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K. Uzawa, K. Hagino , and K. Yoshida
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 24 December 2021; revised 24 February 2022; accepted 11 March 2022; published 24 March 2022)

Background: While many phenomenological models for nuclear fission have been developed, a microscopic
understanding of fission has remained one of the most challenging problems in nuclear physics.
Purpose: We investigate an applicability of the generator coordinate method (GCM) as a microscopic theory for
cluster radioactivities of heavy nuclei, which can be regarded as a fission with large mass asymmetry, that is, a
phenomenon in between fission and α decays.
Methods: Based on the Gamow theory, we evaluate the preformation probability of a cluster with GCM while
the penetrability of the Coulomb barrier is estimated with a potential model. To this end, we employ Skyrme
interactions and solve the one-dimensional Hill-Wheeler equation with the mass octupole field. We also take into
account the dynamical effects of the pairing correlation using Bardeen-Cooper-Schrieffer (BCS) wave functions
constructed with an increased strength of the pairing interaction.
Results: We apply this scheme to the cluster decay of 222Ra, i.e., 222Ra → 14C + 208Pb, to show that the
experimental decay rate can be reproduced within about two order of magnitude. We also briefly discuss the
cluster radioactivities of the 228Th and 232U nuclei. For these actinide nuclei, we find that the present calculations
reproduce the decay rates with the same order of magnitude and within two or three order of magnitude,
respectively.
Conclusions: The method presented in this paper provides a promising way to describe microscopically cluster
decays of heavy nuclei.
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I. INTRODUCTION

Nuclear fission is an important phenomenon in various
areas of physics, including productions of neutron-rich nuclei,
the r-process nucleosynthesis, and syntheses of superheavy
elements [1–4]. While many phenomenological models for
fission have been developed, a microscopic understanding of
fission has remained one of the most challenging problems in
nuclear physics [5]. In the fission process, many degrees of
freedom are involved during a shape evolution of a fissioning
nucleus. Since it is difficult to incorporate all the degrees
of freedom, it is essential to extract appropriate degrees of
freedom for fission. Nuclear deformation parameters are often
used for this purpose.

In addition to nuclear deformation, the nuclear superfluid-
ity [6] also plays an important role in describing the fission
process, see, e.g., Refs. [7–10]. In particular, the role of dy-
namical pairing [11] has attracted lots of attention in recent
years [12–14]. To explicitly take into account the pairing
dynamics, a pair hopping model was proposed in Ref. [15].
In this model, a nucleus goes into a shape evolution by hop-
ping from one Hartree-Fock configuration to a neighboring
configuration by a residual pairing interaction. This model
has been successfully applied to recent α decay experiments
for high spin isomers [16–18]. Based on a similar idea to the
pair hopping model, a more microscopic approach based on
a many-body Hamiltonian was investigated in Refs. [19,20].
Advantages of this approach are i) it is easy to connect to

reaction theories [19] and ii) a collective inertia for fission
does not need to be evaluated explicitly. Within this model, the
effect of the dynamical pairing was considered by introducing
the maximum coupling approximation [21], in which the basis
states are constructed by increasing the pair correlation.

In this connection, an interesting phenomenon to explore is
a cluster radioactivity, such as an emission of 14C from a heavy
nucleus. This phenomenon can be regarded as a phenomenon
in between spontaneous fission and α decays. This is a unique
phenomenon, in which many-body effects are much more
important than in α decays, while the matching of a many-
body wave function to an external region is much simpler
than that for spontaneous fission. The cluster radioactivity was
observed for the first time in 1984 in the decay of 223Ra emit-
ting the 14C cluster [22]. Since then, several cluster emission
decays have been observed by now [23], in which a daughter
nucleus tends to be 208Pb or its neighbors. Notice that the
cluster radioactivities may be regarded as a spontaneous fis-
sion with large mass asymmetry. See Refs. [24–26] for recent
studies along this line on the cluster radioactivities based on
the density functional theory. Even though the branching ratio
of the cluster decays to α decays is usually considerably small,
it has been pointed out that the cluster decay may become a
dominant decay mode of superheavy nuclei [25–27].

In this paper, we apply a similar approach to Refs. [19–21]
to cluster radioactivities of heavy nuclei. While Refs. [19–21]
used a schematic many-body Hamiltonian, we here employ
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a realistic energy functional of Skyrme type. To this end,
we take into account the non-orthogonality of many-body
configurations at different shapes by the generator coordinate
method (GCM). Also, we consider couplings among all the
configurations in a model space, not restricting to the nearest
neighbor couplings.

The paper is organized as follows. In Sec. II, we detail the
theoretical method for the cluster radioactivities based on the
GCM. In Sec. III, we present results for the cluster decay of
222Ra, 228Th, and 232U as typical examples. We compare the
calculated decay rates with the experimental data as well as
with other theoretical calculations. We also discuss the role of
dynamical pairing in cluster decays. We then summarize the
paper in Sec. IV.

II. CLUSTER DECAYS BASED ON GCM

For a theoretical description of cluster decays, two types
of approaches have been employed [23], either based on the
Gamow theory for α decays [28] or on models for spontaneous
fission. In the former, it is assumed that a cluster is preformed
in a mother nucleus and then it tunnels through the Coulomb
barrier [29,30]. In this theory, a decay rate is expressed as

w = S f P, (1)

where S is the preformation probability for a cluster to appear
in a mother nucleus, f is a barrier assault frequency, i.e.,
an attempt frequency, and P is the penetration probability of
the Coulomb barrier. A similar approach can be formulated
also using the Fermi golden rule [15]. On the other hand, in
the latter approach [24–26], a potential energy surface and
mass inertias for fission characterized by nuclear deformation
parameters are calculated based on theoretical models such
as the liquid drop model or the density functional theory.
The decay rate is estimated from the least action path in the
potential energy surface so obtained.

In this paper, we employ the Gamow theory to compute
the decay rates. To this end, we estimate the preformation
probability S based on the GCM, while f and P based on
a two-body potential model. That is, we carry out a micro-
scopic calculation before the clusters are preformed using the
GCM, while we use a phenomenological two-body approach
after that. In principle, we could use the microscopic density
functional theory also for the tunneling process. However,
this would require a large model space as well as a proper
treatment of the neck degree of freedom [24,31] (see also
Ref. [32]). We thus leave it for a future study.

To calculate the preformation probability of a cluster, we
first solve the Hartree-Fock (HF) equation with constraints
on mass multipole moments. The pairing correlation is also
taken into account in the Bardeen-Cooper-Schrieffer (BCS)
approximation. Following Ref. [24], we use the mass octupole
moment, Q3 = ∑

i r3
i Y30(θi ), for the constrained calculations.

For the particle-hole interaction, we use the Skyrme interac-
tion with the SkM* [33] and the SLy4 [34] parametrizations.
We solve the HF equation using the imaginary-time method
with the coordinate-space representation [38]. We impose ax-
ial symmetry and use the two-dimensional cylindrical mesh.

For the pairing interaction, we employ a volume-type con-
tact interaction,

Vpair (r, r′) = Vτ

1 − Pσ

2
δ(r − r′), (τ = n, p), (2)

where Pσ is the spin exchange operator. The value of Vτ is
determined to reproduce the empirical pairing gaps,

�n = − 1
2 [B(N − 1, Z ) + B(N + 1, Z ) − 2B(N, Z )],

�p = − 1
2 [B(N, Z + 1) + B(N, Z − 1) − 2B(N, Z )], (3)

where B(N, Z ) is the measured binding energy [35] of the
nucleus with the neutron number N and the proton number
Z . For a zero-range pairing interaction, the energy cutoff is
necessary to exclude high momentum components from the
model space. We use the smooth cut-off procedure with a
Fermi function [36,37].

Based on the idea of GCM [39], we describe the decaying
wave function as a superposition of the BCS wave functions
at different Q3 values,

|�〉 =
∑

i

f (qi )P̂Z P̂N |	(qi )〉 ≡
∑

i

f (qi )|	(N, Z, qi )〉, (4)

where |	(q)〉 is the BCS wave function at Q3 = q, and P̂Z and
P̂N are the operators to project the BCS wave function onto an
eigenstate of the proton and the neutron numbers, respectively.
The weight function f (qi ) is determined by solving the Hill-
Wheeler equation,∑

j

〈	(N, Z, qi )|H |	(N, Z, qj )〉 f (q j )

= E
∑

j

〈	(N, Z, qi )|	(N, Z, qj )〉 f (q j ). (5)

The preformation probability S is then determined as

S = |g(Qt )|2, (6)

where Qt corresponds to the octupole moment at the crossing
point between the one-body and the two-body configurations
[see the discussion below Eq. (16)]. Here, the collective wave
function g(qi ) is defined as

g(qi ) =
∑

j

N1/2(qi, q j ) f (q j ), (7)

where N (qi, q j ) = 〈	(N, Z, qi )|	(N, Z, q j )〉 is the overlap
kernel and N1/2(qi, q j ) is the component of the matrix N1/2.

In the usual GCM calculations, the basis function
|	(N, Z, q)〉 is taken to be the local ground state at q. Exci-
tations during the decay process can also be taken into using
the configuration interaction (CI) approach [19–21]. That is,
instead of Eq. (4), one can consider

|�〉 =
∑

i

∑
k

fk (qi )P̂Z P̂N |	k (qi )〉, (8)

where {|	k (q)〉} is a set of many-body wave functions at q,
including both the local ground state and excited states. In
Ref. [21], an efficient way to include the excited states has
been proposed using the maximum coupling approximation.
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In this approximation, one modifies the Hamiltonian by in-
creasing the strength of the pairing interaction by a factor α,

Hmod = HHF + αHpair, (9)

where HHF and Hpair are the particle-hole and the pairing parts
of the Hamiltonian, respectively. The local ground state of the
modified Hamiltonian, |	(α)(q)〉, is then superposed as

|�〉 =
∑

i

f (qi )P̂Z P̂N |	(α)(qi )〉. (10)

The value of α can be determined so that the decay rate is
maximized. Notice that using the Thouless theorem [40] the
wave function |	(α)(qi )〉 can be expressed as

|	(α)(q)〉 ∝
∏
i, j

(
1 + C(α)

i, j α
†
i α

†
j

)|	(q)〉, (11)

where α
†
i is a creation operator for quasiparticles, thus it

includes excited configurations in a specific way.
To compute the frequency f and the penetrability P, we

consider a phenomenological potential V for the relative mo-
tion between the two fragments,

V (r) = VN (r) + VC (r), (12)

where r is the relative coordinate, and VN and VC are the
nuclear and the Coulomb potentials, respectively. For the
Coulomb interaction, VC , we consider the potential for a uni-
formly charged sphere with the radius rC ,

VC (r) =
{

Z1Z2e2

r ( r > rC)
Z1Z2e2

rC

(
3
2 − r2

2r2
C

)
, ( r � rC)

, (13)

where Z1 and Z2 are the proton number of each fragment. We
take rC = 1.2(A1/3

1 + A1/3
2 ) fm for the charge radius, where A1

and A2 are the mass number of each fragment. For the nuclear
potential, VN , we employ a Woods-Saxon potential

VN (r) = − V0

1 + exp[(r − R0)/a]
, (14)

for which the radius parameter R0 and the diffuseness pa-
rameter a are taken from Ref. [41]. The depth parameter
V0 is adjusted so that the resonance energy of the potential
V , determined with the two-potential method [42], coincides
with the experimental Q value [35]. Even though there may
be several uncertainties in the nuclear potential, especially in
the region well inside the Coulomb barrier, we would expect
that the order of magnitude of a calculated decay rate is rather
insensitive once the barrier height is fixed. This is because the
decay rate is largely determined by the penetration probability
of the Coulomb field; even though the attempt frequency is
sensitive to the nuclear potential, it merely changes a multi-
plicative factor to the decay rate.

With the potential V so determined, we calculate f and P in
the Wentzel-Kramers-Brillouin (WKB) approximation as [43]

f −1 = 4μ

h̄

∫ r1

r0

dr

k(r)
cos2

(∫ r

r0

k(r′)dr′ − π

4

)
,

P = exp

(
−2

∫ r2

r1

dr|k(r)|
)

, (15)

where ri(i = 0, 1, 2) are the classical turning points, with r0

and r2 being the innermost and the outermost turning points,
respectively. k(r) is the local wave number defined as k(r) =√

2μ[Q − V (r)]/h̄2, where μ is the reduced mass for the
relative motion between the clusters. Notice that for proton ra-
dioactivities the WKB approximation has been shown to agree
well with more quantal approaches such as the Green function
method and the two-potential method [43]. We expect that the
WKB approximation works even better for cluster radioactiv-
ities with a larger reduced mass.

To compute the preformation probability S according to
Eq. (6), we convert the relative coordinate r to the octupole
moment Q3 using an approximate formula given by [24]1

Q3(r) =
√

7

4π

A1A2

A1 + A2

(A1 − A2)

A1 + A2
r3. (16)

Notice that the Coulomb potential between the two clusters
decreases as a function of r, and thus Q3, while the one-body
energy tends to increase. Both curves will thus cross at a
certain octupole moment Q3, which we label as Qt . In the
region of Q3 > Qt , the total energy becomes smaller when the
mother nucleus splits into the two-body system. We therefore
regard that the cluster decays happen via this configuration at
Q3 = Qt and employ Eq. (6) to estimate the cluster preforma-
tion probability.

III. RESULTS

Let us now apply the model presented in the previous
section to the cluster decays of 222Ra, 228Th, and 232U and
numerically evaluate the decay rates. To this end, we use the
cylindrical mesh with ri = (i − 1

2 )�r, (i = 1, 2, . . . , 14) and
z j = ( j − 1

2 )�z, ( j = −13,−12, . . . , 26) with �r = �z =
0.8 fm for the Hartree-Fock+BCS calculations. In addition
to the constraint of the mass octupole moment Q3, we also
impose a constraint on 〈z〉 = 0 in order to fix the position of
the center of mass.

A. 222Ra

We first discuss the decay of 222Ra → 14C + 208Pb, whose
Q value is Q = 33.05 MeV [35]. We solve the HF + BCS
equation with Vp = −398.0 MeV fm3 and Vn = −280.0 MeV
fm3 for the SkM∗ interaction, and Vp = −420.0 MeV fm3

and Vn = −320.0 MeV fm3 for the SLy4 interaction. The
blue solid line in Fig. 1 shows the HF+BCS energy of the
222Ra nucleus obtained with the SkM∗ interaction as a func-
tion of the mass octupole moment, Q3. The orange dashed
line denotes the Coulomb potential, VC (r(Q3)), shifted by
Eg.s. − Q, where Eg.s. is the energy of the ground state in the
HF+BCS approximation. In the ground state, denoted by (A)
in the figure, 222Ra is not octupole deformed. As the octupole
deformation is developed, the energy increases and eventually
crosses the dashed line at the configuration (B). The density

1This formula differs from Eqs. (9) and (10) in Ref. [24] by a factor
of

√
7/4π due to the different definition for the octupole moment

employed in this paper.
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FIG. 1. The Hartree-Fock (HF) + BCS energy obtained with
the SkM∗ interaction for the 222Ra nucleus as a function of the
mass octupole moment, Q3. The configuration (A) at Q3 = 0 fm3

corresponds to the ground state in the HF+BCS approximation.
The dashed line represents the Coulomb potential for the two-body
system 14C + 208Pb. This approaches Eg.s. − Q at large Q3, where
Eg.s. is the energy for the configuration (A). The configuration (B)
at Q3 = 15000 fm3 corresponds to the cluster configuration where
the HF + BCS energy crosses the dashed line (see the vertical dotted
line).

distributions for the configurations (A) and (B) are shown in
Fig. 2. See also Fig. 3 for the densities integrated in the x and
y directions, ρz(z) ≡ ∫

dxdy ρ(r). For the configuration (B),
the nucleus has a large octupole deformation: the proton and
the neutron numbers in the region of z � 8 fm are 6.41 and
9.50, respectively, close to 14C. Table I summarizes the results
of the HF + BCS calculations for the configurations (A) and

FIG. 2. The density distribution of the 222Ra nucleus for the
configurations (A) and (B) shown in Fig. 1.

FIG. 3. The density distributions corresponding to those shown
in Fig. 2 as a function of z. Those are obtained by integrating the
densities in the x and y directions.

(B), in which the deformation parameters are defined as

βλ = 4π

3A

Qλ

R̄λ
(17)

with R̄ =
√

5〈r2〉
3A , where

√
〈r2〉 is the root-mean-square matter

radius and Qλ = ∑
i rλ

i Yλ0(θi ) is the mass multipole mo-
ments.

We next solve the Hill-Wheeler equation (5) in the region
of 0 � Q3 � Qt = 15000 fm3 with the mesh size of �Q3 =
15000

7 fm3. We have confirmed that the GCM spectrum is
almost converged with this mesh size, and moreover, the order
of magnitude for the decay rate remains the same even if we
employ �Q3 = 2000 fm3 or �Q3 = 2400 fm3. The effect of
the number projection is found to be minor, altering the decay
rate only by a factor of 2 or smaller. See Table II for the actual
values of the decay rates.

Figure 4 shows the square of the collective wave function,
|g(Q3)|2, for the lowest GCM state. As the octupole moment
Q3 increases, the absolute value of the collective wave func-
tion decreases and the value of S = |g(Qt )|2 at Q3 = Qt is in
order of 10−10 for both the interactions.

TABLE I. The results of the Skyrme Hartree-Fock+BCS calcu-
lations for the 222Ra nucleus. The table summarizes the calculated
values for the quadrupole and octupole deformation parameters, β2

and β3, the root-mean-square (rms) matter radius,
√

〈r2〉, the rms

radius of protons,
√

〈r2
p〉, and the total energy, at two different con-

figurations (A) and (B) shown in Fig. 1.

√
〈r2〉

√
〈r2

p〉 E

Interaction config. β2 β3 (fm) (fm) (MeV)

SkM* (A) 0.229 0.000 5.783 5.695 −1697.538
(B) 0.466 0.553 6.194 6.125 −1672.766

SLy4 (A) 0.209 0.000 5.770 5.686 −1695.376
(B) 0.464 0.553 6.196 6.127 −1667.459
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TABLE II. The decay rates w for the cluster decay of 222Ra →
208Pb + 14C obtained with the present approach. They are compared
to the experimental data and to the theoretical calculation [24] based
on the WKB model with the least action fission path.

w (s−1) The method

5.43 × 10−14 GCM (SkM*)
8.15 × 10−14 GCM without the projection (SkM*)
1.20 × 10−14 GCM (SLy4)
8.73 × 10−10 the least action (Gogny D1S) [24]
6.7 (±1.8) × 10−12 Price et al. [44]
5.6 (±2.2) × 10−12 Hourani et al. [45]
4.20 (±1.18) × 10−12 Hussonnois et al. [46]

We next evaluate the assault frequency f and the pen-
etrability P based on the potential model as described in
Sec. II. The potential between the two fragments is shown
in Fig. 5, after the depth parameter of the nuclear interaction
is adjusted to reproduce the resonance energy. The resultant
depth parameter is V0 = 67.64 MeV, whereas the radius and
the diffuseness parameters are R0 = 9.99 fm and a = 0.63 fm,
respectively. The dashed line corresponds to the Q value of the
cluster decay. With this parameter set, the assault frequency
and the penetrability are found to be f = 8.29 × 1020 s−1 and
P = 4.10 × 10−26, respectively.

In order to investigate the effect of dynamical pairing,
we next apply the maximum coupling approximation [21].
Figure 6 shows the HF+BCS energy for three different values
of α in Eq. (9). Notice that we fix the value of α to be 1
for the configurations at Q3 = 0 and Q3 = Qt , while for the
other configurations we solve the HF+BCS equations with the
modified Hamiltonian. The expectation value of the original
Hamiltonian is then computed with the wave functions so
obtained. Since such wave functions contain excited states
components [see Eq. (11)], the total energy increases for
α 
= 1. On the other hand, the off-diagonal components of the
overlap kernel tends to be increased when α is varied from

FIG. 4. The square of the collective wave function for the GCM
ground state of the 222Ra nucleus as a function of the octupole
moment Q3. The solid and the dashed lines show the results with
the SkM∗ and SLy4 interactions, respectively.

FIG. 5. The potential energy between 14C and 208Pb as a function
of the relative distance r. The classical turning points are denoted by
r0, r1, and r2. The dashed line denotes the Q value (Q = 33.05 MeV)
for the cluster decay of 222Ra.

one. These two effects compete with each other in evaluating
the decay rates.

Figure 7(a) shows the preformation probability S =
|g(Qt )|2 as a function of α. The corresponding decay rate w
is shown in Fig. 7(b). Because of the competition of the two
opposite effects mentioned in the previous paragraph, a peak
structure appears in the decay rate, at α = 1.075 and α = 1.1
for the SkM∗ and the SLy4 interactions, respectively, similar

FIG. 6. Similar to Fig. 1, but obtained with the BCS wave func-
tion for the modified Hamiltonian, Eq. (9). Notice that the energy
shown is defined as the expectation value of the original Hamiltonian
with α = 1. The upper and the lower panels show the results of the
SkM∗ and the SLy4 interactions, respectively.
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FIG. 7. The preformation probability (upper panel) and the decay
rate (lower panel) for the cluster decay 222Ra → 208Pb + 14C for
various values of α for the maximum coupling approximation.

to the previous studies on the role of dynamical pairing in
spontaneous fission [12,14,21]. The decay rate at the peak is
larger than the decay rate for the original pairing strength (i.e.,
α = 1) by a factor of 1.82 and 2.04 for the SkM∗ and SLy4,
respectively. Notice that the decay rate with SkM∗ is larger
than that with SLy4. This is because the energy difference
between the configurations (B) and (A) is larger with SLy4
(see Table I).

The decay rates at the maxima in Fig. 7(b) are summarized
in Table II together with the experimental data. For compari-
son, the calculated result without the number projection is also
listed. The present calculations reproduce the experimental
data within two orders of magnitude, that would be reasonable
as a microscopic calculation for fission. In the Table, we also
compare our results to the calculated result of Ref. [24] with
the Gogny D1S interaction, which uses the model based on
the WKB approximation for spontaneous fission with the least
action path. One can see that the degree of agreement of our
results with the data is comparable to that of the result of
Ref. [24].

B. 228Th and 232U

We next discuss the cluster decay of 228Th → 208Pb + 20O
and 232U → 208Pb + 24Ne. The Q-values of these decays are
44.72 MeV and 62.33 MeV. The octupole moment at Qt reads
Qt = 2.0 × 104 fm3 and 2.4 × 104 fm3 for 228Th and 232U,
respectively. The calculated decay rates are shown in Fig. 8 as
a function of α for the maximum coupling approximation. To
this end, we use the mesh size of �Q = 2000 fm3 to discretize
the Hill-Wheeler equation. For these nuclei, the collective

FIG. 8. Same as Fig. 7(b), but for 228Th → 208Pb + 20O (upper
panel) and 232U → 208Pb + 24Ne (lower panel).

wave functions at Q3 = Qt are as small as the order of 10−6,
and thus it easily suffers from numerical instabilities. In order
to avoid this, we extrapolate the wave function in the region of
6000 � Q3 � 12000 fm3 down to Qt . The qualitative features
of the decay rates are the same as those for 222Ra discussed in
the previous subsection. That is, the decay rate is enhanced by
several times by introducing the effect of dynamical pairing,
and the calculated decay rates reproduce the experimental data
within the same order for 228Th and within two or three orders
of magnitude for 232U. See Table III for a summary of the
calculated results.

TABLE III. Same as Table II, but for 228Th → 208Pb + 20O and
232U → 208Pb + 24Ne.

The nucleus w (s−1) The method

228Th 3.20 ×10−21 GCM (SkM*)
7.96 ×10−22 GCM (SLy4)
2.05 ×10−20 the least action [24]

(Gogny D1S)
1.29 (±0.22) × 10−21 Bonetti et al. [47]

232U 1.32 ×10−18 GCM (SkM*)
6.03 ×10−20 GCM (SLy4)
3.10 ×10−24 the least action [24]

(Gogny D1S)
6.3 (±1.5) × 10−22 Barwick et al. [48]
2.72 (±0.23) × 10−21 Bonetti et al. [49]
2.83 (±0.22) × 10−21 Bonetti et al. [50]
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IV. SUMMARY

Using the generator coordinate method, we have estimated
microscopically the preformation probabilities for the cluster
radioactivities of 222Ra, 228Th, and 232U. Unlike the pair hop-
ping model, we have taken into account the non-orthogonality
of the configurations as well as non-nearest neighbor cou-
plings. Moreover, we have employed the maximum coupling
approximation to take into account the effect of dynamical
pairing. By combining with the Gamow theory, we have
shown that the experimental decay rate for 222Ra is repro-
duced reasonably well with this calculation and the same is
true for 228Th and 232U even though there is some uncertainty
derived from the fitting. We have also shown that the dynam-
ical pairing increases the preformation probability by a factor
of two or three.

In this paper, we have used the octupole moment as a
generator coordinate. In principle, one can also incorporate
explicitly other degrees of freedom, such as the quadrupole
moment, the hexadecapole moment, and the neck degree of
freedom. In particular, the neck has been known to play an
important role in treating the scission dynamics and thus a
connection between a one-body system to a two-body system.
By taking into account the neck degree of freedom, the prefor-

mation probability of a cluster may also be better defined. This
will be an interesting future problem, even though a numerical
accuracy of a GCM solution would be more demanding.

The cluster decay can be regarded as a phenomenon in
between spontaneous fission and α decays. The method pre-
sented in this paper opens a novel and promising way to
develop a unified microscopic description for quantum tun-
neling decays of nuclear many-body systems, including α

decays, cluster decays, and spontaneous fission. For spon-
taneous fission, the Gamow theory cannot be applied in a
straightforward manner, since the barrier penetration and a
formation of fission fragments are strongly coupled to each
other. Extending the method presented in this work to such a
problem would also be an interesting future work.
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