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Proton-neutron pairing and binding energies of nuclei close to the N = Z line
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We analyze the contribution of isovector and isoscalar proton-neutron pairing to the binding energies of even-
even nuclei with N − Z = 0, 2, 4 and atomic mass 20 < A < 100. The binding energies are calculated in the
mean-field approach by coupling a Skyrme-type functional to an isovector-isoscalar pairing force of zero range.
The latter is treated in the framework of quartet condensation model (QCM), which conserves exactly the particle
number and the isospin. The interdependence of pairing and deformation is taken into account by performing
self-consistent Skyrme-HF + QCM calculations in the intrinsic system. It is shown that the binding energies
are not changing much when the isoscalar pairing is switched on. This fact is related to the off-diagonal matrix
elements of the pairing force, which are less attractive for the isoscalar force, and to the competition between the
isoscalar and isovector pairing channels.
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I. INTRODUCTION

In nuclei close to N = Z line, it is usually considered to be
important two types of proton-neutron (pn) pairing correla-
tions, corresponding to spin-singlet isovector (S = 0, T = 1)
and spin-triplet isoscalar (S = 1, T = 0) pn pairs. Due to the
isospin invariance of nuclear forces, the isovector pn pairing is
supposed to play a similar role as the standard neutron-neutron
and proton-proton pairing. Much less is known, however,
about the role played by the isoscalar pn pairing in nuclei.
In fact, for many years, a lot of effort has been focused on
finding the fingerprints of isoscalar pn pairing correlations in
various nuclear observables such as binding energies, high-
spin excitations, proton-neutron transfer cross sections, etc.
(e.g., see the recent reviews [1,2]).

The majority of theoretical studies on pn pairing have
been done in the Hartree-Fock-Bogoliubov (HFB) approach.
In HFB, the pn pairing, both isovector and isoscalar, is treated
together with the like-particle pairing through the generalized
Bogoliubov transformation (e.g., see Refs. [3–5] and refer-
ences quoted therein). For most nuclei, the HFB calculations
predict T = 1 pairing correlations in the ground state. The
T = 0 pairing and the coexistence between T = 1 and T = 0
pairing is predicted for a few nuclei, but these predictions
depend strongly on the chosen parameters and the calculation
scheme. It is also not clear how these predictions are affected
by the nonconservation of particle number, isospin, and angu-
lar momentum, which are specific to HFB calculations done
with the isovector-isoscalar pairing interactions. To conserve
all these quantities in HFB calculations is a difficult task and
some results along this line exist only for the trivial case
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of degenerate levels [6,7]. Realistic beyond-HFB calculations
with particle number and angular-momentum projections have
been done recently, but with the projection performed after
the variation [8]. Another source of uncertainty comes from
the fact that, in the majority of HFB calculations, the mean
field is kept fixed, so the competition between pairing and
deformation is not taken into account dynamically [4]. This is
also the case of the most recent HFB calculations, done on the
top of a fixed spherically symmetric mean field, in which the
effect of the deformation on pairing is neglected completely
[5].

An alternative approach to take into account the isovector-
isoscalar pairing correlations in mean-field approximations
was proposed in Refs. [9,10]. In this approach, called the quar-
tet condensation model (QCM), the ground state of N = Z
nuclei is described as a product of quartets built by two pro-
tons and two neutrons coupled to the total isospin T = 0. By
construction, in the QCM the ground state conserves exactly
both the particle number and the isospin. When the quartets
are built with spherically symmetric single-particle states, the
QCM ground state has also a well-defined angular momentum
[11].

Previous studies have shown that the QCM approach pro-
vides accurate results for isovector-isoscalar pairing Hamil-
tonians which can be solved exactly [9–11]. The purpose
of this work is to extend these studies to self-consistent
mean-field plus pairing calculations and to analyze, within
the QCM framework, the contribution of T = 1 and T = 0
pairing correlations to the ground-state energy of nuclei
close to N = Z line. The novel feature of the present cal-
culations is that they take into account dynamically the
competition between pairing and deformation in a formalism
which conserves exactly both the particle number and the
isospin.
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II. THE FORMALISM

To calculate the binding energies, we use a self-consistent
mean-field plus pairing formalism. The calculations are done
in the intrinsic system defined by an axially deformed
mean-field generated by a Skyrme functional. The pairing cor-
relations are induced by an isovector-isoscalar pairing force
which scatters pairs of nucleons in time-reversed states. To
evaluate the contribution of pairing correlations to the bind-
ing energies, we employ the QCM approach introduced in
Refs. [9,10]. For the sake of completeness, the QCM formal-
ism is shortly presented below.

The isovector and isoscalar pairing correlations are calcu-
lated for a set of axially deformed single-particle states. They
are described by the Hamiltonian [9]

H =
∑

i,τ=±1/2

εiτ Niτ +
∑

i, j

V (T =1)
i, j

∑

t=−1,0,1

P†
i,t Pj,t

+
∑

i, j

V (T =0)
i, j D†

i,0Dj,0, (1)

where εi,τ are the single-particle energies of neutrons (τ =
1/2) and protons (τ = −1/2), while Ni,τ are the particle
number operators. The second term is the isovector pair-
ing interaction expressed by the isovector pair operators
P†

i,1 = ν
†
i ν

†
ī
, P†

i,−1 = π
†
i π

†
ī

, P†
i,0 = (ν†

i π
†
ī

+ π
†
i ν

†
ī

)/
√

2. The

third term is the isoscalar pairing interaction and D†
i,0 =

(ν†
i π

†
ī

− π
†
i ν

†
ī

)/
√

2 is the isoscalar pair operator. ν
†
i and π

†
i

denote the creation operators for neutrons and protons in the
state i, while ī is the time conjugate of state i. The states
i, which correspond to the axially deformed mean-field, are
characterized by the quantum numbers i ≡ {ai,�i}, where �i

is the projection of the angular momentum on the symmetry
axis.

By construction, in Eq. (1) the pair operators have Jz = 0
but not a well-defined angular momentum J . In fact, when ex-
pressed in the laboratory frame, the isovector and the isoscalar
intrinsic pairs can be written as a superposition of pairs with
J = 0, 2, 4, . . . and, respectively, J = 1, 3, 5, . . .. Therefore,
the Hamiltonian (1) takes into account, in an effective way,
pairing correlations which are not restricted only to the stan-
dard (J = 0, T = 1) and (J = 1, T = 0) channels.

To find the ground-state energy of the Hamiltonian (1),
we employ the quartet condensation model (QCM). Thus,
according to QCM, the ground state of Hamiltonian (1) for
even-even N = Z systems is approximated by the trial state
[9]

|QCM〉 = (
A† + �

†2
0

)nq |0〉, (2)

where nq = (N + Z )/2, while |0〉 is the “vacuum” state repre-
sented by the nucleons supposedly not affected by the pairing
interaction. The operator A† is the isovector quartet built by
two isovector noncollective pairs coupled to the total isospin
T = 0, i.e.,

A† =
∑

i, j

xi j[P
†
i P†

j ]T =0. (3)

Assuming that the mixing coefficients are separable, i.e., xi j =
xix j , the isovector quartet takes the form

A† = 2�
†
1�

†
−1 − (�†

0 )2, (4)

where

�†
t =

∑

i

xiP
†
i,t (5)

are collective pair operators for neutron-neutron pairs (t =
1), proton-proton pairs (t = −1), and proton-neutron pairs
(t = 0). The isoscalar degrees of freedom are described by
the collective isoscalar pair

�
†
0 =

∑

i

yiD
†
i,0. (6)

For even-even systems with N > Z (the case N < Z is
treated in the same manner) the ground state is described by
[10]

|QCM〉 = (�̃†
1 )nN

(
A† + �

†2
0

)nq |0〉, (7)

where nN = (N − Z )/2 gives the number of neutron pairs in
excess, while nq = (N + Z − 2nN )/4 denotes the maximum
number of quartets which can be formed with Z protons. As
in the case of N = Z nuclei, here Z and N denote the numbers
of protons and neutrons above the N = Z core |0〉, which
are affected by the pairing interaction. The extra neutrons are
represented by the collective neutron pair

�̃
†
1 =

∑

i

ziP
†
i,1. (8)

As can be seen, the structure of the extra pairs, expressed by
the mixing amplitudes, is different from the structure of the
neutron pairs which enter in the definition of the isovector
quartet (4).

The QCM states depend on the mixing amplitudes of the
collective pair operators. They are determined variationally by
minimizing the average of the Hamiltonian under the normal-
ization condition imposed to the trial state. Details about these
calculations are presented in Ref. [9] and in the Appendix of
Ref. [10].

The QCM calculations for the Hamiltonian (1) are per-
formed iteratively with the Skyrme-HF calculations in a
similar way as in the axially deformed Skyrme + BCS calcu-
lations [12]. Thus, at a given iteration, the QCM equations are
solved for the single-particle states generated by the Skyrme
functional. Then, the occupation probabilities of the single-
particle states provided by QCM are employed to get new
densities and a new Skyrme functional which, in turn, is
generating new single-particle states. At the convergence, the
binding energy is obtained by adding to the mean-field energy
the contribution of the pairing energy. The latter is calculated
as the average of the pairing force from which is extracted the
contribution of self-energy terms. For the like-particle pairing,
these terms are

Em f
n(p) =

∑

i

V T =1(i, i)v4
i,n(p), (9)
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while for pn pairing the expressions are

Em f
pn (T ) =

∑

i

V T (i, i)v2
i,pv

2
i,n. (10)

In the expressions above, v2
i,n(p) are the occupation probabili-

ties for neutrons (protons) corresponding to the states included
in the pairing calculations. The terms (9) and (10), which
would renormalize the single-particle energies generated by
the Skyrme functional, are neglected in the Skyrme-HF +
QCM calculations because the pairing force is a residual in-
teraction acting only in the particle-particle channel.

In the present calculations, for the isovector-isoscalar pair-
ing interaction, we employ a zero-range force of the form

V T (r1, r2) = V T
0 δ(r1 − r2)P̂T

S,Sz
, (11)

where P̂T
S,Sz

is the projection operator on the spin of the pairs,
namely, S = 0 for the isovector force and S = 1, Sz = 0 for
the isoscalar force. The matrix elements of the pairing in-
teraction (11) for the single-particle states provided by the
Skyrme functional are calculated as shown in the Appendix of
Ref. [13].

To distinguish between various quantities originating from
the pairing interaction (11), in what follows we denote by
interaction energy the average of the pairing interaction on the
QCM state and by pairing energy the average of the pairing
force without the contribution of the terms (9) and (10). In
addition, we denote by self-energy the energy corresponding
to the terms (9) and (10).

III. RESULTS

The Skyrme-HF + QCM formalism presented above is
applied to analyze the effect of T = 1 and T = 0 pairing
on the binding energies of nuclei with the atomic mass A =
N + Z between 20 and 100. We consider first the even-even
nuclei with N = Z , for which the pn pairing correlations are
supposed to be the largest, and then the nuclei with N = Z + 2
and N = Z + 4.

A. Calculation scheme

To set the calculation scheme for the Skyrme-HF + QCM
calculations one needs to chose the Skyrme functional, the
pairing force, and the model space for the pairing calculations.
For the mean field we consider the Skyrme functional UNE1
[14]. The Skyrme-HF calculations have been done with the
code EV8 [15], in which the mean-field equations are solved
in coordinate space. The mean-field is considered to have axial
symmetry, so the neutron and proton levels are doubly degen-
erate with respect to the projection of the angular momentum
onto the symmetry axis.

The QCM calculations are performed by solving analyt-
ically the QCM equations for the average of the pairing
Hamiltonian and for the norm of the QCM wave function.
This has been done by employing the Cadabra algorithm [16].
To keep feasible the analytical derivations, in the QCM state
for the N = Z nuclei [Eq. (2)] we have used nq = 3, while
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FIG. 1. Binding-energy residuals, in MeV, for even-even N = Z
nuclei as a function of A = N + Z . The results correspond to the
pairing forces and the approximations indicated in the figure.

for the QCM state for N > Z nuclei [Eq. (7)] we have taken
nq = 2.

For the isovector-isoscalar pairing interaction we employ
the delta force given in Eq. (11). Since the force is of zero
range, the pairing calculations should be done with a finite
number of single-particle states from the vicinity of the Fermi
levels. In the present calculations the active nucleons are al-
lowed to scatter, due to the pairing force, into 10 neutron and
10 proton single-particle states above the core defined by the
QCM states (2) and (7).

What remains to be chosen are the strengths of the
pairing forces, i.e., V T =1

0 and V T =0
0 , or, equivalently, the

strength of the isovector pairing V0 = V T =1
0 and the ratio w =

V T =0
0 /V T =1

0 . How to fix these parameters is a nontrivial task
because there are not observables to be related unambiguously
to isovector or to isoscalar pairing. Moreover, as shown in
the previous QCM calculations, the T = 1 and T = 0 pairing
correlations always coexist and are very difficult to disentan-
gle because the isovector and the isoscalar counterparts of the
QCM states (2) and (7) have a large overlap [9,10]. The al-
ternative we have chosen here is to perform calculations with
various parameters and to keep those for which the differences
between the calculated and experimental binding energies are
the smallest. More precisely, we have first calculated the bind-
ing energies of a few representative even-even N = Z nuclei
with V0 = {300, 350, 400, 465} MeV/fm3 and w = 0. Then,
for a given V0, we have turned on the isoscalar pairing force
by increasing w until the value w = 2.

B. Pairing and binding energies of N = Z nuclei

The most representative results for the binding energies
are presented in Fig. 1. The figure shows the binding ener-
gies residuals, i.e., the difference between the theoretical and
experimental binding energies. The parameters employed in
the calculations are indicated in the figure. In what follows,
we focus on the results corresponding to the pairing force of
strength V0 = 350. First of all, it can be seen that the Skyrme-
HF results, obtained by using the equal filling approximation,

034325-3



NEGREA, SANDULESCU, AND GAMBACURTA PHYSICAL REVIEW C 105, 034325 (2022)

FIG. 2. Pairing energy, interaction energy and self-energy, in
MeV, for 64Ge. From the left to the right are shown, for each quantity,
the PBCS result and the QCM results for w = {0.0, 1.0, 1.5, 2.0}.
pn0 and pn1 indicate the T = 0 and T = 1 pn channels.

underestimate the binding energies by about 3 to 4 MeV in
the middle-mass region, while for the nuclei with A > 90 the
calculated binding energies are larger than the experimen-
tal ones. As expected, the Skyrme-HF + BCS calculations,
which take into account only the neutron-neutron (nn) and
proton-proton (pp) pairing, smooth out the fluctuations of the
HF results caused by the shell effects. For N = Z nuclei with
60 < A < 80, where the HF fluctuations are small, in BCS
approximation the residuals are decreasing by about 1 MeV
compared with the HF values.

From Fig. 1 it can be seen that the binding energies
are increasing significantly when are taken into account the
isovector pn pairing correlations, treated in the QCM ap-
proach. On the other hand, except for A = 24 and A = 28,
the effect of the isoscalar pn pairing on the binding energies
is surprisingly small. This fact is caused by the competition
between various pairing channels and between pairing and

mean field. As an example, we discuss in detail the results
for the nucleus 64Ge, which is illustrating a typical case.

In Fig. 2 are shown the pairing energies for 64Ge pro-
vided by the QCM calculations for V0 = 350 and w =
{0.0, 1, 1.5, 2}. To disentangle the pairing and the mean-field
effects, the results shown in Fig. 2 correspond to the cal-
culations done on the top of the fixed mean field generated
by the Skyrme-HF calculations. As a reference, in the same
figure we have included also the pairing energies provided
by the particle-number projected-BCS (PBCS) approach in
which the variation is done after the projection. The PBCS
wave function is taken as a product between a neutron and
a proton pair condensate, so it does not take into account
the isovector pn pairing correlations. The latter are taken
into account in the isovector QCM approach (w = 0) and,
as expected, they increase the total pairing energy compared
with PBCS. By contrast, the like-particle pairing energies are
larger in PBCS than in the QCM. This is due the fact that, in
the isovector QCM, the like-particle pairing is competing with
the isovector pn pairing because they build up correlations
by sharing the same model space. For the same reason, the
like-particle and isovector pn pairing energies are decreasing
further when the isoscalar pn channel is switched on. Yet, as
seen in Fig. 2, in this case the decrease of the isovector pairing
is not compensated by the pairing energy gained by opening
the isoscalar channel. On the other hand, the contribution of
the isoscalar pn channel to the interaction energy is increasing
rapidly with the scaling factor w, becoming almost equal to
the isovector pn channel for w = 1.5. However, as seen from
Fig. 2, most of the interaction energy in the isoscalar channel
is coming from the self-energy. As a result, the contribution
of the isoscalar pn pairing to the total pairing, in which is not
included the self-energy, is reduced significantly, much more
than for the isovector pn pairing. This behavior can be traced
back to the matrix elements (MEs) of the pairing interaction,
shown in Fig. 3. Thus, as seen in Fig. 3(a), by increasing
the scaling factor, some diagonal MEs of the isoscalar pn
pairing become larger than the isovector ones. However, the
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FIG. 3. (a) Diagonal and (b) nondiagonal matrix elements of the isovector and isoscalar pairing force for 64Ge. The quantity Ii j enumerates
the pair indices of Vi j .
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FIG. 4. Interaction energies (top) and pairing energies (bottom), in MeV, for N = Z nuclei. For each nucleus are shown, from the left to
the right, the results for w = {0.0, 1.5.2.0}.

contribution of diagonal MEs is drastically reduced when
the self-energy terms are subtracted. Therefore, due to the
subtraction, the dominant contribution to the pairing energies
comes from the off-diagonal MEs, shown in Fig. 3(b). It can
be noticed that, on average, the MEs of the isoscalar interac-
tion are smaller than the MEs of the isovector interaction and,
more importantly, some of the isoscalar MEs are positive. Due
to these reasons, the contribution of the isoscalar pairing force
to the pairing correlations is not increasing significantly with
the scaling factor. In addition, in self-consistent Skyrme-HF
+ QCM calculations, the variation of the pairing energies
can be compensated by the mean-field energy. In this case,
when the isoscalar channel is turned on, the mean-field energy
increases by about 530 keV for w = 1.5 and by 540 keV
for w = 2.0, while the total pairing energy decreases relative
to the isovector pairing by about the same quantity. As a
consequence, as seen in Fig. 1, the total binding energy of

64Ge does not change much when the isoscalar pairing force
is turned on.

The pairing energies and the interaction energies provided
by the self-consistent calculations for all N = Z nuclei are
shown in Fig. 4. It can be seen that in the majority of nu-
clei these quantities have a similar pattern as in the example
discussed above. In particular, we have found that, when the
isovector and the isoscalar interactions have the same strength
(w = 1), the total pairing energy is smaller compared with the
isovector pairing (w = 0) in all N = Z nuclei considered in
this study.

An interesting feature seen in Fig. 4 is that the pairing
energies are significant for double magic nuclei 40Ca, 56Ni, for
which the BCS approximation predicts no pairing. The fact
that there are pairing correlations in 40Ca was also pointed
out in Ref. [17]. It is worth mentioning as well that, for
40Ca and 56Ni, the pairing gaps extracted from the odd-even
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FIG. 5. The residuals, function of A = N + Z , for (left) N = Z + 2 and (right) N = Z + 4 nuclei.

FIG. 6. Interaction energies (top) and pairing energies (bottom), in MeV, function of A = N + Z , for the nuclei with N = Z + 2. For each
nucleus are shown, from left to right, the results for w = {0.0, 2.0}.
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FIG. 7. The same as in Fig. 6 but for the nuclei with N = Z + 4.

mass difference are large, of 3.6 and 3.2 MeV, respectively.
The gaps are also quite large, of the order of 1 MeV, in the
neighboring odd-even isotopes.

The pairing correlations are significantly affected by the
deformation of the mean field, mainly through the modi-
fication of the level density close to the Fermi level. As
an example we discuss here the case of the nucleus 48Cr,
for which the deformation predicted by the self-consistent
Skyrme-HF + QCM calculations is rather close to the exper-
imental value. To estimate the effect of the deformation we
have made a new calculation in which we have imposed for
this nucleus a spherically symmetric solution. By comparing
the two solutions one could see that the total pairing energy
for the deformed state is by about 6.5 MeV lower than for
the spherical state, both for the isovector force (w = 0) and
for the isovector-isoscalar pairing interaction with w = 2. The
decrease of the pairing energy in the deformed state is caused
mainly by the splitting of the spherically symmetric orbit f7/2

into four doubly degenerate deformed levels. On the other
hand, due to the deformation, the mean field becomes more
bound, compensating the pairing energy loss. As a result,
the total binding energy is higher for the deformed state by
about 0.3 MeV for w = 0 and by 0.53 MeV for w = 2. More
details about the competition between the deformation and the
isovector-isoscalar pairing can be found in Ref. [13].

C. Pairing and binding energies of N > Z nuclei

To study how the pairing correlations are affected by the
extra neutrons added to N = Z nuclei, we take as examples
the nuclei with N = Z + 2 and N = Z + 4 and with atomic
mass 20 < Z < 100. The binding-energy residuals for these
nuclei are given in Fig. 5. Shown are the results for the pairing
force with V0 = 350 and w = {0.0, 2.0}. The contribution of
the pairing energies to the binding energies is displayed in
Figs. 6 and 7. For reference, in these figures are given also
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FIG. 8. Interaction energies (top) and pairing energies (bottom) for T = 0 and T = 1 pn pairing for w = 2.0. The results, from left to
right, are for the nuclei with N = Z , N = Z + 2, and N = Z + 4. On the x axis is shown the atomic mass of N = Z nuclei.

the interaction energies. The latter are increasing significantly
when the isoscalar pairing is turned on. On the contrary, this is
not the case for the pairing energies. The reasons for that are
the same as in the case of N = Z nuclei: (i) the off-diagonal
ME of the interaction are less attractive for the isoscalar force;
(ii) the pairing channels are competing with each other and
also with the mean field. As a result, the binding energies
of N > Z nuclei shown in Fig. 5 change very little when the
isoscalar pairing is switched on. This does not mean, however,
that the isoscalar pairing correlations do not contribute to the
binding energy of N > Z nuclei. This can be seen clearly from
Fig. 8, which shows how the pn pairing energies and interac-
tion energies are changing by adding neutrons to the N = Z
nuclei. In both T = 0 and T = 1 channels these energies are
decreasing when more neutrons are added. However, they are
not vanishing, including for the nuclei with N = Z + 4, and
they coexist in all the nuclei. In fact, this is happening not
only for the large isoscalar strength considered here but also

for any QCM calculations with an isovector-isoscalar pairing
force with w > 0.

IV. SUMMARY AND CONCLUSIONS

We have discussed the contribution of isovector and
isoscalar pairing on binding energies of N = Z nuclei and of
N > Z nuclei with N = Z + 2 and N = Z + 4. The binding
energies have been obtained by performing self-consistent
Skyrme-HF + QCM calculations in the intrinsic system. An
interesting aspect pointed out by these calculations is the
strong interdependence between all types of pairing correla-
tions. In particular, when the isoscalar pn pairing channel is
switched on, the pairing correlations are redistributed among
all the pairing channels without changing significantly the
total pairing energy. Due to this reason, for the majority of
N ≈ Z nuclei, the binding energy is not affected much when
the isoscalar pairing channel is switched on. Yet, in all the
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calculations which include both the isovector and the isoscalar
pairing forces, the isoscalar pairing correlations contribute
significantly to the binding energies and coexist always with
the isovector pn pairing. This feature, discussed already in
the previous studies [9,10], is related to the exact conser-
vation of the particle number and the isospin by the QCM
approach.

The present Skyrme-HF + QCM calculations are based
on two approximations which should be further checked and
improved. Thus, on one hand, since the calculations are done
in the intrinsic system, the ground states do not have a
well-defined angular momentum. On the other hand, in the
isoscalar pairing channel are considered only proton-neutron
pairs in time-reversed states. This is a rather common choice

when the pairing calculations are done with a deformed mean
field [18]. In principle, we should also introduce the cor-
relations corresponding to proton-neutron pairs with S = 1,
Sz = ±1. How to treat these correlations in self-consistent
Skyrme-HF + QCM calculations is a nontrivial task which
will be addressed in a future study.

ACKNOWLEDGMENTS

N.S. is grateful for the hospitality of Institute of Modern
Physics, Cantabria University, Spain, where this paper was
written. This work was supported by a grant of Romanian
Ministry of Research and Innovation, CNCS - UEFISCDI,
Project No. PCE 160/2021, within PNCDI II.

[1] S. Frauendorf and A. O. Macchiavelli, Prog. Part. Nucl. Phys.
78, 24 (2014).

[2] H. Sagawa, C. L. Bai, and G. Colo, Phys. Scr. 91, 083011
(2016).

[3] A. L. Goodman, Adv. Nucl. Phys. 11, 263 (1979).
[4] A. L. Goodman, Phys. Rev. C 63, 044325 (2001).
[5] A. Gezerlis, G. F. Bertsch, and Y. L. Luo, Phys. Rev. Lett. 106,

252502 (2011).
[6] J. Dobes and S. Pittel, Phys. Rev. C 57, 688 (1998).
[7] A. M. Romero, J. Dobaczewski, and A. Pastore, Phys. Lett. B

795, 177 (2019).
[8] E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C

99, 014321 (2019).
[9] N. Sandulescu, D. Negrea, and D. Gambacurta, Phys. Lett. B

751, 348 (2015).
[10] D. Negrea, P. Buganu, D. Gambacurta, and N. Sandulescu,

Phys. Rev. C 98, 064319 (2018).

[11] M. Sambataro and N. Sandulescu, Phys. Rev. C 93, 054320
(2016).

[12] D. Vautherin, Phys. Rev. C 7, 296 (1973).
[13] D. Gambacurta and D. Lacroix, Phys. Rev. C 91, 014308

(2015).
[14] M. Kortelainen, J. McDonnell, W. Nazarewicz, P. G. Reinhard,

J. Sarich, N. Schunck, M. V. Stoitsov, and S. M. Wild,
Phys. Rev. C 85, 024304 (2012).

[15] P. Bonche, H. Flocard, and P.-H. Heenen, Comput. Phys.
Commun. 171, 49 (2005).

[16] V. V. Baran and D. S. Delion, Phys. Rev. C 99, 031303 (2019);
https://cadabra.science.

[17] A. Volya and V. Zelevinsky, Phys. Lett. B 574, 27
(2003).

[18] F. Simkovic, C. C. Moustakidis, L. Pacearescu,
and A. Faessler, Phys. Rev. C 68, 054319
(2003).

034325-9

https://doi.org/10.1016/j.ppnp.2014.07.001
https://doi.org/10.1088/0031-8949/91/8/083011
https://doi.org/10.1103/PhysRevC.63.044325
https://doi.org/10.1103/PhysRevLett.106.252502
https://doi.org/10.1103/PhysRevC.57.688
https://doi.org/10.1016/j.physletb.2019.06.032
https://doi.org/10.1103/PhysRevC.99.014321
https://doi.org/10.1016/j.physletb.2015.10.063
https://doi.org/10.1103/PhysRevC.98.064319
https://doi.org/10.1103/PhysRevC.93.054320
https://doi.org/10.1103/PhysRevC.7.296
https://doi.org/10.1103/PhysRevC.91.014308
https://doi.org/10.1103/PhysRevC.85.024304
https://doi.org/10.1016/j.cpc.2005.05.001
https://doi.org/10.1103/PhysRevC.99.031303
https://cadabra.science
https://doi.org/10.1016/j.physletb.2003.08.076
https://doi.org/10.1103/PhysRevC.68.054319

