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Importance truncation for the in-medium similarity renormalization group
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Ab initio nuclear many-body frameworks require extensive computational resources, especially when targeting
heavier nuclei. Importance-truncation (IT) techniques allow one to significantly reduce the dimensionality of the
problem by neglecting unimportant contributions to the solution of the many-body problem. In this work, we
apply IT methods to the nonperturbative in-medium similarity renormalization group (IMSRG) approach and
investigate the induced errors for ground-state energies in different mass regimes based on different nuclear
Hamiltonians. We study various importance measures, which define the IT selection, and identify two measures
that perform best, resulting in only small errors to the full IMSRG(2) calculations even for sizable compression
ratios. The neglected contributions are accounted for in a perturbative way and serve as an estimate of the
IT-induced error. Overall we find that the IT-IMSRG(2) performs well across all systems considered, while
the largest compression ratios for a given error can be achieved when using soft Hamiltonians and for large
single-particle bases.
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I. INTRODUCTION

The description of nuclear many-body systems using ab
initio methods has undergone substantial progress in recent
years, extending the reach to heavier and more exotic systems
as well as to electroweak observables [1–6], and investigat-
ing sophisticated uncertainty quantification methods [7–9].
In the past, the nuclear chart was mostly accessible from
phenomenological approaches like the nuclear shell model or
energy density functional theory, whereas ab initio approaches
were limited to light systems up to mass number A � 16 us-
ing large-scale diagonalization configuration interaction (CI)
(see, e.g., Ref. [10]) approaches or quantum Monte Carlo
methods [11,12]. Due to their intrinsic computational scaling,
the extension to heavier systems was computationally not
feasible within the above frameworks. This picture changed
drastically with the proliferation of many-body expansion
techniques that employ a suitably chosen A-body reference
state as starting point, e.g., a Slater determinant obtained from
a Hartree-Fock (HF) calculation. Residual correlation effects
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on top of the reference state are accounted for through a
correlation expansion. Various frameworks exist for the de-
sign of such expansion schemes, e.g., many-body perturbation
theory (MBPT) [13–16], coupled-cluster (CC) theory [17,18],
self-consistent Green’s function (SCGF) theory [19,20], and
the in-medium similarity renormalization group (IMSRG)
[21–23]. Once truncated to a given order in the many-body
expansion, these methods allow mild polynomial scaling, in
contrast to the exponential scaling of exact methods, thus
providing access to heavier systems. This has led to the ab
initio calculation of systems with up to approximately one
hundred interacting particles [24,25] in recent years.

Even though impressive results have been obtained in nu-
clear many-body theory, several frontiers still remain:

(i) the extension of ab initio nuclear theory to heavy
nuclei well above mass numbers A ∼ 100,

(ii) many-body calculations for deformed nuclei that are
not well approximated by a spherical reference state,

(iii) the systematic inclusion of higher-order terms in the
many-body expansion for high-precision studies.

Some of the limiting factors common to all of these
efforts are the computational and storage costs of the many-
body calculation. Calculations of larger systems require
larger single-particle bases to converge calculations. Sim-
ilarly, calculations using symmetry-broken reference states
(for instance, with axial symmetry rather than spherical sym-
metry) have to employ single-particles bases about an order of
magnitude larger than standard spherically restricted calcula-
tions [26]. Additionally, relaxing the many-body truncation in
methods like the IMSRG and CC theory increases the scaling
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of both the computational and storage costs with respect to
basis size, and significant truncations have to be employed
to make these calculations tractable [26,27]. Considering the
computational challenges shared among these points, strate-
gies to temper the storage and computational costs of the
many-body expansion method would accelerate the progress
for all of these developments.

It is well known that correlations are not uniformly
distributed in the A-body Hilbert space and that certain con-
figurations are more important for a quantitative reproduction
of a given observable than others. In a simplistic picture this
is already implicitly used in the Nmax truncation commonly
employed in the no-core shell model (NCSM) that favors
many-body states with low-lying excitations. A more refined
selection of the configuration space was first employed by
the importance-truncated NCSM (IT-NCSM), which uses a
perturbative selection measure to a priori gauge the relevance
of a given configuration for the final NCSM eigenstate. With
the aid of the IT it was first possible to extend the mass range
of CI-based techniques to the oxygen drip line [28]. Similar
ideas have since been employed in open-shell studies using
particle-number-broken Hartree-Fock-Bogoliubov reference
states. While initially applied to Bogoliubov MBPT (BMBPT)
[29], the IT concept was recently extended to nonperturbative
Gorkov SCGF calculations [30]. More simplistic selection
ideas based on natural orbital occupation numbers were used
with great success in deformed CC applications [26].

The goal of the present work is the extension of IT ideas to
the IMSRG framework. We focus especially on the sensitivity
of the importance-truncated results on the selection procedure
and the interaction details for a wide range of IT measures.
Based on our findings we identify the IT-IMSRG as a promis-
ing candidate to reduce the costs of many-body calculations
and, thus, extend the scope of ab initio studies along the lines
discussed above.

This paper is organized as follows. In Sec. II the IMSRG is
introduced as the many-body formalism of choice. Section III
introduces the IT approach as applied to the IMSRG. Results
for selected mid-mass systems are presented in Sec. IV. We
conclude with a summary and perspectives in Sec. V.

II. IN-MEDIUM SIMILARITY RENORMALIZATION
GROUP

A. Operator representation

In the following, we employ operators in second-quantized
form with the particular notation of the nuclear Hamiltonian
up to the normal-ordered two-body level given by

H = E0 +
∑

pq

fpq : a†
paq : +1

4

∑
pqrs

�pqrs : a†
pa†

qasar : , (1)

where E0, fpq, and �pqrs are the normal-ordered zero-,
one-, and (antisymmetrized) two-body matrix elements.
Colons indicate strings of nucleon creation (annihilation) op-
erators a†

p (ap) normal ordered with respect to a given A-body
reference state |�〉. Consequently, the normal-ordered zero-
body part is the reference-state expectation value, i.e., E0 =
〈�|H |�〉.

The operator notation above employs a collective label for
the single-particle state quantum numbers,

|p〉 = |nl jmjt〉, (2)

where n denotes the radial quantum number, l the orbital
angular momentum, j the total angular momentum with pro-
jection mj , and t the isospin projection distinguishing proton
and neutron states. The model space in the following appli-
cations is constructed using the emax truncation, which sets
the largest principal quantum number e ≡ 2n + l of states
included in the single-particle Hilbert space H (1). Typical
values for converged calculations are around emax � 14. When
including three-body operators, an additional restriction of the
allowed three-body configurations |pqr〉 to those with ep +
eq + er � E3max is required to make calculations tractable.
Typical values are E3max � 16, but recent studies have ex-
tended this three-body truncation to substantially larger values
of E3max = 28 [25]. Based on the representation in this basis
space the 3N interactions are then normal-ordered while all
terms up to the two-body level are retained, as shown in
Eq. (1).

Various approaches exist to constructing the single-particle
states in Eq. (2). In this work, we use the perturbatively
improved natural orbitals (NAT) basis [26,31,32]. Within this
basis, we construct a single Slater-determinant reference state
for our many body calculations following the approach of
Ref. [32].

B. Many-body approach

The IMSRG aims to decouple particle-hole excitations
from the Slater-determinant reference state through a contin-
uous unitary transformation U (s) in the flow parameter s,

H (s) = U (s)HU †(s). (3)

The transformed Hamiltonian H (s) is obtained by solving the
flow equation

dH (s)

ds
= [η(s), H (s)], (4)

with the initial condition H (0) = H . The anti-Hermitian gen-
erator η(s) is chosen to generate the desired decoupling
behavior in the limit s → ∞ when solving the system of cou-
pled differential equations. Once the decoupling is achieved,
the Hamiltonian has effectively been diagonalized in the
normal-ordered two-body approximation, and the correlated
ground-state energy is obtained as the reference-state expec-
tation value of the transformed Hamiltonian, i.e.,

Egs = lim
s→∞〈�|H (s)|�〉. (5)

The commutator evaluation in Eq. (4) induces many-body
operators, and so for practical applications a many-body trun-
cation is necessary. The standard approach is to truncate all
operators at the normal-ordered two-body level, which gives
the IMSRG(2) truncation. In this work, we adapt the IM-
SRG(2) via importance truncation to give the IT-IMSRG(2),
using the Magnus expansion approach to solving the flow
equation [33]. We refer to Refs. [22,34] for a detailed discus-
sion of the many-body approach.
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C. Structure of two-body matrix elements

Nuclear Hamiltonians obey a set of symmetries that one
can explicitly exploit to lower computational requirements
when storing operator matrix elements and performing many-
body calculations. These symmetries are rotational invariance
([H, J2] = [H, Jz] = 0), parity conservation ([H, P] = 0), and
isospin conservation ([H, Tz] = 0). Exploiting this leads to a
block-diagonal structure, where we store the two-body matrix
elements in separate (JPTz) blocks. This block structure is
preserved for the normal-ordered Hamiltonian if a symmetry-
conserving reference state is employed, which is the case for
all systems and computational bases we consider. Applica-
tion of symmetry-broken reference states leads to many-body
operators with lesser symmetries compared to their non-
normal-ordered representations [35,36].

Many-body operators can be further decomposed in
terms of their individual single-particle labels. For a Slater-
determinant reference state |�〉, one-body states [see Eq. (2)]
can be characterized by their occupation number np, where
occupied (np = 1) states are referred to as hole states and
unoccupied (np = 0) states as particle states. In the case of
the two-body part of the operator, this leaves us with six in-
teraction blocks of single-particle index combinations: hhhh,
hhhp, hhpp, hphp, hppp, and pppp (plus their Hermitian con-
jugates and symmetry related blocks). The notation we use
here indicates that, e.g., for the hhpp block the two single-
particle states in the bra two-body state are hole states and
the two single-particle states in the ket two-body state are
particle states. In model-space sizes required for converged
calculations, the number of particle states typically signifi-
cantly exceeds the number of hole states. Consequently, the
pppp and hppp blocks drive the computational complexity of
the many-body calculation, and blocks like the hhhh or hhhp
blocks have a relatively small cost in terms of memory and
computation.

We investigate the various two-body interaction blocks,
their contributions to the perturbative energy corrections and
different diagrams in the IMSRG, and their role in the IT-
IMSRG in more detail in the next subsections.

D. Perturbative analysis

When following the standard Rayleigh-Schrödinger for-
mulation of perturbation theory using the Møller-Plesset
partitioning [16,37], the canonical second-order (MP2) energy
correction is given by

E (2) = 1

4

∑
abi j

�abi j�i jab

εab
i j

, (6)

where the energy denominator εab
i j = εi + ε j − εa − εb is

given in terms of single-particle energies εp = fpp defined as
the diagonal matrix elements of the normal-ordered one-body
Hamiltonian. Here and in the following, the indices i, j, . . .
(a, b, . . .) denote hole (particle) indices that are occupied (un-
occupied) in the reference state, while p, q, . . . denote generic
single-particle indices. From Eq. (6) we see that the second-
order energy correction is only sensitive to the hhpp block of
the interaction.

The third-order (MP3) energy correction in a canonical
basis can be written as

E (3) = E (3)
pp + E (3)

hh + E (3)
ph , (7)

where

E (3)
pp = 1

8

∑
abcdi j

�i jab�abcd�cdi j

εab
i j ε

cd
i j

, (8a)

E (3)
hh = 1

8

∑
abi jkl

�i jab�abkl�kli j

εab
i j ε

ab
kl

, (8b)

E (3)
ph = −

∑
abci jk

�i jab�kbic�ack j

εab
i j ε

ac
k j

(8c)

are the expressions for the pp (particle-particle), hh (hole-
hole), and ph (particle-hole) diagrams, respectively. Conse-
quently, the third-order energy correction is sensitive to the
hphp, pppp, and hhhh blocks in addition to the hhpp block.
Through a wide range of mass numbers it was shown that cor-
relation effects from the particle-hole diagram dominate the
third-order contribution for Hamiltonians that are amenable
to MBPT [14]. This will become important later for selecting
the most relevant subblocks for the preprocessing in the IT
approach.

When working in a noncanonical basis, e.g., the NAT basis,
the one-body part is not diagonal anymore and additional
contributions to the perturbative energy corrections have to
be considered that also include one-body vertices. For the
second-order energy correction, there is one additional dia-
gram, and at third order 11 new diagrams arise [37]. The new
third-order diagrams are now also sensitive to the two-body
matrix elements in the hppp and hhhp blocks. Consequently,
all interaction blocks contribute to the energy correction up to
third order in a noncanonical basis.

III. IMPORTANCE TRUNCATION

A. Rationale

The aim of importance truncation is to effectively reduce
the size of the problem by only considering the most impor-
tant contributions based on a predefined importance measure.
Significant benefits are obtained by combining measures that
are computationally cheap to construct with computationally
more challenging many-body methods. Truncating unimpor-
tant parts of the many-body problem reduces the cost of the
IT-adapted many-body method. The discarded information
can further be approximately accounted for in a perturbative
way in order to minimize the information loss due to the IT.
Improving the quality of the IT measure or the approximation
used to account for truncation effects can be used to reduce the
systematic error introduced by the IT. In practice, however, a
reasonable balance between accuracy and complexity of the
IT measure construction and the approximate treatment of
IT-truncated parts has to be found.

To understand how we approach IT in the IMSRG, it
is instructive to review how importance truncation is per-
formed in the IT-NSCM [38,39]. In the NCSM, the matrix
elements of the Hamiltonian are evaluated in a basis of Slater
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determinants (configurations) {|�〉}, and a subsequent di-
agonalization provides access to low-lying energies and
corresponding eigenstates. The IT approach is based on defin-
ing an importance measure κ that gives an estimate of the
importance of a particular configuration |�〉. This measure is
used to find the corresponding subspace of the A-body Hilbert
space

MIT(κmin) ≡ {|�〉 : κ (|�〉) � κmin} ⊂ H (A) (9)

of the most important configurations with κ (|�〉) above a
chosen threshold κmin.

The reduced size of the IT-selected subspace crucially
reduces the computational cost of the following diagonal-
ization, which roughly scales like the size of the subspace
squared. Residual effects from truncated configurations are
approximately incorporated via a low-order multiconfigura-
tion perturbation theory treatment [40,41]. In the limit of
κmin → 0 the full configuration space is recovered and no
approximation is induced by the importance truncation.

B. Application to the IMSRG

The IMSRG differs from the NCSM by employing a
Fock space rather than a configuration space formulation.
As a result, the implementation of the IT approach needs
to be adapted to work with many-body operators. In the
following, we focus the discussion of our approach on its
application to two-body operators as in the IMSRG(2) they
dominate the storage costs and contribute to the computa-
tionally dominating commutators. The approach is, however,
general and could be easily applied to one-body operators or
three-body operators in IMSRG(3) calculations (with appro-
priately adapted importance measures).

To implement IT on two-body operator matrix elements,
we analyze whether the matrix element at the single-particle
index combination pqrs is important or not. The result of this
analysis is a “mask” based on our importance measure and
chosen importance truncation threshold:

κmask
pqrs =

{
1 if pqrs is important,
0 otherwise. (10)

This is similar to how in the IT-NCSM configurations are
analyzed and are either kept or removed (“masked”) from
the model space. The task is then to figure out which index
combinations are “important.” We use importance measures
κ that take as input two-body matrix elements of some op-
erator (typically the Hamiltonian) and give a value for the
measure κpqrs for each single-particle index combination. If
κpqrs � κmin for our chosen threshold κmin, we say that the
index combination pqrs is important, and the mask κmask

pqrs takes
on a value of 1. In Sec. IV C we discuss different possible
importance measures.

Given such a mask, the matrix elements of a two-body
operator Opqrs can be split into an important part,

Oimp.
pqrs = κmask

pqrs Opqrs, (11)

and a residual part,

Ores.
pqrs = (

1 − κmask
pqrs

)
Opqrs. (12)

Keeping only the important part of all two-body matrix ele-
ments in the IMSRG amounts to solving the flow equation for
only a subset of single-particle index combinations, which
gives us the IT-IMSRG. The residual part may be treated ap-
proximately independent of the IT-IMSRG solution to capture
the main effects neglected by its removal.

More concretely, in the IMSRG(2) we apply the IT
approach discussed above to the two-body part of the Hamil-
tonian �; see Eq. (1). Additionally, the same truncation (i.e.,
using the same κmask) is applied to the two-body part of
the generator and any two-body parts arising from commuta-
tor evaluations. The initially removed matrix elements from
the Hamiltonian will be treated perturbatively, and are not
considered in the IMSRG solution. Moreover, the evaluation
of commutators in the IMSRG induces contributions to IT-
neglected matrix elements in the resulting operator. These are
discarded and not treated further in our approach.

The storage benefits of an IT-preprocessed operator are
conveniently characterized by defining a compression ratio

RC = # of nonzero MEs

# of nonzero MEs − # of IT-neglected MEs
, (13)

given by the ratio of the number of initial nonzero two-body
matrix elements (MEs) over the number of remaining nonzero
two-body matrix elements after the IT. In the case of no trun-
cation RC = 1 and no compression is obtained. Once the IT
selection is performed, RC exceeds unity indicating a possibly
lower memory footprint; truncating 90% of matrix elements
gives RC = 10 and truncating 99% of matrix elements gives
RC = 100. In this way the compression ratio provides an
estimate of the scaling gained by the IT. For example, a
compression ratio of RC = 70 in an emax = 14 model space
corresponds to truncating approximately 485.7 million of the
total 492.7 million matrix elements.1 This leaves just 7 million
nonvanishing matrix elements, which is roughly equivalent
to an effective single-particle model space of emax = 8. This
feature can also be clearly identified in the scaling example in
Fig. 1, where we show the number of nonvanishing two-body
matrix elements for different compression ratios RC obtained
in different model-space sizes emax. In general, the application
of IT techniques is expected to be most efficient in large model
spaces since high-lying excitations typically contribute less to
ground-state observables and, thus, larger compression ratios
can be obtained without introducing significant errors with
respect to the exact result.

A first example for what can be expected from the IT-
IMSRG is shown in Fig. 2. While the specific details are
explained in the following sections, the general trends we ob-
serve from IT-IMSRG(2) calculations at different RC are clear.
We compare ground-state energies of 4He for a chosen IT
measure, which is detailed in Sec. IV C, to the full IMSRG(2)
result as well as to the second and third-order MBPT energy.
The colored band perturbatively incorporates the IT-neglected
matrix elements, as outlined in Sec. IV D. We additionally

1Displayed dimensionalities assume full exploitation of rotational
invariance, parity and isospin conservation, and permutation symme-
tries.
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FIG. 1. Total number (left y axis) and corresponding storage
requirements (right y axis) of nonzero two-body matrix elements for
different compression ratios RC as a function of the model-space size
emax. For RC = 1 the number of matrix elements corresponds to the
initial Hamiltonian without any IT.

show the extrapolated NCSM result for comparison, which is
obtained by an extrapolation to Nmax → ∞ based on calcula-
tions up to Nmax = 14 using the BIGSTICK code [42].

IV. MEDIUM-MASS APPLICATIONS

In all following applications we use the IMSRG(2) solver
by Stroberg [43]. We note that the IT-IMSRG(2) implemen-
tation used in this work does not profit from the potential
computational benefits of the IT framework by evaluating only
important matrix-element index combinations in the flow. In-
stead, we use the standard solver and set unimportant matrix
elements to zero. First computational studies for the advan-

FIG. 2. Ground-state energy of 4He in the optimized eNAT = 14
NAT basis truncated to emax = 12 for different IT compression ratios
RC and the IT measure κ�/ε (see Sec. IV C) compared to the full
IMSRG(2) result and MBPT up to second and third order, using
the 1.8/2.0 EM interaction. The third-order energy correction of the
IT-neglected entries (as introduced in Sec. IV D) is given by the
(cyan) colored band. The black dashed line indicates the extrapolated
NCSM result (see text for details).

tages of an IT-IMSRG(2) solver using a sparse storage format
are discussed in Sec. IV H.

A. Interactions

In this work, we employ different NN and 3N interac-
tions that are derived within the framework of chiral effective
field theory (EFT). We investigate two chiral interactions in
detail: the next-to-next-to-next-to-leading order (N3LO) NN
potential from Ref. [44] with N3LO 3N forces constructed in
Ref. [45], which in the following is referred to as “N3LO 500”
with cutoffs �NN = �3N = 500 MeV, and the “1.8/2.0 EM”
interaction of Ref. [46] with N3LO NN and N2LO 3N forces.

Furthermore, we employ the free-space similarity renor-
malization group (SRG) (see Refs. [47–49]) as a tool to
evolve nuclear interactions to lower resolution scales, char-
acterized by the flow parameter λ, by decoupling low-
and high-momentum parts in the Hamiltonian. Hamiltonians
constructed using SRG-evolved potentials are perturbative,
and their use in many-body applications leads to improved
convergence behavior [48–51]. This is in contrast to the
less-than-ideal convergence behavior of MBPT [14] and the
possible appearance of unbound mean-field solutions (see,
e.g., Ref. [32]) when using harder unevolved potentials. In
this work, we study both the SRG-unevolved and consistently
SRG-evolved NN+3N N3LO 500 potential, where we refer to
the unevolved potential if there is no additional SRG resolu-
tion scale given in the name specifier. We note that for the
unevolved N3LO 500 potential the results are not converged
in the shown model spaces. The 1.8/2.0 EM potential is a
low-resolution potential constructed via the SRG evolution of
only the NN force combined with a subsequent fit of the 3N
low-energy couplings to three- and four-body systems.

B. Interaction blocks

Before introducing the individual IT measures and inves-
tigating them in detail, we perform a more careful analysis
of how sensitive the IT-IMSRG(2) solution is to truncations
in the different two-body interaction blocks. In Fig. 3, we
consider the IT-IMSRG(2) solution of 40Ca when different
combinations of blocks are truncated (indicated by the differ-
ent lines) using the IT measure κ� based on the magnitude
of the two-body matrix elements, which is introduced in
Sec. IV C. For each line, each point corresponds to a chosen
κmin, which gives a compression ratio RC and produces an
error to the exact IMSRG(2) solution. This error is shown in
terms of the relative error on the correlation energy Ecorr =
E (s → ∞) − E (s = 0) on the left y axis and in terms of the
absolute error on the right y axis. The two panels differ in
the interaction used: the left panel features the 1.8/2.0 EM
Hamiltonian and the right panel the N3LO 500 Hamiltonian.
In this figure, the truncated residual part of the two-body
Hamiltonian is not treated approximately except when all
blocks are truncated. In this case, the second-order energy
correction based on the hhpp block of the residual part is
added to the IT-IMSRG(2) result.

In both panels, truncating all interaction blocks (the green
curve) leads to the largest error at small and intermediate
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FIG. 3. Error on the ground-state energy of 40Ca in the NAT basis as a function of compression ratio RC for IT-IMSRG(2) calculations
truncating in various two-body interaction blocks. The green curve for truncating in all two-body interaction blocks additionally incorporates
the second-order energy correction of the neglected matrix elements. For comparison, we also show the results without the energy correction
by the green dashed line with open squares. In the left panel the 1.8/2.0 EM Hamiltonian is used, and in the right panel the N3LO 500
Hamiltonian is used. The left y axis indicates the relative error on the correlation energy Ecorr, and the right y axis shows the absolute error
on the ground-state energy. For comparison the correlation energy is given by Ecorr = −96.88 MeV and Ecorr = −303.02 MeV for the left and
right panels, respectively. All calculations are performed in an emax = 10 model space using κ� (see Sec. IV C for details).

compression ratios. Fully truncating the entire two-body part
of the Hamiltonian causes the IT-IMSRG(2) to produce a
ground-state energy that is exactly E0 + E (2) thanks to the
perturbative treatment of the truncated hhpp part of the Hamil-
tonian. In the left panel this is remarkably close to the full
IMSRG(2) result, but in the right panel the relative error to the
full IMSRG(2) correlation energy is nearly 10%. This behav-
ior can be systematically improved by restricting importance
truncation to selected blocks.

The first blocks we remove from the importance truncation
are the hhpp and hhhh blocks, which gives the orange curves
in Fig. 3. We observed that truncating the hhpp block leads to
large errors at intermediate compression ratios, motivating its
exclusion from the IT. The hhpp block [and the hhhppp block
in the IMSRG(3)] have previously been observed to be quite
important for the IMSRG [22,27], and this finding supports
that intuition further. The hhhh block is the smallest block
and, as a result, does not offer much room for compression,
so we also leave it untruncated. We find that the removal of
these two blocks from the IT reduces the error at intermediate
compressions substantially. Still, the error grows large as we
approach the maximum compression ratio.

Additionally removing the hphp block from the truncation
yields the blue curve, which offers a substantial reduction
in the error relative to the orange curve at all compression
ratios. As a reminder, the hphp block contributes at third
order in MBPT (see Sec. II D), and in MBPT studies it was
found that the third-order particle-hole diagram sensitive to
this block dominates the third-order contribution [14]. In the
IMSRG, it has been observed that the high-order general-
izations of the particle-hole diagram, the ph-ring diagrams,
which are resummed nonperturbatively in the IMSRG(2), are
particularly important [22,23]. The substantial reduction in
the IT-induced error we find when the hphp block is excluded
is consistent with these observations. Further restricting the
IT to only the hppp and pppp blocks (leaving the small hhhp

block untruncated) gives the red line, and truncating only in
the pppp block gives the purple line. In our studies, we found
that restricting the IT to just the hppp and pppp blocks (i.e., the
red curves in Fig. 3) allowed us to achieve large compression
ratios while introducing relatively small errors for appropriate
IT thresholds, hence in the following we concentrate on this
approach.

C. Definition of importance measures

In the following, various importance measures for the
flowing two-body part of the Hamiltonian in the IMSRG(2)
approach are investigated. We note that in principle similar
studies can be performed for the one-body part as well. How-
ever, since the computational gain is negligible we will focus
on the two-body part here. All measures are constructed once
at the beginning of the flow based on the initial Hamiltonian at
s = 0. Important combinations of single-particle indices p, q,
r, and s of �pqrs are identified by the IT measure and kept over
the course of the flow, while matrix elements with unimportant
index combinations are set to zero throughout the flow. Note
that this also includes matrix elements which are potentially
induced by the IMSRG. An alternative approach would be to
dynamically update the measure during the IMSRG evolution,
which could possibly better account for the changing structure
of the evolving Hamiltonian. We leave the exploration of
such strategies to future studies and focus instead on different
measure choices and their relative performance for different
systems.

1. Matrix-element-based measures

The simplest way of estimating the relevance of a given
two-body matrix element is its initial magnitude, giving rise
to the first importance measure,

κ�
pqrs(�) = |�pqrs|. (14)
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This measure encodes the expectation that the largest matrix
elements are expected to be most important for the evolution
of the Hamiltonian and the smallest ones will be relatively
unimportant. However, this naive estimate does not take into
account specific information about the target nucleus.

A more refined measure can be obtained by taking inspi-
ration from MBPT. In MBPT, the matrix elements that are
summed over are accompanied by energy denominators, and
our measure based on this idea is

κ�/ε
pqrs(�) = |�pqrs/εsum|. (15)

The additional appearance of an energy denominator εsum

accounts for the lower importance of highly excited config-
urations associated with large single-particle energies. The
measure κ�/ε is very closely related to the first-order estimate
of the MBPT wave function expansion and similar in spirit
to previously used measures in importance-truncated NCSM
[39], BMBPT [29], or Gorkov SCGF [30] frameworks.

The energy denominator for the hhpp block is simply given
by ε

pp
hh used in the second-order MBPT energy correction in

Eq. (6). However, in the IMSRG other interaction blocks than
only the hhpp block are present and the energy denominator
of the importance measure has to be generalized accordingly.
This is done by defining

εsum =
{

4εF − εp1 − εp2 − εp3 − εp4 for pppp,

2εF + εh − εp1 − εp2 − εp3 for hppp,
(16)

where εF is the Fermi energy, i.e., the energy of the energeti-
cally highest-lying hole orbital. Generally, the Fermi energy
εF is different for protons and neutrons in proton-rich or
neutron-rich systems. While in this work we show results for
the simple definition of an isospin-independent Fermi energy
given above, we have explored using isospin-differentiated
Fermi energies and found that the different approaches give
quantitatively very similar results in a broad range of systems.
Equation (16) can be trivially extended to include the hphp,
hhhp, and hhhh blocks, but we focus our discussion in this
work on truncations of the pppp and hppp blocks, as explained
in Sec. IV B.

2. Occupation-based measures

In the natural orbitals basis, additional information about
the system is available in the form of the noninteger occu-
pation numbers nNAT ∈ [0, 1] of the individual orbitals. We
can use this information to construct alternative truncation
measures that only work when such noninteger occupation
numbers, resulting from an improvement of the one-body
density matrix beyond the mean-field level, are available. The
simplest choice is the use of products of occupation numbers
obtained in the diagonalization of the one-body density ma-
trix, as used in CC applications to improve convergence in the
triples amplitudes truncation [26],

κn
pqrs =

∏
i∈{p,q,r,s}

{∣∣nNAT
i

∣∣ if i is a particle state,∣∣1 − nNAT
i

∣∣ if i is a hole state,
(17)

where the product is given by the natural orbital occupation
numbers nNAT for the p, q, r, and s orbitals, with nNAT

i for parti-

cle states and nNAT
i = (1 − nNAT

i ) for hole states. This measure
gives the greatest importance to matrix elements where bra
and ket indices lie close to the Fermi surface. This reflects the
intuition that for low-resolution Hamiltonians the correlation
expansion is dominated by low-energy excitations around the
Fermi surface. Again, this measure is rather simplistic since
no explicit information from the two-body matrix elements
enters the IT selection.

A further refinement is obtained by accounting for the
magnitude of the associated two-body matrix element, as is
done in Eqs. (14) and (15) via

κ�n
pqrs(�) = |�pqrs| ×

∏
i∈{p,q,r,s}

{∣∣nNAT
i

∣∣ if i is a particle state,∣∣1 − nNAT
i

∣∣ if i is a hole state.

(18)

In both cases, the natural orbital occupation numbers contain
additional information about the shell structure, such that con-
tributions from, e.g., high orbital angular momentum (large
l) or high radial excitations (large n) will typically be sup-
pressed.

3. Derivative-based measures

While the matrix-element- and occupation-based measures
above are inspired by other many-body frameworks, the no-
tion of derivative-based measures is specific to the IMSRG
approach. By defining the IT measure as

κ∂�
pqrs(�) =

∣∣∣∣
(

dH

ds

)(2)

pqrs

∣∣∣∣ = ∣∣[η, H](2)
pqrs

∣∣, (19)

the importance of two-body matrix elements is based on the
magnitude of their expected change. Matrix elements with
a large derivative are expected to change significantly over
the course of the evolution, and the initial value will be a
poor approximation. Note, however, that this measure does
not directly account for the size of the matrix element but only
its expected dynamics independent of the starting value. It is
also worth mentioning that the construction of this measure
is more expensive than the previously discussed measures, as
the evaluation of the required commutator scales like O(N6)
in the size of the single-particle basis.

D. Perturbative treatment of truncated Hamiltonian

In order to perturbatively consider the IT-neglected con-
tributions, we apply a modified version of the MP3 energy
correction with all diagrams sensitive to the pppp and hppp
truncated interaction blocks. We consider the pp-ladder dia-
gram E (3)

pp shown in Eq. (8a), which is sensitive to the pppp
matrix elements, as well as the two noncanonical diagrams
that are sensitive to the hppp matrix elements, when working
in a natural orbital basis. Combining the IT matrix elements
of the two relevant interaction blocks with the initial hhpp
elements results in an adapted third-order IT energy correction
of the neglected contributions

E (3)
IT = E (3)

pp + E (3)
hppp, (20)
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FIG. 4. Error on the ground-state energy of 40Ca in the NAT basis as a function of compression ratio for IT-IMSRG(2) calculations using
five IT measures defined in Eqs. (14)–(19). In the left panel the 1.8/2.0 EM Hamiltonian is used, and in the right panel the N3LO 500
Hamiltonian is used. The left y axis indicates the relative error on the correlation energy Ecorr, and the right y axis shows the absolute error
on the ground-state energy. All calculations are performed in an emax = 10 model space and the dashed vertical line indicates the maximum
compression ratio.

with the two parts given by

E (3)
pp = 1

8

∑
abcdi j

�i jab �res.
abcd �cdi j

εab
i j ε

cd
i j

, (21)

E (3)
hppp = 1

2

∑
abci j

�i jab �res.
abc j fci

εab
i j ε

c
i

+ 1

2

∑
abci j

fai �res.
a jcb �cbi j

εa
i ε

bc
i j

,

(22)

where the IT-neglected matrix elements are given by �res. as
defined in Eq. (12) and the matrix elements � and f without
superscript correspond to the initial two- and one-body con-
tributions of the normal-ordered Hamiltonian in Eq. (1).

E. Measure sensitivity and compression benchmark

The five different IT measures κ introduced in Sec. IV C
are studied for 40Ca using two different Hamiltonians in
Fig. 4. For both Hamiltonians one finds that at the maxi-
mum compression accessible for the chosen interaction blocks
(indicated by the dashed vertical line) all measures give the
same error to the exact IMSRG(2) result, which reflects that
at this compression κmin for each measure has been chosen
such that the hppp and pppp blocks are completely truncated.
At intermediate compressions, however, the various measures
give different results. Of particular interest is the growth in the
error to the exact IMSRG(2) result when going from small to
intermediate compressions. Concentrating first on the matrix-
element-based measures (the red squares and orange circles),
we find that they follow the same qualitative trend. The more
refined κ�/ε gives smaller errors than κ� at small and interme-
diate compressions, especially for the 1.8/2.0 Hamiltonian.
The fact that κ�/ε works so well for the 1.8/2.0 Hamilto-
nian reflects the perturbativeness of the Hamiltonian, but the
MBPT-inspired refinement over κ� seems to be effective for
harder interactions as well.

Turning to the occupation-based measures (the green dia-
monds and the blue thin diamonds), we find that they produce

smaller errors than κ�/ε and κ� for the 1.8/2.0 EM Hamil-
tonian and larger errors for the N3LO 500 Hamiltonian. This
can also be understood due to the relative softness of the two
Hamiltonians, as the natural orbitals are constructed using
second-order MBPT. It is likely that for harder Hamiltonians
this construction does not approximate the one-body density
matrix well enough for the IT measure based on its occupation
numbers to be effective. We also find that refining κn by
including the matrix element size to give κ�n produces smaller
errors at all compression ratios. We find that the derivative-
based measure κ∂� (purple triangles) performs similarly to the
other measures investigated, but costs substantially more to
construct.

As outlined in Sec. II C, we utilize the underlying symme-
try of the Hamiltonian to store the two-body matrix elements
in a (JPTz ) block structure and apply the IT in the individual
symmetry blocks. Although the resulting energy can be quite
different depending on the chosen IT measure, we observe
nearly identical suppression of the number of matrix elements
in the (JPTz ) blocks for the three IT measures κ� , κ�/ε, and
κ�n at comparable compression ratios. In the rest of this work,
we focus our explorations mostly on the two best performing
measures, κ�/ε and κ�n [see Eqs. (15) and (18)].

In Fig. 5, we study the effect of going to different model-
space sizes on the achievable compression ratios and their
associated errors in 40Ca with the 1.8/2.0 EM Hamiltonian.
Going from emax = 10 to emax = 14 increases the number
of two-body matrix elements by a factor of roughly 15,
which allows for higher maximum compression. However,
at the same compression ratio, the emax = 14 IT-IMSRG(2)
calculations have much smaller errors to the exact result,
because many of the matrix elements that are added when
going from emax = 10 to emax = 14 can be truncated. This
also means that the IT-IMSRG(2) is less effective in small
model spaces (such as emax = 6 in Fig. 5) because in these
model spaces the maximum compression is lower and trun-
cating a lot of matrix elements quickly leads to larger
errors.
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FIG. 5. Relative error of the correlation energy in the NAT basis
of 40Ca using the 1.8/2.0 EM Hamiltonian as a function of the
compression ratio for the model-space sizes emax = 6, 10, and 14.
We show results for the IT measures κ�/ε (circles) and κ�n (dia-
monds). The right y axis indicates the absolute difference between
the emax = 14 IT-IMSRG(2) results and the exact IMSRG(2) result.
The MP3 energy correction for the κ�/ε IT-neglected contributions is
indicated by the corresponding band for each model-space truncation
and the vertical dashed lines correspond to the maximum RC for the
given model space.

In Fig. 5, we include the perturbative treatment of the
truncated part of the Hamiltonian introduced in Sec. IV D. The
points on the lines are the result of IT-IMSRG(2) calculations
without any extra treatment of the truncated part. The MP3
correction due to the IT-neglected matrix elements is included
as a band on top of this IT-IMSRG(2) result. We understand
this correction to be an indication of the magnitude of the
missing third-order and higher-order contributions that are
discarded by the truncation. This can be used as an estimate
of the IT uncertainty relative to the full IMSRG(2) for a given
truncation threshold, which is important in cases where exact
results are not readily available for comparison. We see that
in this case the uncertainty indicated by the MP3 correction
is reasonable up to relatively high compression ratios. As
an example, for an emax = 14 IT-IMSRG(2) calculation, we
can achieve a compression ratio of 100 while keeping the IT
uncertainty below 0.5% on the correlation energy.

F. Interaction sensitivity

We now turn our attention to how the observed trends are
affected by the choice of Hamiltonian. In Fig. 6, we again
show the IT-IMSRG(2) errors in several model-space sizes for
40Ca, this time using the N3LO 500 Hamiltonian. We see that,
compared to the softer 1.8/2.0 EM Hamiltonian, the relative
error on the correlation energy is similar, which is due to the
large correlation energy for the N3LO 500 Hamiltonian. Ac-
cordingly, the absolute errors in the energy are larger than in
Fig. 5. We see that the IT-IMSRG(2) results based on κ�/ε are
better than using κ�n, and the uncorrected results for κ�/ε lie
very close to the exact IMSRG(2) results up to compressions
near 100 for emax = 14. However, the MP3 correction due to
the IT-neglected matrix elements is much larger for the harder

FIG. 6. Same as Fig. 5 but for the N3LO 500 Hamiltonian.

N3LO 500 Hamiltonian, suggesting a sizable uncertainty in
the IT-IMSRG(2) results even at relatively small compression
ratios.

In Fig. 7, we compare ground-state energies for 40Ca ob-
tained via various different many-body approaches for the
N3LO 500 and 1.8/2.0 EM Hamiltonians in an emax = 10
model space. We compare IT-IMSRG(2) results at differ-
ent compression ratios against untruncated IMSRG(2) results
and provide results from second- and third-order MBPT
for comparison. Looking first at the results for the 1.8/2.0
Hamiltonian, we see that second- and third-order MBPT en-
ergies differ from the IMSRG(2) result by less than 5 MeV.
Overall, the IT-IMSRG(2) results also agree well with the
IMSRG(2) results. In particular, for intermediate compression
ratios (RC = 10, for instance) the estimated uncertainty from
the treatment of IT-neglected matrix elements is very small.

FIG. 7. Ground-state energy of 40Ca in the NAT basis for
model-space size emax = 10 and two IT measures as a function of
compression ratios RC compared to the full IMSRG(2) result and
results from second- and third-order MBPT, using the N3LO 500
interaction (top) and the 1.8/2.0 EM interaction (bottom). The third-
order energy correction of the IT-neglected contributions for both
measures is given by the correspondingly colored band.
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FIG. 8. Same as Fig. 7 but for the SRG-evolved N3LO 500 inter-
action to λ = 2.0 fm−1.

For the N3LO 500 Hamiltonian, this picture changes sub-
stantially. The second-order MBPT, third-order MBPT, and
IMSRG(2) results span an energy range of about 65 MeV.
Here the IT-IMSRG(2) performs quite well, giving errors to
the IMSRG(2) of up to roughly 7 MeV for the largest com-
pression ratio considered in Fig. 7. The estimated uncertainty,
however, is much larger than the actually observed errors.
It seems that the correction we obtain from the IT-neglected
matrix elements for this interaction overestimates the size of
the missing physics, which we understand to be an artifact
of the perturbative approach we take in conjunction with a
nonperturbative Hamiltonian.

To confirm this, we consider the same system using the
N3LO 500 Hamiltonian consistently SRG evolved to a res-
olution scale of λ = 2.0 fm−1 in Fig. 8. This SRG-evolved
potential is very soft, as also suggested by the small dif-
ferences between second-order MBPT, third-order MBPT,
and IMSRG(2) results. Here the difference between the IT-
IMSRG(2) and the IMSRG(2) results is about 1.5 MeV for
RC = 45, and the estimated uncertainty is also of approx-
imately the same size as the error. This suggests that our
uncertainty estimate is quite reasonable for soft Hamiltonians
and the IT results for an intermediate compression ratio of
about RC = 10 lie very close to the full IMSRG(2) result for
such interactions.

G. Mass number sensitivity

After our investigation of the interaction blocks and IT
measures for 40Ca as a reasonable test case, we extend our
studies to closed-shell nuclei ranging from 40Ca up to 78Ni. In
the top panel of Fig. 9, we show ground-state energies for dif-
ferent compression ratios in the IT-IMSRG(2) compared to the
full IMSRG(2) result when using the N3LO 500 Hamiltonian.
At intermediate compressions (here RC = 10), we find that
the IT-IMSRG(2) results match the exact IMSRG(2) results
within a few MeV. The largest deviation is found for 78Ni with
an error of 5 MeV. The uncertainty indicated by our third-
order treatment of truncated matrix elements is also of about
the same size. Going to larger compressions, we find that at
RC = 50 the IT-IMSRG(2) results still lie remarkably close

FIG. 9. Ground-state energies for selected calcium and nickel
nuclei in the IT-IMSRG with compression ratios RC = 10, 50, and
100 for the measure κ�/ε . Results are shown for the NAT basis
and the unevolved (top) and SRG-evolved to λ = 2.0 fm−1 (bottom)
N3LO 500 interaction in emax = 14.

to the exact IMSRG(2) results. The 12 MeV error for 78Ni
is the exception here, and most errors are still below 5 MeV.
For RC = 100, the deviation to exact IMSRG(2) results tends
to be larger. However, for both RC = 50 and RC = 100 the
indicated uncertainty is much larger than the observed error,
growing to beyond 50 MeV in some systems. We emphasize
that for these results RC = 50 and RC = 100 are being used to
explore the truncation error for heavily truncated calculations
and would not be considered adequate for practical nuclear
structure calculations.

We perform the same study across a variety of systems in
the lower panel of Fig. 9, but this time using the SRG-evolved
N3LO 500 λ = 2.0 fm−1 Hamiltonian, which in the last
section showed substantially smaller errors in IT-IMSRG(2)
calculations than the unevolved N3LO 500 Hamiltonian. For
this Hamiltonian, we see that even with RC = 100 the error to
the exact IMSRG(2) result is very small in all systems (with a
maximum of 2.5 MeV for 78Ni). Moreover, the uncertainty
indicated by the third-order treatment of truncated matrix
elements is also quite small, only growing up to 1.4 MeV
for 68Ni with RC = 100. These results show the promising
performance of the IT-IMSRG over a wide range of mass
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numbers and up to large compression ratios when using softer
or SRG-evolved interactions. While Fig. 9 only shows results
obtained using the κ�/ε measure, the results are very similar
for κ�n.

H. First computational investigations

In this work, we have introduced the IT-IMSRG formalism
as a way to approximate IMSRG(2) results while considering
only a small subset of the two-body matrix elements. In our
implementation, we applied the formalism by taking the IM-
SRG solver by Stroberg [43] and explicitly setting truncated
matrix elements to zero. An implementation that fully takes
advantage of the new structure of importance-truncated oper-
ators is beyond the scope of this work, but will be necessary
to take advantage of the storage and computational benefits of
the IT-IMSRG. We performed an initial exploration of this by
adapting the solver mentioned above to use a modified storage
format.

An optimized IT-IMSRG solver must not store the zeros
associated with truncated matrix elements, and it must be
able to do so flexibly as different IT measures will truncate
different matrix elements. This naturally suggests the use of
sparse matrices and sparse linear algebra operations (as is
available in, e.g., the C++ ARMADILLO library [52,53]). We
were able to adapt the storage format of our IT-IMSRG(2)
solver to use sparse matrices, and the computational opera-
tions were adapted to use sparse linear algebra routines. We
observed the expected reduction in memory requirements in
our calculations, but our initial implementation was unable
to substantially speed up the IT-IMSRG(2) solution over the
IMSRG(2) solution. Profiling and detailed benchmarks led us
to suspect that this lack of performance is due to suboptimal
handling of data around the sparse matrix format (e.g., random
matrix element access in sparse matrices is slow, unlike with
dense matrices). These computational slowdowns affected our
implementation most heavily in the particle-hole part of the
two-body commutator (see, e.g., Ref. [22]), where the Pandya
transformation is naturally implemented using unordered ac-
cesses in the input and output matrices. However, given the
speedups observed in other parts of the solver when using
sparse matrices (e.g., the particle-particle and hole-hole parts
of the two-body commutator), we fully expect an optimized
IT-IMSRG(2) solver to also reduce the computational cost of
IMSRG(2) calculations in addition to the memory savings.

V. SUMMARY AND OUTLOOK

In this work, we introduced the importance-truncated
IMSRG framework, where unimportant two-body matrix el-
ements are truncated based on an IT measure and only the
remaining elements are used for the many-body solution. We
investigated the systematics of this truncation, with the aim
of identifying IT measures that allow for substantial compres-
sion ratios RC while introducing only small, controlled errors
relative to the exact IMSRG(2) solution.

To this end, we employed the test case nucleus 40Ca and ex-
plored how truncating in different sub-blocks of the two-body
Hamiltonian affects the IT error, how different IT measures

perform, and how the IT truncation performs in model spaces
of different sizes. We found that restricting the IT truncation
to only matrix elements with three or four particle indices
(i.e., the hppp and pppp blocks) allows calculations up to
reasonable compression ratios while introducing only small
errors relative to the IMSRG(2) solution. The different IT
measures we explored all behaved systematically as a function
of the compression ratio RC , and we selected two measures,
κ�/ε and κ�n, to focus on based on their excellent performance
when using soft Hamiltonians and relatively robust behavior
when using harder Hamiltonians. For both measures we ob-
served that in larger model spaces the benefit of the IT-IMSRG
in terms of compression substantially increased. Using soft
Hamiltonians in the largest model spaces considered, we ob-
served compression ratios of RC = 100 (i.e., 99% of matrix
elements are truncated) in calculations with less than 1 MeV
error to the exact IMSRG(2) result.

Importance-truncated approaches typically attempt to ap-
proximately treat the truncated parts to correct for the
truncation. In this work, we accounted for the truncated matrix
elements via a third-order MBPT correction. This correction
serves as an estimate of the magnitude of the IT error, and
for soft Hamiltonians its size is qualitatively consistent with
the actual error observed. For harder Hamiltonians, however,
the error estimate systematically overestimates the actual error
for intermediate and large compression ratios. We understand
this as a shortcoming of the perturbative treatment, which is
expected to degrade when using harder Hamiltonians.

We extended our studies to medium-mass closed-shell
nuclei ranging from 40Ca to 78Ni, comparing the harder,
SRG-unevolved N3LO 500 interaction to the soft, consis-
tently SRG-evolved N3LO 500 λ = 2.0 fm−1 interaction,
and observed the same trends as in 40Ca. When using the
SRG-evolved interaction, the IT-IMSRG(2) reproduces exact
IMSRG(2) results excellently even at large compression ratios
of RC = 100. Moreover, the third-order MBPT corrections for
the truncated matrix elements are consistent in magnitude to
the actual observed errors, further supporting the use of this
quantity as a reasonable IT error estimate for soft Hamilto-
nians. When using the harder, SRG-unevolved Hamiltonian,
larger errors to the exact IMSRG(2) results are observed, but
the behavior is systematic and for smaller compression ratios
the IT-IMSRG(2) results deviate from the IMSRG(2) results
by only up to 1%.

A first estimate of the computational benefits obtained
by the IT approach in the IMSRG was studied by em-
ploying a sparse implementation of the IT-IMSRG solver.
This adapted implementation used substantially less memory,
profiting from the possible compression by the importance
truncation, but a direct improvement to the computational
cost was not observed. This suggests that a more fine-tuned
IT-specific implementation is necessary to fully profit from
the IT-IMSRG, and we expect that such an implementation
would also see computational benefits at intermediate and
large compression ratios.

All these results establish the IT-IMSRG as a promis-
ing tool to compress and accelerate many-body calculations.
These developments are of great interest for the ongo-
ing efforts to develop the IMSRG(3) [27], where the
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computational costs of evaluating the most expensive commu-
tators and the storage costs of handling three-body operators
are strong limiting factors. In preliminary studies on three-
body matrix elements using the generalized IT measure κ� ,
we have found that similar choices for κ�

min yield three-
body compression ratios approximately an order of magnitude
larger than the two-body compression ratios obtained in this
work. Substantial reduction (RC ∼ 40–200) in the number of
three-body matrix elements could bring memory requirements
associated with three-body operators into the range accessible
with standard supercomputing nodes. An IT-IMSRG(3) solver
tuned to handle the extremely sparse structure of the resulting
operators could extend the range of the many-body method
and make large model-space truncations or more expensive
approximate IMSRG(3) truncations accessible.

We expect that the IT-IMSRG approach can also be
adapted to work with extensions of the IMSRG that tar-
get open-shell systems, such as the multireference or the
valence-space IMSRG, with appropriately selected impor-
tance measures. Some of the proposed measures in this work
rely on low-order pertubative estimates and are thus not di-
rectly applicable in open-shell systems. On the other hand,
occupation-based IT measures (with occupation numbers

obtained from an appropriate one-body density calcula-
tion) might be straightforwardly applied in a multireference
framework, and the derivative-based measure is directly gen-
eralizable to other IMSRG frameworks. Open-shell-specific
IT measures could be constructed by taking information from
symmetry-breaking and projection calculations or considering
details of the valence space.

Extending the IT approach to other operators and observ-
ables in the IMSRG is a next natural step, where either the
same measure as for the Hamiltonian can be applied or new
operator-specific measures can be developed.
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