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Mass relations of mirror nuclei for both bound and unbound systems
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In this paper we study nuclear masses of proton-rich systems close to (both inside and outside) the proton drip
line, in terms of mass relations for mirror nuclei. We show that mass relations of mirror nuclei are remarkably
accurate for all nuclei (including very light nuclei) within the proton drip line, with root-mean-square deviations
(RMSD) between 70–147 keV. A very simple formula is proposed to extend the mass relations to systems beyond
the proton drip line, with the RMSD value of 183 keV (or 164 keV if the 11O − 11Li mirror partners are excluded).
Based on these mass relations, we predict 162 mass excesses of proton-rich systems (136 systems outside and 26
systems inside the proton drip line) close to the proton drip line, and tabulate these results in the Supplemental
Material of this paper.
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Nuclear mass M, neutron separation energy Sn, and proton
separation energy Sp, are not only fundamental quantities of
atomic nuclei, but also are important inputs in astrophysics
and some other branches of science. In past decades many
efforts have been devoted to predicting nuclear masses and
nucleon separation energies [1,2]. Here, we mention a few
“global” models, such as the Duflo-Zuker model [3], the finite
range droplet model (FRDM) [4,5], the Skyrme Hartree-Fock-
Bogoliubov theory [6], and Weizsäcker-Skyrme (WS) model
[7,8]. There are also local mass relations, such as the Audi-
Wapstra extrapolation method [9–11], the Garvey-Kelson
mass relations [12,13], and mass relations based on neutron-
proton interactions [14,15]. Between global mass models and
local mass relations, there is another approach which is based
on isospin symmetry of the nuclear force, called mass rela-
tions of mirror nuclei [16–21]. In recent years, such relations
have been demonstrated to be remarkably accurate. Yet these
relations have been applied to nuclei with a constraint that
mass number A is between 20 and 90, and within the proton
drip line.

In this paper we show that mass relations of mirror nuclei
are actually robust for A � 20, if we restrict ourselves to
proton-rich nuclei within the proton drip line. With simple
corrections, we further extend these relations to nuclear sys-
tems beyond the proton drip line; these relations are found to
be also remarkably accurate.

Let us begin our discussion by revisiting mass relations of
mirror nuclei. We use M(N, Z ) to denote the mass of nucleus
with N neutrons and Z protons. According to the Weizsäcker
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mass formula, M(N, Z ) is written as follows:

M(N, Z ) ≡ NMn + ZMp − B(N, Z )

= NMn + ZMp − avA + asA
2/3 + Ec

+ aa(N − Z )2A−1 − δpair, (1)

where A = N + Z is the mass number, Mn and Mp represent
masses of a free neutron and a free proton, respectively; the
terms with parameters av, as, aa are called the volume, sur-
face, and symmetry terms, respectively, and δpair is called the
pairing term. Ec is called the Coulomb energy term, which
is usually assumed to take the value of a uniformly charged
sphere with Z protons,

Ec = 3
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where r0 = 1.2 fm is adopted. The value of a(0)
c ,

a(0)
c = 3

5

e2

4πε0r0
� 0.720 MeV.

Instead of N and Z , as in previous papers, we use M(K −
k, K ) and M(K, K − k) to represent the masses of mirror
nuclei, with M(K − k, K ) the proton-rich and M(K, K − k)
the neutron-rich, respectively. From Eqs. (1)–(2), one has

�m(K − k, K ) ≡ M(K − k, K ) − M(K, K − k).

= a(0)
c kA2/3 − k�E (0)

np , (3)

where �E (0)
np represents the mass difference of a proton and a

neutron for atomic masses,

�E (0)
np = Mn − Mp − me = 0.782 MeV.
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TABLE I. The RMSD (in keV) of Eqs. (5), (11)–(12), (15), and
(16) and the parameters a′, α, and β (in units of keV) optimized based
on AME2020 database. It is noted that the resultant RMSD and the
values of these three parameters are very robust, namely, one obtains
almost the same values if one adopts the AME2012 or AME2016
database.

RMSD a′ α β

�m 147 −20 ± 2 67 ± 24 1276 ± 329
�n, �p 96 −16 ± 2 105 ± 24 1473 ± 150
Sp 96 −18 ± 3 70 ± 31 1500 ± 175
S2p 151 −19 ± 3 67 ± 28 –

A more sophisticated Coulomb energy of atomic nuclei has
been well known [22,23] as follows:

Ec = Ed
c + E e

c + E s
c

= ac
Z2

A1/3
− 5

4

(
3

2π

)2/3

ac
Z4/3

A1/3
− ac

Z

A1/3
, (4)

where Ed
c , E e

c , E s
c are called the direct, the exchange and the

self-energy terms, respectively. It has also been well known
that Ec exhibits an odd-even staggering, which is a reflection
of the short-range attractive pairing correlation between pro-
tons [22–24]. With such considerations, Eq. (3) is improved,
and takes the following form:

�m(K − k, K )

= ackδm
c − k�Enp + 1 − (−)k

2
(−)K β

A
, (5)

where the last term represents an empirical odd-even stag-
gering in Coulomb energy discussed in Ref. [20], and here
this term is improved by introducing a mass-number A depen-
dence, and

δm
c = A2/3 − 0.808 − A−1/3.

In this paper, we treat both ac and �Enp as adjustable param-
eters,

ac = a(0)
c + a′ = 0.720 + a′ (MeV), (6)

�Enp = �E (0)
np + α = 0.782 + α (MeV), (7)

where a′ and α are expected to be small values (below 100
keV). All parameters are obtained by a χ2 fitting procedure,
which are explained in Appendix A. In the first row (labeled
by �m) of Table I, we present the optimized values of a′, α,
and β of Eq. (5) based on the AME2020 database, for the �m

relation of Eq. (5).
The empirical neutron-proton interaction between the last

neutron and last proton for nucleus with N neutrons and Z
protons is defined by

Vnp(N, Z ) = −M(N, Z ) − M(N − 1, Z − 1)

+ M(N, Z − 1) + M(N − 1, Z ).

We denote the difference of the Vnp of two mirror nuclei
with (N, Z ) = (K − k, K ) and (N, Z ) = (K, K − k) by
�Vnp(K − k, K ) = Vnp(K − k, K ) − Vnp(K, K − k). If the

isospin symmetry is exact, one has the simple �Vnp relation
as

�Vnp = 0. (8)

In Refs. [18,19], differences of one-nucleon separation en-
ergies for mirror nuclei were introduced and examined. Let us
define �n and �p,

�n(K − k, K )

≡ [M(K − k − 1, K ) − M(K − k, K )]

− [M(K, K − k − 1) − M(K, K − k)]

= Sn(K − k, K ) − Sp(K, K − k)−�E (0)
np , (9)

�p(K − k, K )

≡ [M(K − k, K − 1) − M(K − k, K )]

− [M(K − 1, K − k) − M(K, K − k)]

= Sp(K − k, K ) − Sn(K, K − k)+�E (0)
np . (10)

By using Eq. (5), we obtain

�n(K − k, K )

= (
a(0)

c + a′)δn
c − (

�E (0)
np + α

) + (−)P β

A , (11)

�p(K − k, K )

= (
a(0)

c + a′)δp
c + (

�E (0)
np + α

) − (−)P β

A , (12)

where the left-hand sides of the above two formulas are
extracted from experimental data by using their definitions
in Eqs. (9)–(10), and the neutron-proton mass �Enp and
Coulomb energy coefficient ac are treated as adjustable pa-
rameters, as defined in Eqs. (6)–(7). Here, P is the parity of
the neutron number K − k (proton number K) for the quantity
�n (�p); and

δn
c = (k + 1)(A − 2)(A − 1)−1/3

− k(A − 1)A−1/3 − 0.808, (13)

δp
c = (k − 1)(A − 2)(A − 1)−1/3

− k(A − 1)A−1/3 + 0.808. (14)

In the second row of Table I we present the optimized param-
eters a′, α, and β in Eqs. (11)–(12) by using the AME2020
database. We note that the value of ac, which was discrim-
inated by their parity of proton and neutron numbers in
Ref. [19], is now unified by introducing a simple mass de-
pendence adopted in the pairing term of Eq. (5).

Figure 1 summarizes the deviation of �m, �n, �p, and
�Vnp calculated by using Eqs. (5), (11), (12), and (8), re-
spectively, from those extracted from the AME2020 database
[25], for nuclei within the proton drip line. The root mean
square deviation (RMSD) values of these results are in general
very small (147, 90, 96, 70 keV, respectively); and those for
A � 20 are 144, 112, 99, 141 keV, respectively. Therefore,
mass relations of Eqs. (5), (8), and (11)–(12), are actually
well applicable to all these nuclei within the proton drip line,
including nuclei with a very small number of mass number

034321-2



MASS RELATIONS OF MIRROR NUCLEI FOR BOTH … PHYSICAL REVIEW C 105, 034321 (2022)

FIG. 1. Deviations (in unit of MeV) of theoretical �m, �n, �p,
and �np from those extracted based on the AME2020 database [25],
for nuclei within the proton drip line. The squares in black, circles in
red, up triangles in blue, stars in olive corresponds to k = 1–4. The
RMSD values of (a)–(d) are 147, 89, 96, 70 keV, respectively.

A. There have been many studies of masses for proton-rich
light and medium nuclei by various models; yet there has been
few efforts to construct simple and accurate mass formulas for
nuclei in this region hitherto. It is also interesting and worthy
to note that, empirically, candidates which have proton-halo
ground states, e.g., one-proton-halo nuclei 8B and 12N, or
those for candidates of two-proton-halo nuclei 10C and 17Ne
[26], do not exhibit sharp anomalies in these formulas.

Equations (11)–(12) are found to be very accurate in pre-
dictions. In Fig. 2 we demonstrate their predictive power
by a few examples: Panels (a)–(d) plot those for which the
deviations of masses in the AME2016 database from those
in the AME2020 database are larger than 50 keV; panels
(e)–(g) correspond to those which our predictions from those
in the AME2020 database are the largest; and panels (h)–(l)
correspond to those which are not accessible in the AME2016
database but accessible in the AME2020 database [25,27–
30]. We note that the measurements of the three masses (for
28S, 71Kr, 75Sr) are warranted, one of the reasons is that the
experimental uncertainties of these nuclei are large, and the
other reason is that the RMSD would be 85 keV, which is
sizably smaller than that in Table I (96 keV), if the values of
these three nuclei in the AME2020 database were replaced
by our predicted results. For this reason, we present our pre-
dicted mass excesses for these three nuclei, they are 4241(71)
keV for 28S, −46090(93) keV for 71Kr and −46362(93) keV
for 75Sr, respectively (also see the Supplemental Material of
Ref. [19]). As comparison, we list their mass excesses in the
AME2020 database: 4070(160) keV for 28S, −46330(130)
keV for 71Kr, and −46620(220) keV for 75Sr.

In Refs. [18,19], the predictions are made for neutron num-
ber N between 10 and 44. Because there are no experimental
data of mass excesses M(K, K − 1) for K = 45−50, extrap-
olations of mass excesses by using Eqs. (11)–(12) are not
possible for those with Z > 44. In order to evaluate masses
of those nuclei by using Eqs. (11)–(12), one has to resort
to predicted values of M(K, K − 1) with K = 45−50. In the
AME2020 database [25], such mass excesses are predicted by
extrapolations, and we adopt them as inputs of our predictions.

FIG. 2. Our predicted atomic masses in Ref. [19] and in this
work, with respect to those in the AME2020 database. (a)–(d) cor-
respond to cases for which the differences of nuclear masses in the
AME2016 and those in the AME2020 database [25] are larger than
50 keV; (e)–(g) correspond to those our predicted results deviate
from those in the AME2020 database larger than 150 keV; and
(h)–(l) correspond to those unaccessible in the AME2016 database
but accessible in the AME2020 database.

We note without details that, for these nuclei, the approach
of δV1n-1p [14] present predicted results which consistent with
those in the AME2020 database within the theoretical uncer-
tainties.

As one of the purposes in this paper is to discuss the masses
of systems beyond the proton drip line, defined by either
one-proton separation energy Sp to be negative or two-proton
separation energy S2p to be negative, we predict Sp and S2p

in cases that they are not accessible or not measured very
accurately. From Eqs. (10) and (12), one obtains

Sp(K − k, K ) = Sn(K, K − k) + acδ
p
c + α − (−)K β

A , (15)

where Sn(K, K − k) is taken from experimental data, and
Sp(K − k, K ) is our predicted value of one-proton separation
energy of a nucleus with proton number K and neutron num-
ber K − k. Similarly, We define �2p as

�2p(K − k, K )

≡ [M(K − k, K − 2) − M(K − k, K )]

− [M(K − 2, K − k) − M(K, K − k)]

= S2p(K − k, K ) − S2n(K, K − k) + 2�E (0)
np .

We obtain

S2p(K − k, K ) = S2n(K, K − k) + acδ
2p
c + 2α, (16)
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FIG. 3. Deviations of �m mass relation for proton-rich nuclei
both inside and beyond the proton drip line. The solid symbols
correspond to cases for which the proton-rich nuclei are bound, while
hollow symbols denote those for which the proton-rich systems are
beyond the proton drip line. One sees the results deviates largely
from zero if proton-rich partners of the mirror nuclei are beyond the
proton drip line and when mass number is below 20.

where S2n(K, K − k) is taken from experimental data, and

δ2p
c = (k − 2)(A − 3)(A − 2)−1/3

− k(A − 1)A−1/3 + 1.616 MeV,

where 1.616 originated from 0.808 MeV (by two times) in
Eq. (14). In Table I we present our optimized parameters of
Eqs. (15) and (16), labeled by Sp and S2p, respectively. Their
RMSD values with respect to the AME2020 database are 96
keV and 151 keV, respectively.

Figure 3 plots the deviations of our predicted �m from
those extracted based on the AME2020 database [25], the
same as Fig. 1(a) except that proton-rich systems beyond the
proton drip line (denoted by hollow symbols) are considered.
The results involved of systems beyond the proton drip line
are easily seen to be “anomalous”, which deviate largely from
zero; the further a nuclide from the drip line, the larger the
deviation, in general. This behavior means that mass differ-
ences of mirror nuclei �m extracted from experimental data,
denoted by �

Exp
m , are smaller than those in cases that the

proton-rich partners were within the proton drip line, namely,
the results predicted by Eq. (5), denoted by �Th

m . This devia-
tion has two plausible origins, one is to take stronger attractive
interaction among nucleons and the other is to reduce the
Coulomb energy. Here, we take a simple scenario of smaller
Coulomb energy, by assuming that the distribution of protons
for a nucleus beyond the proton drip line is approximately
represented by two parts, the inner part is a core with the
“normal” density of protons, and the outer part is consisted
of protons with a relatively smaller density. Following this
scenario, we assume the nuclear charge density is given by

ρ =
{
ρ1 + ρ2, 0 � r � R1

ρ2, R1 � r � R2
, (17)

where ρ1 + ρ2 and R1 are the normal nuclear charge density
and corresponding radius of the sphere with this density, re-
spectively; and ρ2 and R2 are the (smaller) nuclear charge

density out of the core part and corresponding radius. We as-
sume the radius of the inner core R1 = r0A1/3, the same form
of conventional distribution for nuclei close to the stability
line. As we concentrate on the Coulomb energy, the distribu-
tion of neutrons does not contribute to the mass formulas in
an explicit manner. We assume that neutrons for proton-rich
systems outside the proton drip line stay essentially in the
same orbits as protons in their neutron-rich mirror partners.
We use k′ to denote the number of protons from the core part
which is assumed to be the nucleus right on the proton drip
line. Thus the two densities are given by

ρ1 = 3(Z − k′)
4πR3

1

, ρ2 = 3k′

4πR3
2

. (18)

The Coulomb energy for the unbound systems beyond the
proton drip line is again given by three terms:

Ec = Ed′
c + E s′

c + E e′
c , (19)

where Ed′
c , E s′

c , and E e′
c represent the direct term, exchange

term, and self-energy term of the Coulomb energy, given as
below. We define ε = (R2 − R1)/R2, and obtain

Ed′
c = ac

A1/3

[
(Z − k′)2 + k′(5Z − 3k′)

2
(1 − ε)

−k′(Z − k′)
2

(1 − ε)3

]
, (20)

E s′
c = − ac

A1/3
(Z − εk′), (21)

E e′
c = −5

4

(
3

2π

)2/3 ac

A1/3
[(Z − k′)4/3 + (k′)4/3(1 − ε)

+ k′(Z − k′)1/3(1 − ε)3]. (22)

In the appendices of this paper, we present details of mathe-
matical derivations for Eqs. (20)–(22). Instead of Eq. (4), we
adopt Eq. (19) for the Coulomb energy, and have

�′
m(K − k, K )

= (
a(0)

c + a′)(kδm
c − k′ δm′

c

A1/3

)
− k

(
�E (0)

np + α
)
, (23)

where we use �′
m to denote the mass difference between the

proton-rich system (beyond the proton drip line, with proton
number K and neutron number K − k) and its neutron-rich
mirror nucleus (with proton number K − k and neutron num-
ber K), to discriminate the case in which both mirror nuclei
are within the drip lines, and

δm
c = A2/3 − 0.808 − A−1/3,

δm′
c = 2Z − k′ − ε − 5

4k′

(
3

2π

)2/3

[Z4/3 − (Z − k′)4/3]

+ (1 − ε)

[
5

4

(
3

2π
)2/3(k′

)1/3

− (5Z − 3k′)
2

]

+ (Z − k′)1/3(1 − ε)3

[
5

4
(

3

2π
)2/3 + (Z − k′)2/3

2

]
.

One sees that in Eq. (23) that the value of k′, the number
of protons outside the “core”, is important in our new mass
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FIG. 4. The values of ε versus the mass number A. The solid
spheres in blue are obtained by using recursive application of
Eqs. (23)–(25), the solid straight line are theoretical values given by
Eq. (25) with optimized parameters. The value of ε is sizable when
A � 23, and is close to zero if A > 23.

formula. There is an ambiguity, however, concerning how to
enumerate the number of k′: one enumerates this number ei-
ther from the nucleus on the proton drip line but with the same
neutron number, denoted by kp here, or from the nucleus on
the proton drip line but with the same proton number, denoted
by kn. The “effective” number of protons outside the nuclear
“core” is expected to be in between these two numbers. Here,
we assume a very simple form of k′ in terms of kp and kn as
follows.

k′ = ckn + (1 − c)kp. (24)

The parameter ε is empirically assumed to be proportional to
mass number A,

ε = aA + b. (25)

The values of a, b, and c are optimized by using experimental
data, and the resultant values are a = −0.024 ± 0.005, b =
0.553 ± 0.070, c = 0.872 ± 0.077. A negative a is actually
expected, as the Coulomb barriers are larger and thus dif-
ferences between R1 and R2 become smaller for nuclei with
larger mass A in general.

In Fig. 4 we plot “experimental” value of ε, denoted by
εexp, versus the mass number A. The values of εexp are ex-
tracted by using recursive application of Eqs. (23)–(25), where
�

(exp)
m is determined from the experimental data, a(0)

c = 0.720
MeV, and a′ and α presented in the first row of Table I. From
Fig. 4, one sees these εexp are far from zero for A � 23. For
A > 23, εexp ∼ 0, therefore we assume ε = 0 for A > 23, for
simplicity. The resultant RMSD σ ′ of our calculated �′

m is
183 keV (or 164 keV if the 11O system is excluded, as its
mirror partner is the 11Li, a typical neutron halo nucleus) from
those extracted from the AME2020 database; this RMSD
value is substantially smaller than that of �m of Eq. (1) (which
is 743 keV) for the same set of nuclei.

The remarkable accuracy of mass relations discussed in
this paper is encouraging to predict masses of nuclei with
Z > N which are unaccessible experimentally. The nuclei that

FIG. 5. The nuclide chart with our predicted mass excesses based
on �n, �p, and �′

m relations. Solid symbols correspond to nuclei
inside the proton drip line, and hollow symbols correspond to those
beyond the proton drip line. Black squares corresponds to experimen-
tal data accessible in the AME2020 database, and gray squares were
extrapolated in the AME2020 database. Red and blue squares are
predicted by Eqs. (11)–(12) and Eq. (23), respectively. The magenta
dashed line N = Z is plotted to guide eyes.

we predict are summarized in Fig. 5, where the proton drip
line is predicted by using Eqs. (15)–(16), solid squares in red
correspond to nuclei within the proton drip line, and hollow
squares correspond to proton-rich systems beyond the proton
drip line. For the latter case, the mass excesses predicted by
using Eq. (23) (A � 23) are denoted in blue, and those by
using Eqs. (11)–(12) (A > 23) in red.

In total, among our predicted results, there are 26 cases
inside and 136 cases outside the proton drip line. The exper-
imental data of 28S, 71Kr, and 75Sr are not adopted in our
prediction due to their large experimental uncertainties. Our
predicted results are tabulated in the Supplemental Material
of this paper [31]. In Fig. 6, the deviations and theoretical
uncertainties of our predicted results from extrapolated results
in the AME2020 database are plotted versus mass number
A. One sees that the deviations are relatively small (with the
RMSD around or below 300 keV) for k = 1–3 and A between
70–100, and that our predicted results are in general smaller
than those extrapolated in the AME2020 database.

To summarize, in this paper we revisit mass relations of
mirror nuclei as a series of studies [18–21]. We are able to
take one unified set of parameters for odd and even values
of proton number Z . This improvement is realized by intro-
ducing an A dependence of the odd-even staggering term. We
have shown that these relations are actually very accurate for
nuclei from light-mass to medium-mass regions with very few
exceptions, if one restricts to cases for which the proton-rich
nuclei inside the proton drip line. Proton separation energies
are investigated, with the RMSD values 96 keV for one-proton
separation energies and 151 keV for two-proton separation
energies.

Larger deviations arise in cases for which the proton-rich
systems are beyond the proton drip line. Such deviations are
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FIG. 6. Deviations (in units of MeV) of our predicted mass ex-
cess from those extrapolated in the AME2020 database [25]. The
solid symbols correspond to nuclei inside the proton drip line, and
the hollow symbols correspond to those beyond the proton drip line.
Error bars are evaluated as the squared root of two uncertainties, the-
oretical uncertainty of this work and that in the AME2020 database.
One sees that the deviations are relatively small for k = 1–3, but are
sizable for k = 4–8 and A � 60.

suggested to be given by smaller Coulomb energy between
protons outside the core part, marked by proton drip line.
By assuming two densities for protons inside and outside the
normal core part marked by the proton drip line, we propose
a simple mass formula for those proton-rich systems beyond
the proton drip line, with the RMSD 183 keV (or 164 keV if
we exclude the O11 system for which its neutron-rich partner
Li11 is a typical neutron-halo nucleus).

Based on our mass relations, we predict 162 proton-rich
mass excesses around the proton drip line, including 26 sys-
tems inside and 136 systems outside the proton drip line.
These predicted results are tabulated as a Supplemental Mate-
rial of this paper [31], and compared with results extrapolated
in the AME2020 database.
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APPENDIX A: UNCERTAINTIES OF THE PARAMETER
SET IN OUR MASS FORMULAS

In this Appendix we explain the uncertainties of our pa-
rameter set in Table I of this paper. Let us suppose we have a
formula as follows:

yth
i =

M∑
k=1

akXk (xi ), (A1)

where i = 1, 2, . . . , N ; X1(x), . . . , XM (x) are functions of x,
ak (k = 1, . . . , M) are parameters of the above formula, and

M is the number of the parameters. The experimental values
of y are denoted by yi ≡ yexp

i ± σ
exp
i (i = 1, 2, . . . , N).

In the χ2 fitting process, the parameters ak are obtained by
minimizing the value of χ2 which is defined by

χ2 =
N∑

i=1

(
yth

i − yexp
i

)2

(σ th )2 + (
σ

exp
i

)2 (A2)

with theoretical uncertainty σ th
i determined iteratively by

(σ th )2 =
∑N

i=1 w2
i

[(
yth

i − yi
)2 − (

σ
exp
i

)2]
∑N

i=1 w2
i

, (A3)

where

wi = 1

σ 2
i

. (A4)

We have

χ2 =
N∑

i=1

[ ∑M
k=1 akXk (xi ) − yi

]2

(σ th )2 + (
σ

exp
i

)2 . (A5)

The above values of ak are obtained with the following re-
quirement:

∂χ2

∂ak
= 0, (A6)

and the uncertainties of ak are given by

σak =
√√√√ N∑

i=1

[
(σ th )2 + (

σ
exp
i

)2]( ∂ak

∂yth
i

)2

. (A7)

The RMSD of the formula in Eq. (A1) is

σ =
√√√√ N∑

i=1

(
yth

i − yi
)2

N
. (A8)

APPENDIX B: DERIVATION OF Ed′
c AND Es′

c

Suppose that there are k′ protons outside the “core” part,
with charge density ρ2, and the charge density of the core part
is denoted by ρ1 + ρ2, as defined in Eq. (18). The strength of
the electric field is as follows:

�E =

⎧⎪⎪⎨
⎪⎪⎩

(ρ1+ρ2 )r
3ε0

�er, 0 � r � R1(
Z−k′

4πε0r2 + ρ2r
3ε0

)
�er, R1 � r � R2

Z
4πε0r2 �er, r � R2

. (B1)

The total electric field energy of the system is given by an
integral over the full three-dimensional space,

∫ ∞

0

ε0

2
�E2d3�r = ac

A1/3

[
(Z − k′)2

− k′(Z − k′)
2

(
R1

R2

)3

+ k′(5Z − 3k′)
2

R1

R2

]
. (B2)
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This is the direct term of Coulomb energy, denoted by Ed′
c . We

denote ε = (R2 − R1)/R2, and obtain

Ed′
c = ac

A1/3

[
(Z − k′)2 − k′(Z − k′)

2
(1 − ε)3

+ k′(5Z − 3k′)
2

(1 − ε)

]
. (B3)

This gives Eq. (20). The self-energy term of the Coulomb
energy, denoted by E s′

c , is as follows:

E s′
c = − ac

A1/3

[
(Z − k′) + k′ R1

R2

]

= − ac

A1/3
(Z − εk′). (B4)

This yields Eq. (21).

APPENDIX C: DERIVATION OF Ee′
c

We begin with the Fermi gas model in which the wave
function of a proton is given by

ψ (�r) = 1

a3/2
ei�k·�r, (C1)

where a is the length of the box in which a proton is confined,
and �k = kx�ex + ky�ey + kz�ez is its wave vector. The boundary
condition yields

kx = 2π

a
nx, ky = 2π

a
ny, kz = 2π

a
nz, (C2)

where nx, ny, and nz are positive integers. The two-body den-
sity operator ρ̂(�r, �r′) is defined by

ρ̂(�r, �r′) =
∑

i j

δ(�r − �ri )δ(�r′ − �r j ). (C3)

The matrix element of the ρ̂(�r, �r′) operator is given by

ρ(�r, �r′)

=
∫

〈�∗(�r1, . . . �rZ )|ρ(�r, �r′)|�(�r1, . . . , �rZ )〉d�r1 . . . d�rZ

= ρ(�r)ρ(�r′) −
∑

i j

ψ∗
i (�r)ψ j (�r)ψ∗

j (�r′)ψi(�r′), (C4)

the first term corresponds to the direct Coulomb energy, and
the second term [denoted by ρe(�r, �r′)] corresponds to the
exchange Coulomb energy on which we focus below. We have

ρe(�r, �r′) =
∑

i j

ψ∗
i (�r)ψ j (�r)ψ∗

j (�r′)ψi(�r′)

= 2

a6

∑
i j

ei �ki·( �r′−�r)ei �kj·(�r−�r′ )

= 2

(2π )6

∫ kFi

0
ei �ki·( �r′−�r)d�ki

∫ kFj

0
ei �kj·(�r−�r′ )d�k j,

(C5)

where kF is the Fermi momentum of the nuclei. We assume
that charge density ρ = Z/a3 = k3

F/(3π2) and x = kF|�r − �r′|,

and have ∫ kF

0
ei�k·( �r′−�r)d�k = 4πk3

F
sinx − xcosx

x3
.

By using this result, Eq. (C5) is reduced to

ρe(�r, �r′) = 9
2ρiρ j f (xi ) f (x j ), (C6)

where

xi = kFi |�r − �r′|,
x j = kFj |�r − �r′|.

f (x) = sinx − xcosx

x3
.

For both the ith and jth protons are in the core part, the
exchange term of nuclear Coulomb energy is

E e′
c1

= − e2

8πε0

∫
ρe(�r, �r′)
|�r − �r′| d�rd�r′

= − e2

8πε0

∫
9

2
ρ2

1 f 2(x1)
d�rd�r′

|�r − �r′|

= −5

4

(
3

2π

) 2
3 ac

A1/3
(Z − k′)4/3, (C7)

where ρ1 = k3
F1/(3π2) is the proton number density in the

core part, kF1 is the corresponding Fermi momentum, and
x1 = kF1|�r − �r′|, with 0 � x1 � 2kF1R1, and k′ is the proton
number outside the core part. In the last step of the above
result, we have made use of the following integral:

∫ ∞

0
x1 f 2(x1)dx1 = 1

4
.

For cases with both ith and the jth protons are outside the
core part, the corresponding exchange term of the Coulomb
energy is given by

E e′
c2

= − e2

8πε0

∫
9

2
ρ2

2 f 2(x2)
d�rd�r′

|�r − �r′|

= −5

4

(
3

2π

) 2
3 ack′4/3

A1/3

R1

R2
, (C8)

where ρ2 = k3
F2/(3π2) is the proton number density outside

the core part with kF2 the corresponding Fermi momentum.
For only one of ith and jth protons is inside the core part,

the exchange term of the Coulomb energy is given by

E e′
c3

= − e2

8πε0

∫
9

2
ρ1ρ2 f (x1) f (x2)

d�rd�r′

|�r − �r′| . (C9)

We define γ = ( k′
Z−k′ )1/3( R1

R2
), and obtain

ρ2 =
(

k′

Z − k′

)(
R1

R2

)3

ρ1 = γ 3ρ1,

x2 = kF2|�r − �r′| =
(

k′

Z − k′

)1/3(R1

R2

)
kF1|�r − �r′| = γ x1.
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Substituting these two results into Eq. (C9), we have

E e′
c3

= − e2

8πε0

∫
9

2
γ 3ρ2

1 f (x1) f (γ x1)
d�rd�r′

|�r − �r′|

= − e2

8πε0

∫
9

2
γ 3ρ2

1 f (x1) f (γ x1)
d�r12d �R

r12

= − e2

8πε0

9γ 3ρ2
1

2

4π

k2
F1

∫
d �R

∫
x1 f (x1) f (γ x1)dx1

= −5

4

(
3

2π

) 2
3 ack′

A1/3

(
R1

R2

)3

(Z − k′)1/3, (C10)

where r12 = |�r − �r′|, and �R = (�r1 + �r2)/2. In the last
step, we have used an interesting fact that the integral∫ ∞

0 x1 f (x1) f (γ x1)dx1 � 1
4 is almost independent of γ , and

equals to 1/4 in the range of interest in this paper.
Summing up the results of Eqs. (C7)–(C10), we

obtain the total Coulomb energy of the exchange term as

follows:

E e′
c = − e2

8πε0

∫
ρe(�r, �r′)
|�r − �r′| d�rd�r′

= E e
c1

+ E e
c2

+ E e
c3

= −5

4

(
3

2π

) 2
3 ac

A1/3

[
(Z − k′)4/3 + k′4/3 R1

R2

+ k′
(

R1

R2

)3

(Z − k′)1/3

]
. (C11)

The exchange term of the Coulomb energy E e′
c in terms of

ε = (R2 − R1)/R2 finally yields

E e′
c = −5

4

(
3

2π

)2/3 ac

A1/3
[(Z − k′)4/3 + (k′)4/3(1 − ε)

+ k′(1 − ε)3(Z − k′)1/3]. (C12)

This gives Eq. (22).
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