictions of Ref. [17]
have also been included for comparison. The B(E2↓) values
have been obtained without the effective charge and takes
the same order of magnitude as for 4He -212Po configura-
tion in Table II. However, values of the quadrupole moments
are predicted to increase with increasing spin, consistent in
magnitude and trend up to the 8+ state with those predicted
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FIG. 8. Experimental and calculated negative-parity energy lev-
els (MeV) of 216

86 Rn obtained with α + α + 208Pb system.
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TABLE VII. The calculated B(E2↓) values in units of e2 fm4

obtained for the positive-parity transitions in the coupled orbital
formalism.

Ji Jf Cal. I Cal. II Ref. [17]

2+ 0+ 562.56 368.67 2199.31
4+ 2+ 620.13 256.07 3126.71
6+ 4+ 870.08 497.34 3133.72
8+ 6+ 863.95 828.11 744.55
10+ 8+ 926.42 694.27 239.51
12+ 10+ 787.91 548.51
14+ 12+ 493.74 614.83
16+ 14+ 826.37 237.14
18+ 16+ 822.77 3.13

with the 4He -212Po system. The constant values predicted for
spins above the 8+ state in the latter is not observed in the
present configuration. The intraband B(E2↓) and the dipole
B(E1↓) transition probabilities for the negative-parity states
are listed in Table IX. The predicted values may be compared
with the corresponding values for the 4He -212Po core-cluster
system presented in Table IV. In particular, the dipole tran-
sitions are seen to decrease with increasing spin and varies
within three orders of magnitude in sharp contrast with the
core-cluster prediction. While the predicted transitions from
the low-spin states (and the 17− state with 0.116 W.u.) agree
with those of α + 208Pb configuration which are an order of
magnitude away from typical enhanced values in the mass
region, the predictions for higher states are in good agree-
ment with the enhanced range of values [43]. The calculated
B(E1↓)/B(E2↓) ratios have also been compared with the
measured values of Ref. [19] in Table X, where the calcu-
lated B(E1; 14+ → 13−) = 8.39 × 10−4 e2 fm2 and 7.00 ×
10−6 e2 fm2 have been used for Cal. I and Cal. II, respectively.
Similarly, the values B(E1; 16+ → 15−) = 0.176 e2 fm2 and
0.194 e2 fm2 were used for the 16+ state. This seems to
show that, even though the energies are correctly predicted
within the formalism and the results generally represent great
improvement over the binary cluster predictions, the wave

TABLE VIII. Calculated electromagnetic quadrupole moments
in e fm2 obtained for the positive-parity transitions in the coupled
orbital formalism.

Ji Cal. I Cal. II Ref. [17]

2+ −32.53 −35.83 −62.9
4+ −48.83 −44.57 −89.0
6+ −51.44 −51.25 −104.6
8+ −55.09 −56.29 −113.5
10+ −58.41 −65.74 −129.8
12+ −65.60 −65.61
14+ −72.04 −71.55
16+ −74.96 −74.87
18+ −75.74 −75.74
20+ −75.29 −75.29

TABLE IX. Calculated quadrupole B(E2↓) and dipole B(E1↓)
transition probabilities for the negative-parity band in the coupled
orbital formalism.

B(E2↓) e2 fm4 B(E1↓) e2 fm2

Jπ
i Cal. I Cal. II Cal. I Cal. II

1− 0.35 0.35
3− 607.41 605.37 0.33 0.26
5− 987.82 815.96 0.30 0.24
7− 835.11 593.84 0.023 0.0016
9− 742.65 810.20 0.057 0.051
11− 930.72 927.75 0.0024 0.0022
13− 531.03 528.85 0.000 11 0.0000 17
15− 690.27 684.37 0.15 0.0022
17− 691.89 685.83 0.26 0.27
19− 522.21 520.12 0.000 34 0.000 36

functions may still not be adequate to explain the observed
transition probabilities among other features.

IV. CONCLUSIONS

In summary, 216Rn has been modeled in various configu-
rations with a dominant α-particle component to account for
its decay and spectroscopic properties. Satisfactory results are
obtained for the ground state α-decay half-life. The excitation
energies are well reproduced especially with α + α + 208Pb
model treated within the coupled-channel formalism. The
enhanced transition probabilities and quadrupole moments
obtained show strong correlations between the configurations
considered. The results show that the 216Rn states could there-
fore be described as a mixture of α + 208Pb and 8Beg.s.+ 208Pb
systems for which the latter may be taken to exist for the most
part as α + α + 208Pb systems due to the weakly bound nature
of the 8Beg.s. ground state.
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TABLE X. Experimental and calculated B(E1↓)/B(E2↓)
10−6 fm−2 transition ratios.

Ji Expt. Cal. I Cal. II

14+ 0.16(3) 1.7 0.011
15− 0.7(1) 213 3.17
16+ 0.13(3) 213 820
17− 0.6(1) 383 388
19− 0.05(2) 0.66 0.69
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