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Nuclear states projected from a pair condensate
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Atomic nuclei exhibit deformation, pairing correlations, and rotational symmetries. To meet these competing
demands in a computationally tractable formalism, we revisit the use of general pair condensates with good
particle number as a trial wave function for even-even nuclei. After minimizing the energy of the condensate,
allowing for general triaxial deformations, we project out states with good angular momentum with a fast
projection technique. To show applicability, we present example calculations from pair condensates in several
model spaces and compare against angular-momentum projected Hartree-Fock and full configuration-interaction
shell-model calculations. This approach successfully generates spherical, vibrational, and rotational spectra,
demonstrating potential for modeling medium- to heavy-mass nuclei.
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I. INTRODUCTION

Medium- and heavy-mass nuclides exhibit a rich portfolio
of behavior, not only the classic rotational, vibrational, and su-
perfluid (spherical) spectra [1,2], but also triaxial deformation
and wobbling [3] and chiral doublet bands [4]. An accurate de-
scription of the many-body wave functions of heavy nuclides
is important to understanding alpha cluster preformation in α

decay [5] as well as nucleosynthesis in astrophysical environ-
ments [6,7].

There are numerous microscopic approaches to modeling
heavy nuclei, including the relativistic mean-field method [8],
the Hartree-Fock Bogoliubov method [2,9–16], the random
phase and related approximations [2], and algebraic mod-
els (e.g., the interacting boson model [17]), as well as the
projected shell model [18] and powerful Monte Carlo meth-
ods [19].

Here we focus on the configuration-interacting shell
model, which has been successful in reproducing low-lying
states and transition rates of light and medium-heavy nu-
clei [20,21]. Within a given valence space and with a
good effective interactions, the configuration-interaction shell
model reproduces large amounts of data. The downside of
configuration-interaction methods, however, is they are at the
mercy of the valence space. While any calculation in the
1s0d shell is nowadays nearly trivial [22] and much of the
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1p0 f shell is accessible [23,24], as one reaches up to the
2s1d0g7/20h11/2 space (nuclides with N, Z ∈ [50, 82]), calcu-
lations quickly become intractable due to the large dimension
of the many-body basis.

Among many different configuration-interaction truncation
schemes, one is to construct the basis from products of a
restricted set of fermion pairs coupled to angular momentum
0, 2, 4, 6, . . . (S, D, G, I pairs). In low-lying states, such pairs
are favored energetically. An example of this is the general
seniority model, which focuses on S-pair condensates and
their breaking [25–28] and is especially useful in semimagic
nuclei. Going further, the nucleon-pair approximation (NPA)
truncates the configuration space with angular-momentum
coupled fermion pairs and has proved to be effective in
medium-heavy and heavy nuclei with schematic pairing-
plus-quadrupole-quadrupole interactions [29,30]. In the NPA
matrix elements and overlaps between many-pair states with
good total angular momentum (i.e., J scheme) are computed
using commutation relations, which become numerically bur-
densome as the number of pairs increase, in practice limiting
calculations to a maximum of about eight valence pairs. To
address this burden, M-scheme NPA codes have been devel-
oped recently, pushing the upper limit of valence particles in
the NPA to Zvalence, Nvalence � 12 [31,32].

An alternate is to replace fermion pairs by bosons. The
interacting boson model (IBM) [17] typically starts from S
and D bosons and constructs Lie group reduction chains,
classifying nuclei into different group limits. There have been
efforts to map shell-model calculations to boson models or
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pair models [33–35]. While bosons models have the advantage
of simpler commutation relations than fermion pairs, rigorous
mapping of fermion pairs into bosons is far from trivial.

Related to the challenge of mapping fermion pairs to
bosons is the problem of choosing the structure of the fermion
pairs. Pairs determined from the variational principle, either
from varying pairs by direct conjugate gradient descent, or
extracted from a deformed Hartree-Fock (i.e., single-particle
variation) state, can produce good quality spectra and tran-
sitions of transitional and deformed nuclei [36–38]. In other
words, it can be useful to combine a variational approach (for
optimization) and pair truncations (for small dimension).

Variational methods start from a given trial wave function
(or Ansatz) and minimizes the expectation value of the given
Hamiltonian. Hartree-Fock calculations use a Slater determi-
nant, an antisymmetrized product of single-particle states, as
the ansatz, and varies the single-particle states to minimize
the energy. The Hartree-Fock-Bogoliubov scheme utilizes a
quasiparticle (Bardeen-Cooper-Schrieffer or BCS) vacuum
constructed from a canonical basis as the trial wave function,
and the canonical basis as well as BCS occupancies are var-
ied [2]. Slater determinants used in Hartree-Fock calculations
have the advantage of fast evaluation of Hamiltonian matrix
elements, while the HFB scheme benefits from inherent sim-
plicity of the quasiparticle vacuum.

Exploration of Ansätze is important and can lead to new
approaches [39]. In this paper we focus on a pair condensate
Ansatz, well known in quantum chemistry as “antisym-
metrized geminal power” wave functions [40],

(Â†)n|0〉, Â† = 1

2

∑
αβ

Aαβ ĉ†
α ĉ†

β, (1)

where |0〉 is the bare fermion vacuum, and ĉ†
α, ĉ†

β are fermion
creation operators with α, β labeling single-particle states
[i.e., α stands for (nαlα jαmα )], and, finally, Aαβ are the “pair
structure coefficients.” This is also called a “collective” pair,
although sometimes that term is restricted to pairs with good
angular momentum; we make no such restriction here. When
we find a variational minimum, we restrict ourselves to real
pair structure coefficients with skew symmetry Aαβ = −Aβα;
however, later, under rotation we will have complex skew-
symmetric structure coefficients. With a proper choice of
Aαβ , such a condensate wave can be a Slater determinant
as in Hartree-Fock theory [2,36], or a seniority-0 state in
Talmi’s generalized seniority model [25], or particle-number-

projected component of a BCS or HFB vacuum with particle
number 2n [41]. Therefore the pair condensate is a more
general Ansatz than any one of those limits.

The pair condensate Ansatz has not been widely used in
nuclear structure theory, however, because the evaluation of
Hamiltonian matrix elements to be varied can be compli-
cated [38,41,42], and the angular-momentum projection from
a pair condensate has not been previously implemented for
nuclear structure. In recent work [32], we rederived formulas
(see Refs. [34,35] and references therein) for general M-
scheme nucleon-pair bases,

Â†
1 · · · Â†

n|0〉, (2)

with the pair condensate (1) as a special case. In this work we
present the explicit formulas for pair condensates and imple-
ment angular-momentum projection after variation. Variation
after angular-momentum projection (VAP) leads to lower en-
ergies but is more complicated and time-consuming; hence we
restrict ourselves to projection after variation (PAV). Here-
inafter, we label this approach “projection after variation of
a pair condensate” (PVPC). It is straightforward to introduce
more pair condensates into the configuration space, such as
in the generator coordinate method [2], but for now we only
consider one pair condensate.

In Sec. II, we outline the formalism for variation of a pair
condensate, with details in the Appendix. We show typical
timing to find the minimum, as variation is the most time
consuming part of the calculation, as exemplified by the de-
scent of 132Dy in the 2s1d0g7/20h11/2 shell. In Sec. II A, we
briefly introduce the formalism for angular-momentum pro-
jection, following a recently developed recipe: linear algebraic
projection (LAP) [43,44]. In Sec. II B, we decompose a pair
condensate into fractions with good angular momentum and
show typical probability distributions for rotational nuclei and
spherical nuclei. In Sec. II C, we outline the formalism for
electromagnetic transitions between projected wave functions.
In Sec. III, we present benchmark calculations of nuclides
in the 1s0d , 1p0 f , and 2s1d0g7/20h11/2 valence spaces with
discussions and analysis. Finally, we summarize and discuss
future directions in Sec. IV.

II. FORMALISM

For the nuclear many-body Hamiltonian, we use shell-
model effective interactions in occupation space, with one-
and two-body parts, in proton-neutron format,

Ĥ = Ĥ0 + Ĥpp + Ĥnn + Ĥpn

=
∑
a∈π

εan̂a +
∑
a∈ν

εan̂a +
∑

abcd∈π

√
(1 + δab)(1 + δcd )

4

∑
I

Vpp(abcd; I )
∑

M

Â†
IM (ab)ÂIM (cd )

+
∑

abcd∈ν

√
(1 + δab)(1 + δcd )

4

∑
I

Vnn(abcd; I )
∑

M

Â†
IM (ab)ÂIM (cd ) +

∑
ac∈π,bd∈ν,I

Vpn(abcd; I )
∑

M

Â†
IM (ab)ÂIM (cd ), (3)

where Â†
IM (ab) and ÂIM (cd ) are so-called “noncollective” pair creation and annihilation operators [in contrast with the collective

pair creation operator of Eq. (1)]: Â†
IM (ab) = [ĉ†

a ⊗ ĉ†
b]IM, where ⊗ signals coupling via Clebsch-Gordan coefficients, and

ÂIM (ab) = [Â†
IM (ab)]†.

034317-2



NUCLEAR STATES PROJECTED FROM A PAIR … PHYSICAL REVIEW C 105, 034317 (2022)

We work in several model spaces: in the 1s1/2-0d3/2-
0d5/2 or 1s0d shell, using the universal 1s0d-shell interaction
version B, or USDB [22]; in the 1p1/2-1p3/2-0 f5/2-0 f7/2

or 1p0 f shell, using a monopole-modified G-matrix inter-
action version 1A, or GX1A [23,24]; and, finally, for the
space between magic numbers 50 and 82, comprising the or-
bits 2s1/2-1d3/2-1d5/2-0g7/2-0h11/2, or 2s1d0g7/20h11/2, with a
monopole-modified G-matrix interaction [45].

To carry out our calculations, we need a variety of matrix
elements. To begin with, for variation (before projection) we
need for a given state |�〉: the normalization 〈�|�〉, the ex-
pectation value of a Hamiltonian or the energy of that state
E (�) = 〈�|Ĥ |�〉/〈�|�〉, and the variation of the energy
with respect to some parameter ∂E (�)/∂λ. To carry out pro-
jection, we need the overlap or norm kernel of the state � with
a rotated state �′, 〈�|�′〉, the Hamiltonian matrix element
or Hamiltonian kernel between these two states, 〈�|Ĥ |�′〉,
and, finally, in order to calculate electromagnetic and other
transitions represented by a one-body operators Q̂, we need
〈�|Q̂|�′〉.

All of these are easily found for, say, Hartree-Fock and
Hartree-Fock-Bogoliubov calculations. For the pair conden-
sate calculations the formalism is more complicated and
less intuitive. We present the detailed formalism in the Ap-
pendix but sketch out the application here.

Restricting ourselves to even-even nuclei, our trial Ansatz
is a direct product of proton and neutron pair condensates

|�〉 = (Â†
π )Nπ /2(Â†

ν )Nν/2|0〉, (4)

where Nπ , Nν are valence numbers for protons and neutrons.
We vary |�〉, or more exactly, vary the proton and neutron pair
structure coefficients, to minimize the energy

〈�|Ĥ |�〉
〈�|�〉 . (5)

To find minima, we apply the GNU scientific library
(GSL) [46] conjugate gradient tools. We do variation before
projection; that is, we first find the minimum energy of the
unprojected pair condensate and afterwards project out states
of good angular momentum.

Figure 1(a) shows the central processing unit (CPU) time
for one iteration for N = Z nuclei in different major shells,
with increasing valence particles. Our timing data were taken
on a 44-core workstation using OpenMP parallelization. In the
1s0d , 1p0 f , 2s1d0g7/20h11/2 major shells, the numbers of free
parameters in variation of one pair condensate basis are 132,
380, and 992, respectively. The computation complexity of
variation has polynomial dependence on the valence particle
numbers. In Fig. 1(b), an example is given for variation of
132Dy in the 2s1d0g7/20h11/2 shell, with interactions based
on the CD-Bonn potential with the G-matrix approach and
monopole optimizations [45]. With 992 free parameters, the
iteration tends to converge after 200 steps. We note that the
descent is steep for the first 50 steps, and less so afterwards.
The descent terminates when the modulus of the gradient
vector is smaller than a given criterion. If we set a stricter
criterion on the gradient, the descent will continue beyond
200 steps, but with only a slight additional lowering of the

FIG. 1. (a) Logarithm CPU time (s) of one iteration in
the variation for N = Z nuclei, using conjugate gradient
method [47] wrapped in the GNU Scientific Library function
gsl_multimin_fdf_minimizer [46]. 1s0d , 1p0 f , 2s1d0g7/20h11/2 are
three valence shells. All these data are collected on a 44-core small
workstation, in parallel with simple OpenMP. (b) The descent of
the average energy 〈�|Ĥ |�〉/〈�|�〉 for 132Dy as a test case in the
2s1d0g7/20h11/2 shell. There are 32(32 − 1) = 992 free parameters
for the variation of the proton and neutron pairs.

energy. Starting from several independent random pairs, we
typically find two or three local minima.

A. Angular-momentum projection

In this work we allow for triaxial deformations. While
there is extensive literature on the standard quadrature ap-
proach for angular-momentum projection [2,48–50], we adopt
the recently developed “linear algebraic projection”(LAP)
technique [43,44]. Although both approaches are based on
standard quantum theory of angular momentum [51], i.e.,
rotational properties of irreducible tensors, for our application
we found LAP to be ten times faster than quadrature.

For the standard development of angular-momentum pro-
jection, see Refs. [2,51]. The basic idea is that a pair
condensate state, or any state |�〉 for that matter, can be de-
composed with normalized spherical tensor components, with
total angular momentum I and angular-momentum projection
on the third axis K ,

|�〉 =
∑
IK

cIK |IK〉. (6)

In any finite space the sums are not infinite but restricted to
a maximum I , K , and in practice the coefficients cIK restricts
the sum even further [43]. The projection operator P̂J

MK picks
out the (J, K ) spherical tensor component and rotates it to a
(J, M ) spherical tensor,

P̂J
MK |�〉 = cJK |J, K → M〉. (7)

Then one diagonalizes the Hamiltonian in the truncated space
of {

P̂J
M,−J |�〉, P̂J

M,−J+1|�〉, . . . , P̂J
M,J |�〉}. (8)
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Because the Hamiltonian is a scalar operator, thus commut-
ing with the projection operator, and because (P̂J

MK )† = P̂J
KM ,

P̂J
K ′MP̂J

MK = P̂J
K ′K , we only need

〈�|Ĥ P̂J
MK |�〉 ≡ HJ

MK , (9)

〈�|P̂J
MK |�〉 ≡ N J

MK . (10)

We then solve a generalized eigenvalues problem, i.e., the
Hill-Wheeler equation,∑

K

HJ
K ′K gr

JK = εr,J

∑
K

N J
K ′K gr

JK . (11)

where r denotes different states with angular momentum J ,
at most 2J + 1 states, and gr

JK values determine the projected
wave function.

To project out states, either by quadrature or by LAP, one
needs to rotate states about the Euler angles α, β, γ using the
rotation operator

R̂(α, β, γ ) = exp
( iγ

h̄
Ĵz

)
exp

(
iβ

h̄
Ĵy

)
exp

( iα

h̄
Ĵz

)
. (12)

The matrix elements of the rotation operator between spheri-
cal tensors; that is, states with good total angular momentum
j and z component m, is the Wigner D matrix [51],
〈 j′m′|R̂(α, β, γ )| jm〉 = δ j′ jD

j
m′m(αβγ ).

For a given set of Euler angles � = (α, β, γ ), the matrix
element of the rotational operator R̂(�) is

〈�|R̂(�)|�〉 =
∑
IMK

c∗
IK cIMDI

KM (�)〈IK|IM → K〉

=
∑
IMK

DI
KM (�)N I

KM . (13)

For a series of Euler angles �1,�2, . . . , we calculate the norm
kernels 〈�|R̂(�i )|�〉, as well as the D functions DI

KM (�i ),
and then find N I

KM as solutions to a set of linear equations.
Similarly the Hamiltonian kernel HI

KM can be also found.
The traditional projection procedure relies on the orthogo-

nality of the Wigner D functions and thus upon quadrature;
therefore, the more abscissas (Euler angles) one takes, the
more accurate are the projected energies. The basis for LAP,
Eq. (13), is exact, but in practice one truncates the sum over I
with I � Jmax. To find Jmax, one computes fJ , the fraction of J
components defined in Eq. (21) with fJ = ∑

M |cJM |2 and sets
Jmax such that fJ � ftol for all J � Jmax. We follow Ref. [44]
and take ftol ≈ 10−4 typically. The error in projection is due
to this truncation. As a result of finite Jmax, in LAP the number
of Euler angles is smaller. We implemented both methods, and
found that LAP is more than 10 times faster than quadrature,
with same accuracy of the energies of low-lying states.

To carry out this projection we need to be able to rotate
pair condensates. This is almost as straightforward as for
Slater determinants in angular-momentum projected Hartree-
Fock [43]: one simply rotates the single-particle states,
defining the matrix element of the rotation operator on single-
particle bases α, β as

Dαβ (�) = 〈nαlα jαmα|R̂(�)|nβ lβ jβmβ〉
= δnαnβ

δlα lβ δ jα jβ D jα
mαmβ

(�). (14)

Under rotation, a nucleon-pair (1) then becomes

R̂(�)Â† = 1

2

∑
αβγ δ

AαβDγα (�)Dδβ (�)ĉ†
γ ĉ†

δ

= 1

2

∑
γ δ

A′
γ δ ĉ†

γ ĉ†
δ ≡ Â′†, (15)

with new pair coefficients

A′
γ δ =

∑
αβ

AαβDγα (�)Dδβ (�) = (D(�)AD(�)�)γ δ. (16)

Therefore, the matrix element of rotational operator R̂(�) on
a pair condensate is

〈Ân|R̂(�)|(Â†)n〉 = 〈Ân|(Â′†)n|0〉, A′ = D(�)AD(�)�,

(17)
and similarly

〈Ân|Ĥ R̂(�)|(Â†)n〉 = 〈Ân|Ĥ (Â′†)n|0〉, A′ = D(�)AD(�)�.

(18)
Parity projection is similar and straightforward, with a

given wave function |〉, the positive- and negative-parity
components are (P̂ is the space inversion operator)

1
2 (1 ± P̂ )|〉. (19)

To invert a many-body wave function, is equivalent to invert-
ing all its single-particle orbits. When a pair is operated on
by the space inversion operator, an additional phase factor is
generated for the pair structure coefficients,

P̂Â† = 1

2

∑
αβ

Aαβ (P̂ ĉ†
α )(P̂ ĉ†

β ) = 1

2

∑
αβ

Aαβ (−1)lα+lβ ĉ†
α ĉ†

β.

(20)
In this work, we do both angular-momentum and parity pro-
jections for the results in the 2s1d0g7/20h11/2 shell.

B. Tensor decomposition of a pair condensate

As expressed by Eq. (6), a pair condensate can be de-
composed into components with different angular-momentum
quantum numbers (J, M ). In other words, an optimized pair
condensate is considered as a mixture of low-lying nuclear
states. We define the fraction of probability fJ for total angular
momentum J in a pair condensate, as in Ref. [52],

fJ =
∑

M

|cJM |2, (21)

where cJM is the amplitude of (J, M ) tensor component in the
pair condensate, as in Eq. (6). To illustrate the decompositions
for rotational and spherical nuclei, we show 52Fe and 48Ca, re-
spectively, in Fig. 2. For 52Fe, in Fig. 2(a), the decomposition
is distributed across J = 0, 2, 4, 6, as expected for rotational
nuclei. Conversely, for 48Ca in Fig. 2(b), the wave function is
almost entirely contained in the J = 0 component; while there
are nonzero fJ for J > 0 values, the magnitudes are too small
to be seen in Fig. 2(b). Therefore, the optimized condensate
for semimagic nuclei is mostly the spherical J = 0 ground
state, while tiny nonspherical components of the condensate
are projected out to be the nonzero spectrum, which turn out
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FIG. 2. (a) Fractions of J-components in the optimized pair con-
densate for 52Fe, as an example of rotational nuclei. (b) Fractions for
48Ca as an example of spherical nuclei. (c) Fractions for 48Cr as an
example of cranking. All these cases are computed with the GX1A
interactions in the 1p0 f shell.

to be surprisingly accurate in comparison with shell-model
results, as will be shown in Fig. 5.

However, if cranking, or variation with constraints, is in-
volved, one can increase the fraction of components with
higher J . As in the usual procedure [2], one optimizes the trial
wave function using the effective Hamiltonian

Ĥ ′ = Ĥ − ω〈Jx〉. (22)

Figure 2(c) shows the decomposition of 48Ca at ω = 0 and
ω = 0.5 MeV; the latter increases the components with J > 0.
Nonetheless, for simplicity we restrict ourselves to optimiza-
tion without cranking for the rest of this paper.

C. Electromagnetic transitions

In this section we consider electromagnetic transitions be-
tween projected wave functions. As this is addressed in detail
elsewhere, e.g., Ref. [50], we briefly review the formalism.
Consider a state |�〉 such as the optimized pair condensate;
after diagonalization in the subspace of kets for angular mo-
mentum J ,

P̂J
MK |�〉, K = −J,−J + 1, . . . , J, (23)

the eigenstate is

ψ r
JM =

∑
K

gr
JK P̂J

MK |�〉 =
∑

K

gr
JK

∣∣P̂J
MK�

〉
, (24)

where gr
JK is the solution to the Hill-Wheeler equation (11),

and |P̂J
MK�〉 = P̂J

MK |�〉. The one-body electromagnetic oper-
ator is denoted as (with proton and neutron parts),

Q̂s
σ = Q̂πs

σ + Q̂νs
σ , (25)

where s is the angular-momentum rank of the operator and
σ is the z component. The matrix element of the transition
operator on projected kets is

〈�|(P̂J ′
M ′K ′

)†
Qs

σ P̂J
MK |�〉

= (JM, sσ |J ′M ′)
〈(

P̂J ′
∗K ′�

)∣∣∣∣Qs
∣∣∣∣P̂J

∗K�
〉
, (26)

where 〈(P̂J ′
∗K ′�)||Qs||P̂J

∗K�〉 is the reduced matrix element
and (JM, sσ |J ′M ′) is the Clebsch-Gordan coefficient [51]. As
(P̂J ′

M ′K ′ )† = P̂J ′
K ′M ′ , and the projection operator P̂J ′

K ′M ′ just picks
out the (J ′, M ′) component and rotates it to (J ′, K ′),

〈�|(P̂J ′
M ′K ′

)†
Qs

σ P̂J
MK |�〉

= 〈�|(P̂J ′
M ′K ′

)† ∑
J ′′M ′′

(
sσ, JM|J ′′M ′′)(QsP̂J

∗K

∣∣�)J ′′

M ′′
〉
,

= (sσ, JM|J ′M ′)〈�|(QsP̂J
∗K

)J ′

K ′ |�〉. (27)

Therefore, the reduced matrix element can be computed by〈(
P̂J ′

∗K ′�
)∣∣∣∣Qs

∣∣∣∣P̂J
∗K�

〉
= (−1)s+J−J ′ 〈�|(QsP̂J

∗K

)J ′

K ′ |�〉

=
∑

σ

(J, K ′ − σ ; s, σ |J ′K ′)〈�|Qs
σ P̂J

K ′−σ,K |�〉. (28)

Here the needed projections are also carried out using the
linear algebra method.

Between the initial and final eigenfunctions ψ r
JM =∑

K gr
JK P̂J

MK |�〉, the reduced matrix element of Q̂s is then
finally

〈
ψ r′

J ′
∣∣∣∣Q̂s

∣∣∣∣ψ r
J

〉 =
∑
KK ′

gr
JK gr′

J ′K ′
〈 (

P̂J ′
∗K ′�

)∣∣∣∣Q̂s
∣∣∣∣(P̂J

∗K�
) 〉

=
∑
KK ′

gr
JK gr′

J ′K ′
∑
σM

(JM, sσ |J ′K ′)〈�|Qs
σ P̂J

MK |�〉.

(29)

The reduced probability, or B value, is

B(F, Jr → J ′
r′ ) = 2J ′ + 1

2J + 1

∣∣〈ψ r′
J ′
∣∣∣∣Q̂s

∣∣∣∣ψ r
J

〉∣∣2

= 2J ′ + 1

2J + 1

∣∣∣∣∣
∑
KK ′σ

gr
JK gr′

J ′K ′ (JK ′ − σ, sσ |J ′K ′)

× 〈
�

∣∣Qs
σ P̂J

K ′−σ,K

∣∣�〉∣∣∣∣∣
2

. (30)

III. BENCHMARK RESULTS AND ANALYSIS

In Sec. III A, we present ground-state energies of all
1s0d-shell even-even nuclei, with comparisons against full
configuration-interaction shell-model and projected Hartree-
Fock calculations, and show ground-band spectra as well
as electric-quadrupole transitions strengths, or B(E2) values,
of silicon isotopes as an example. In Sec. III B, we show
1p0 f -shell results, including shape evolution shown in low-
est spectrum of 46,48Ca, 48,50Ti, 50,52Cr and the backbending
phenomenon in 52Fe. Finally, in Sec. III C, we illustrate the
applicability to medium-heavy nuclides with 104Sn, 106Te,
108,124,126Xe, and 126,128Ba as examples in the 2s1d0g7/20h11/2

shell.
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FIG. 3. Ground-state energy differences in MeV between approximate calculations and “exact diagonalization” from full configuration-
interaction shell model, �E approx

g.s = E approx
g.s. − ESM

g.s. , for all even-even nuclei in 1s0d shell. Panel (a) is for angular-momentum-projected Hartree
Fock results, and panel (b) is for the PVPC in this work. See text for more details.

A. The 1s0d shell

In variational methods, the ground-state energy is often
used as a marker of the quality of the approximation. Be-
cause the 1s0d shell computations are easy and fast for
shell-model codes, we compute ground-state energies of all
even-even nuclei in the 1s0d shell, comparing PVPC against
full configuration-interaction shell-model diagonalization, us-
ing the BIGSTICK code [53] and angular-momentum projected
Hartree-Fock (PHF) calculations, e.g., Ref. [54], using the ex-
act same shell-model space and interaction input. In particular,
we characterize the discrepancy in the ground-state energy
relative to the full configuration shell model (SM) results,
which for us are “exact,” by

�E approx
g.s. = E approx

g.s. − ESM
g.s. . (31)

Here “approx” can be either PHF or PVPC. In Fig. 3, �EPHF
g.s.

and �EPVPC
g.s. are shown as so-called “heat maps” indexed by

colors. For most cases, the PHF ground-state energy is about
2 MeV higher than the exact ground-state energy. For three
nuclei, �EPHF

g.s. is more than 5 MeV. For example, 32S is a ro-
tational nucleus, while the Hartree-Fock minimum generates
a spherical shape for it, therefore only a 0+ is projected out,
as is also pointed out in Ref. [55]. PVPC is rather accurate for
ground states of semimagic nuclei, with �EPVPC

g.s. typically less
than 0.5 MeV, which is unsurprising, as generalized seniority-
0 configurations are contained within the pair condensate
Ansatz. For rotational nuclei, �EPVPC

g.s. is typically 1–2 MeV,
i.e., PVPC has ground states of rotational nuclei slightly lower
than that of PHF. These are benchmark results for one refer-
ence state, i.e., one pair condensate for PVPC or one Slater
determinant for PHF. We expect inclusion of more reference

states as done in generator-coordinate calculations [49] will
reduce discrepancies.

Aside from the ground-state energies, it is interesting to
see how well the excitation energies are approximated by such
“projection after variation” methods, as was done recently for
PHF [54]. As a test we investigate yrast bands of even-even
isotopes of silicon, using results from PVPC, PHF, and full
configuration-interaction shell model. Figure 4 demonstrates

FIG. 4. Excitation energy of yrast states of even-even nuclei
22−34Si. “PHF” stands for angular-momentum-projected Hartree-
Fock, “PVPC” stands for angular-momentum projection after
variation of a pair condensate (this work), and “SM” stands for the
full configuration-interaction shell model. All three methods use the
same occupation space 1s0d and the same interaction, USDB [22].
Experimental data are from Refs. [56–61].
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TABLE I. B(E2) values for silicon isotopes in units of e2 fm4.
SM stands for full configuration shell model with exact diagonal-
ization, while PVPC stands for projection and variation of one pair
condensate. Both methods use the USDB interaction in the 1s0d
shell. Effective charges are set as ep = 1.5e, en = 0.5e.

Nuclide Method 2+
1 → 0+

1 4+
1 → 2+

1 6+
1 → 4+

1

22Si SM 33.32 16.96 13.07
PVPC 32.28 14.10 14.81

24Si SM 44.19 23.89 17.58
PVPC 37.13 25.60 41.66

26Si SM 44.64 11.29 41.94
PVPC 37.34 60.31 70.56

28Si SM 78.48 110.4 94.71
PVPC 83.47 116.3 119.2

30Si SM 46.52 15.94 32.70
PVPC 48.33 33.68 78.15

32Si SM 43.52 67.11 52.70
PVPC 37.54 64.06 66.85

34Si SM 34.91 16.80 6.14
PVPC 30.78 14.93 1.50

that both PHF and PVPC generate good yrast-band excitation
spectra for open-shell nuclei. For semimagic nuclei 22,34Si,
Hartree-Fock minima are spherical and thus PHF trivially
generates only the ground state 0+

1 . The PVPC generates yrast
bands of 22,34Si close to that of the shell model. For 34Si
both the PVPC and the shell model predict the 2+

1 excitation
energy higher than the experimental value [56]. We note that
approximate excitation energies do not follow a variational
principle and can be lower than that of the full configuration
shell model. Although it is not shown here, the yrare and
higher bands of PVPC can be worse, and likely need more
reference states to improve, such as from coexisting local
minima [54].

As a test of the approximate wave functions, we present
in Table I the B(E2, I + 2 → I ) values for silicon isotopes
corresponding to Fig. 4. While projected states can reproduce
the transition strengths qualitatively, there can still be discrep-
ancies, for example, B(E2, 4+

1 → 2+
1 ) of 26Si from the PVPC

is about 1/6 of that from the shell model; again, this may be
improved by additional reference condensates.

B. The 1p0 f shell

We use the GX1A interaction in the 1p0 f shell [23,24].
We find the PVPC ground-state energy is typically 1–2 MeV
above the exact shell-model value. Here we give results of Ca,
Ti, Cr isotones with N = 26, 28, to show that PVPC generates
spectrum of pairing-like and vibrational-like spectrum self-
consistently, as the number of valence particles increase. Then
we demonstrate backbending in the rotational yrast spectrum
of 52Fe, with the pair condensate as the intrinsic wave func-
tion.

1. 46,48Ca, 48,50Ti, 50,52Cr

Figure 5 presents the low-lying spectra of N = 26, 28
isotones 46,48Ca, 48,50Ti, 50,52Cr, using results from PVPC,

FIG. 5. Low-lying spectrum of N = 26, 28 isotones: 46,48Ca,
48,50Ti, 50,52Cr. All theoretical results are produced with the interac-
tion GX1A [23,24] in the 1p0 f shell. Experimental results are from
Refs. [62–65].

PHF, and the full configuration shell model, as well as com-
parison with experiment which illustrates the quality of the
shell-model interaction. For the spherical nucleus 48Ca, the
fraction fJ for J = 0 is more than 99.9%, as shown in Fig. 2;
nonetheless, the J > 0 states projected out with fJ < 0.1%
turn out to be unexpectedly accurate. We see seniority-like
spectra with a substantial pairing gap between 0+

1 and 2+
1 ,

and the 3+, 4+, 5+ levels clustered close to 2+
1 . Although

it is not shown in Fig. 5, the 0+
1 of 46,48Ca is ≈0.3 MeV

above the exact shell-model ground state, while other nuclei
in the picture have ground-state energies 1–2 MeV above
shell-model results. The excitation spectra of the “ground
band” from all three theoretical methods agree qualitatively,
except that PHF does not generate J > 0 states for 48Ca, with
a spherical Hartree-Fock energy about 0.4 MeV above the
exact shell-model value.

Table II provides the corresponding B(E2) values for the
nuclides in Fig. 5. The agreement between PVPC and the
full configuration shell model supports the quality of PVPC
wave functions, although we note that B(E2; 6+

1 → 4+
1 ) of

48Ca by PVPC is far from the shell-model result. We note
that the shell-model spectra of 48Ca has four 6+ states with an
excitation energy between 7.7 and 9 MeV, while PVPC yields
only one 6+ state in the same energy range. Therefore, the 6+

1
by PVPC is likely a mixture of those shell model 6+ states, a
possible origin for the underestimation of B(E2; 6+

1 → 4+
1 ).

2. Backbending in 52Fe

While many methods using angular-momentum projection
produce good rotational bands, e.g., projected Hartree-
Fock [43] and the projected shell model [48], a more stringent
test is backbending. For a simple rotor picture, the excitation
energy of a yrast state Ex(J+

1 ) is proportional to J (J + 1), but
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TABLE II. B(E2) value of 48Ca, 50Ti, 52Cr, 52Fe in e2 fm4. The PVPC and the shell model both use the GX1A interactions [23,24], with
effective charges ep = 1.5e, en = 0.5e, and oscillator length A1/6 fm.

Nucleus Method 2+
1 → 0+

1 4+
1 → 2+

1 6+
1 → 4+

1 Nucleus Method 2+
1 → 0+

1 4+
1 → 2+

1 6+
1 → 4+

1

46Ca SM 7.72 6.02 3.08 48Ca SM 10.12 1.99 4.03
PVPC 7.31 4.10 2.16 PVPC 9.10 1.76 0.36

48Ti SM 87.89 126.06 51.28 50Ti SM 85.20 83.10 39.84
PVPC 84.67 116.36 113.57 PVPC 65.80 58.77 19.87

50Cr SM 184.85 261.43 221.87 52Cr SM 142.31 91.94 45.91
PVPC 190.33 257.78 266.68 PVPC 102.8 89.00 56.39

both experiment and theory see abrupt changes in the moment
of inertia and thus the yrast spectrum deviates from the simple
J (J + 1) rule. One explanation of this is pair breaking due to
the increasing Coriolis force [2]. In Fig. 6 we show yrast en-
ergies of 52Fe, from PVPC with a pair condensate playing the
role of the intrinsic state, and that from exact diagonalization
with the shell model. The PVPC energies are about 1 MeV
or more above the full configuration shell-model energies, but
both PVPC and the shell model exhibits two backbends. The
PVPC curve shows more abrupt changes than the shell model.
The change for J > 12 is likely because six valence protons
and six valence neutrons restricted to the 0 f7/2 orbit have a
maximum angular momentum of 12.

In Fig. 6, we also show yrast states projected from an un-
cranked Hartree-Fock minimum, denoted as “PHF,” as well as
those projected from cranked Hartree-Fock minima, denoted
as “PCHF.” Without cranking, the Hartree-Fock minimum
has components with J � 12; with cranking, i.e., finding the
state that minimizes the expectation value of Ĥ ′ = Ĥ − ω〈Ĵx〉,
components with J > 12 are populated. At ω = 0.4 MeV,
the cranked Hartree Fock results produces a J = 12 state
that is still too high energetically; but at ω = 0.45 MeV a

FIG. 6. Backbending of yrast band of 52Fe. “PVPC” is projected
states from one pair condensate, “SM” is the full configuration shell
model, “PHF” is the projected Hartree-Fock method, and “CPHF”
is the projection from a cranked Hartree-Fock state. The GX1A
interaction is used for the 1p0 f shell.

J = 12 much lower in energy is produced. The PVPC yrast
band projected from a single pair condensate follows the
cranked Hartree-Fock results and significantly improved upon
the band projected from the uncranked HF state. Because the
PVPC states are projected out of a single pair condensate,
our results appear to challenge the idea that backbending
arises from the Coriolis-induced breaking of pairs [2,66].
We note that triaxial projection naturally induces mixing of
components with different K , as also indicated in schematic
studies of triaxial quantum rotors [67]. While our uncranked
HF calculation has a natural axial symmetry arising without
constraint, the cranked HF minima have a small but nonethe-
less non-negligible triaxiality.

C. The 2s1d0g7/20h11/2 shell

Figure 7 shows the ground-state band of three N = 54
isotones. For 104Sn, 106Te we take the experimental data from
Refs. [68,69], while the low-lying spectrum of 108Xe has not
been not measured. PVPC generates a ground band rather
close to that of the shell model. The discrepancy �EPVPC

g.s. ≡
EPVPC

g.s. − ESM
g.s. is about 0.2, 0.8, 0.9 MeV, respectively for

104Sn, 106Te, 108Xe. As in the 1s0d or 1p0 f shell, PVPC
does better for semimagic nuclei than PHF, as one might
anticipate, but PHF approaches PVPC for the rotational nu-
cleus 108Xe, although the PVPC ground-state energy is about
0.5 MeV lower than that of PHF. In Table III, the B(E2, I+

1 →
(I − 2)+1 ) values are presented, in correspondence to Fig. 7.
The B(E2) values of PVPC agree qualitatively with those of

FIG. 7. Ground-band excitation energies of N = 54 isotones
104Sn, 106Te, 108Xe. Both the shell model and the PVPC use a
monopole-adjusted G-matrix interaction [45], and the experimental
data are from Refs. [68,69].
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TABLE III. B(E2) value of N = 54 isotones 104Sn, 106Te, 108Xe in e2 fm4. Both methods use a monopole-modified G-matrix interaction [45]
in the 2s1d0g7/20h11/2 shell. Effective charges are set as ep = 1.5e, en = 0.5e.

Nucleus Method 2+
1 → 0+

1 4+
1 → 2+

1 6+
1 → 4+

1 8+
1 → 6+

1 10+
1 → 8+

1

104Sn SM 42.9 40.0 14.2 18.1 30.8
PVPC 36.1 24.5 5.4 10.8 19.6

106Te SM 444.8 588.0 573.0 478.6 504.8
PVPC 430.3 597.8 619.7 565.8 485.0

108Xe SM 943.3 1277 1373 1449 1369
PVPC 755.6 1044 963.2 901.1 1044

the shell model. We also show the ground band of 124,126Xe,
126,128Ba in Fig. 8 generated with PVPC and PHF, although
0+

1 of both these methods appear not low enough. For all four
nuclei 124,126Xe, 126,128Ba, the PVPC generates ground-state
energies less than 0.5 MeV lower than PHF does, and the
excitation energies of PVPC and PHF are mostly alike.

IV. SUMMARY

In summary, we derived formulas for projection after varia-
tion of pair condensates (PVPC), implemented those formulas
into codes, and present one-reference (i.e., one pair conden-
sate for one nucleus) benchmark results. The variation of
a pair condensate is time-consuming because it takes sev-
eral hours to optimize a pair condensate for 132Dy in the
2s1d0g7/20h11/2 space on a 44-core machine. After finding the
variational minimum, triaxial projection with the LAP tech-
nique is very quick. Because the pair condensate as a variation
Ansatz is more general than the Hartree-Fock, or the Hartree-
Fock-Bogolyubov method, the PVPC generates semimagic or
open-shell nuclei more consistently. We benchmark results of
nuclei in 1s0d , 1p0 f , 2s1d0g7/20h11/2 shells by comparing
results of PVPC with PHF and shell model when possible. For
semimagic nuclei the PVPC generates seniority-type spec-
trum, satisfactorily close to shell-model results. For rotational
nuclei, the PVPC generates rotational ground band, similar to
results from the projected Hartree-Fock method, although less
than 1 MeV lower, and with a few more states.

In future work, a benchmark comparison with the Hartree-
Fock-Bogoliubov method can be interesting because the HFB
and PVPC both have intrinsic pairing structure. PVPC allows
for triaxial deformation, but due to constraint of one reference

FIG. 8. Ground-band excitation energy of 124,126Xe, 126,128Ba.

(one pair condensate), triaxial phenomena, such as a low 0+
2

in 76Ge, are not reproduced yet. In addition, inclusion of more
than one pair condensate à la generator coordinate methods
can be implemented. It is also straightforward to extend the
formalism to proton-neutron pair condensates, or odd valence
protons or neutrons, or separate projection of proton or neu-
tron parts as related to the scissors mode.
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APPENDIX A: FORMULAS FOR HAMILTONIAN MATRIX
ELEMENTS AND THEIR DERIVATIVES

To carry out the variation and projection of a pair con-
densate state |�〉 ≡ (Â†)n|0〉 we need a variety of matrix
elements. In particular we need the normalization 〈�|�〉, then
expectation of the Hamiltonian of that state 〈�|Ĥ |�〉, and
the partial derivatives of these two quantities: ∂〈�|�〉/∂Aαβ

and ∂〈�|Ĥ |�〉/∂Aαβ . To do projection, we also need to

rotate the condensate R̂(�)(Â†)n|0〉 = (Â′†)n|0〉, with coeffi-
cient matrix A′ = D(�)AD(�)�, and to calculate the norm
and Hamiltonian kernels: 〈Ân|R̂(�)|(Â†)n〉 = 〈Ân|(Â′†)n〉 and
〈Ân|Ĥ R̂(�)|(Â†)n〉 = 〈Ân|Ĥ |(Â′†)n〉. In this Appendix we give
the expressions for Hamiltonian matrix elements and their
derivatives in terms of condensate overlaps including what we
term impurity pairs. In Appendix B, we derive all necessary
overlap formulas of condensates, with or without “impurity”
pairs, completing the necessary formalism.
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1. Hamiltonian matrix elements

The Hamiltonian matrix element, 〈(Â1)n|Ĥ |(Â†
2)n〉, consists

of one-body parts 〈(Â1)n|Q̂|(Â†
2)n〉, such as single-particle en-

ergies, and two-body parts 〈(Â1)n|Â†
3Â4|(Â†

2)n〉. The one-body
operator Q̂ ≡ ∑

αβ Qαβ ĉ†
α ĉβ has structure coefficients Qαβ .

Through commutation relations, the matrix element of a one-
body operator can be expressed as an overlap,

〈(Â1)n|Q̂|(Â†
2)n〉 = n〈(Â1)n−1[Â1, Q̂]|(Â†

2)n〉
= n〈(Â1)n−1Â3|(Â†

2)n〉, (A1)

where Â3 ≡ [Â1, Q̂], with pair structure coefficients A3 =
A1Q + Q�A1. We term Â3 an “impurity pair” because it re-
places one Â1 in the bra vector 〈(Â1)n| to arrive at Eq. (A1).

Similarly, the matrix element of a general two-body inter-
action Â†

3Â4 can be written as

〈(Â1)n|Â†
3Â4|(Â†

2)n〉 = 〈
Ân

1Â4

∣∣Â†
3(Â†

2)n
〉 + 〈

Ân
1[Â†

3, Â4](Â†
2)n

〉
= 〈

Ân
1Â4

∣∣Â†
3(Â†

2)n
〉+ 1

2 tr(A3A4)
〈
Ân

1

∣∣(Â†
2)n

〉
− n

〈
Ân−1

1 Â5

∣∣(Â†
2)n

〉
, (A2)

where tr(A3A4) is the trace of the matrix product A3A4,
and A5 = A1A3A4 + A4A3A1. The first term on the right of
Eq. (A2), 〈Ân

1Â4|Â†
3(Â†

2)n〉, with two impurity pairs, is the most
complicated overlap to evaluate in Eq. (A2).

2. Derivatives of Hamiltonian matrix elements

To calculate derivatives ∂〈Ân
1|Ĥ |(Â†

2)n〉/∂ (A1)αβ and
∂〈Ân

1|(Â†
2)n〉/∂ (A1)αβ , we borrow from Ref. [19] a gen-

eral formalism for derivatives. Let Ô be an operator,
e.g., 1 for overlap or Ĥ for Hamiltonian matrix ele-
ments. The matrix element of Ô on two pair condensates
is

〈
Ân

1

∣∣Ô∣∣(Â†
2)n

〉
. (A3)

Taking Â1(λ) = Â1 + λ�̂, where λ is small (and, we assume,
real), yields to first order

〈(Â1 + λ�̂)n|Ô|(Â†
2)n〉

= 〈Ân
1|Ô|(Â†

2)n〉 + nλ〈Ân−1
1 �̂|Ô|(Â†

2)n〉, (A4)

hence

∂

∂λ

〈
Ân

1(λ)|Ô|(Â†
2)n

〉∣∣∣∣
λ=0

= n
〈
Ân−1

1 �̂|Ô|(Â†
2)n

〉
. (A5)

Now �̂ plays the role of an impurity pair. The derivative of an
overlap between pair condensates is simply

∂

∂λ
〈(Â1(λ))n|(Â†

2)n〉 = n〈(Â1)n−1�|(Â†
2)n〉, (A6)

while the derivative of a one-body matrix element [Eq. (A1)]
is
∂

∂λ
〈(Â1)n|Q̂|(Â†

2)n〉

= n〈(Â1)n−1�|[Q̂, Â†
2](Â†

2)n−1〉 = n〈(Â1)n−1�|Â†
3(Â†

2)n−1〉,
(A7)

where Â†
3 ≡ [Q̂, Â†

2], with pair structure coefficients A3 =
A2Q� + QA2. Finally, the derivative of two-body matrix el-
ement [Eq. (A2)] is

∂

∂λ
〈(Â1)n|Â†

3Â4|(Â†
2)n〉 = n〈Ân−1

1 �̂|Â†
3Â4|(Â†

2)n〉

= n〈Ân−1
1 �̂Â4|Â†

3(Â†
2)n〉

+ ntr(A3A4)〈Ân−1
1 �̂|(Â†

2)n〉
− n(n − 1)

〈
Ân−2

1 �Â5

∣∣(Â†
2)n

〉
,

(A8)

where A5 = A1A3A4 + A4A3A1. On the right side, the most
complicated overlap in this work is the first term, with three
impurity pairs. Thus the derivatives of Hamiltonian matrix
elements can be computed from overlaps of pair condensates
with impurity pairs, as discussed in Appendix B.

APPENDIX B: OVERLAP FORMULAS

In this Appendix, we give formulas for overlaps between pair condensates each with up to three impurity pairs; these are
needed for Appendix A and Sec. II. We begin with a general formula that expresses the overlap for n-pair states in terms of
matrix traces [35,70],

〈Â1 · · · Ân|B̂†
1 · · · B̂†

n〉 =
n∑

k=1

(−2)−k
m1+···+mk=n∑

m1�m2�···�mk

k∏
w=1

m−1
w

∏
w∈{m1,···mk}

(Rw!)−1

×
∑

{ j1,..., jn},{i1,...,in}
tr
(
Ai1 Bj1 · · · Aim1

Bjm1

) · · · tr
(
Ain+1−mk

B jn+1−mk
· · · Ain B jn

)
. (B1)

Here {i1, . . . , in} and { j1, . . . , jn} are rearrangements of {1, 2, . . . , n}, m1 � m2 � · · · � mk is a partition of n, and Ri is the
degeneracy of mi in a partition, i.e., the number of times mi is repeated.
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While one can carry out Eq. (B1) either by commutation relations [32,70] or by a generating function [35], here we consider
the important special case of a collective pair condensate, i.e., all n pairs in a state are identical:

〈(Â1)n|(Â†
2)n〉 = (n!)2

n∑
k=1

(−2)−k
m1+···+mk=n∑

m1�m2�···�mk

k∏
w=1

m−1
w

∏
w∈{m1,···mk}

(Rw!)−1 · · ·

× tr[(A1A2)m1 ] · · · tr[(A1A2)mk ]. (B2)

Therefore, to calculate one overlap between condensates as in Eq. (B2), we calculate tr(A1A2), · · · , · · · tr[(A1A2)n], and
sum over all ordered partitions {m1, . . . , mk}. The computation time is polynomial in n. Note when n is large, e.g., n = 16
in 2s1d0g7/20h11/2 shell (N, Z ∈ [50, 82]), the summation of (B2) can have cancellations of large numbers, requiring careful
consideration of round-off error.

Similarly, from Eq. (B1), we can obtain overlap formulas with impurity pairs. Our work here requires overlap formulas with
at most three different impurity pairs:

〈(Â1)n−1A3|(Â†
2)n〉 = (n − 1)!n!

N∑
k=1

(−2)−k
m1+···+mk=n∑

m1�m2�···�mk

k∏
w=1

m−1
w

∏
w∈{m1,···mk}

(Rw!)−1
k∑

r=1

mr

× tr[(A1A2)m1 ] · · · tr[(A1A2)mr−1A3A2] · · · tr[(A1A2)mk ]. (B3)

〈(Â1)n−1A3|A†
4(Â†

2)n−1〉 = [(n − 1)!]2
n∑

k=1

(−2)−k
m1+···+mk=n∑

m1�m2�···�mk

k∏
w=1

m−1
w

∏
w∈{m1,···mk}

(Rw!)−1

×
{

k∑
r=1

mr

mr−1∑
s=0

· · · tr[A3(A2A1)sA4(A1A2)mr−1−s] · · ·

+
r =s∑

1�r,s�k

mrms · · · tr[(A1A2)mr−1A3A2] · · · tr[A1A4(A1A2)ms−1] · · ·
}

, (B4)

〈(Â1)n−2A3A4|(Â†
2)n〉 = n!(n − 2)!

n∑
k=1

(−2)−k
m1+···+mk=n∑

m1�m2�···�mk

k∏
w=1

m−1
w

∏
w∈{m1,···mk}

(Rw!)−1

×
{

k∑
r=1

mr

mr−2∑
s=0

· · · tr[A3A2(A1A2)sA4A2(A1A2)mr−2−s] · · ·

+
r =s∑

1�r,s�k

mrms · · · tr[(A1A2)mr−1A3A2] · · · tr[A4A2(A1A2)mr−1] · · ·
}

, (B5)

〈(Â1)n−2Â3Â4|Â†
5(Â†

2)n−1〉 = (n − 1)!(n − 2)!
n∑

k=1

(−2)−k
m1+···+mk=n∑

m1�m2�···�mk

k∏
w=1

m−1
w

∏
w∈{m1,···mk}

(Rw!)−1

×
{

r =s =t∑
1�r,s,t�k

mrmsmt · · · tr[A3A2(A1A2)mr−1] · · · tr[A4A2(A1A2)ms−1] · · · tr[A1A5(A1A2)mt −1] · · ·

+
r =s∑

1�r,s�k

mrms

mr−1∑
t=0

· · · tr[A3(A2A1)t A5(A1A2)mr−1−t ] · · · tr[A4A2(A1A2)ms−1] · · ·

+
r =s∑

1�r,s�k

mrms

mr−1∑
t=0

· · · tr[A4(A2A1)t A5(A1A2)mr−1−t ] · · · tr[A3A2(A1A2)ms−1] · · ·

+
r =s∑

1�r,s�k

mrms

mr−2∑
t=0

· · · tr[A3A2(A1A2)t A4A2(A1A2)mr−2−t ] · · · tr[A1A5(A1A2)ms−1] · · ·

+
k∑

r=1

mr

mr−1∑
s=1

mr∑
t=1

· · · tr(A3A2A1A2 · · · [A5]2t · · · [A4]2s+1 · · · A1A2) · · ·
}

, (B6)

where [A5]2t means A5 is at position 2t , and [A4]2s+1 means A4 is at position 2s + 1 in the matrix product.
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Gao, M. Konieczka, K. Sato, Y. Shi, X. Wang, and T. Werner,
Comput. Phys. Commun. 216, 145 (2017).

[17] F. Iachello and A. Arima, The Interacting Boson Model (Cam-
bridge University Press, 2006).

[18] Y. Sun, K. Hara, J. A. Sheikh, J. G. Hirsch, V. Velázquez, and
M. Guidry, Phys. Rev. C 61, 064323 (2000).

[19] T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, and Y. Utsuno,
Prog. Part. Nucl. Phys. 47, 319 (2001).

[20] E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P.
Zuker, Rev. Mod. Phys. 77, 427 (2005).

[21] B. Brown, Prog. Part. Nucl. Phys. 47, 517 (2001).
[22] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315

(2006).
[23] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys.

Rev. C 65, 061301(R) (2002).
[24] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Eur. Phys.

J. A 25, 499 (2005).
[25] I. Talmi, Simple Models of Complex Nuclei (Contemporary

Concepts in Physics) (CRC Press, 1993).
[26] L. Y. Jia, Phys. Rev. C 99, 014302 (2019).
[27] L. Y. Jia, Phys. Rev. C 93, 064307 (2016).
[28] L. Y. Jia, J. Phys. G 42, 115105 (2015).
[29] Y. M. Zhao and A. Arima, Phys. Rep. 545, 1 (2014).
[30] K. Higashiyama, N. Yoshinaga, and K. Tanabe, Phys. Rev. C

65, 054317 (2002).
[31] B. C. He, L. Li, Y. A. Luo, Y. Zhang, F. Pan, and J. P. Draayer,

Phys. Rev. C 102, 024304 (2020).
[32] Y. Lei, Y. Lu, and Y. M. Zhao, Chin. Phys. C 45, 054103 (2021).
[33] T. Otsuka, A. Arima, F. Iachello, and I. Talmi, Phys. Lett. B 76,

139 (1978).

[34] C. W. Johnson and J. N. Ginocchio, Phys. Rev. C 50, R571
(1994).

[35] J. N. Ginocchio and C. W. Johnson, Phys. Rev. C 51, 1861
(1995).

[36] G. Fu and C. W. Johnson, Phys. Lett. B 809, 135705 (2020).
[37] G. J. Fu and C. W. Johnson, Phys. Rev. C 104, 024312 (2021).
[38] Y. Lei, H. Jiang, and S. Pittel, Phys. Rev. C 102, 024310 (2020).
[39] T. Mizusaki and P. Schuck, Phys. Rev. C 104, L031305 (2021).
[40] A. J. Coleman, J. Math. Phys. 6, 1425 (1965).
[41] D. J. Rowe, T. Song, and H. Chen, Phys. Rev. C 44, R598

(1991).
[42] H. Chen, T. Song, and D. Rowe, Nucl. Phys. A 582, 181 (1995).
[43] C. W. Johnson and K. D. O’Mara, Phys. Rev. C 96, 064304

(2017).
[44] C. W. Johnson and C. Jiao, J. Phys. G 46, 015101 (2019).
[45] C. Qi and Z. X. Xu, Phys. Rev. C 86, 044323 (2012).
[46] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P.

Alken, M. Booth, F. Rossi, and R. Ulerich, GNU Scientific
Library (gnu, 2019).

[47] R. Fletcher, SIAM Rev. 26, 143 (1984).
[48] Y. Sun, Phys. Scr. 91, 043005 (2016).
[49] J. M. Yao, J. Meng, P. Ring, and D. Vretenar, Phys. Rev. C 81,

044311 (2010).
[50] R. Rodríguez-Guzmán, J. Egido, and L. M. Robledo, Nucl.

Phys. A 709, 201 (2002).
[51] A. R. Edmonds, Angular Momentum in Quantum Mechanics

(Princeton University Press, Princeton, New Jersey, 1996).
[52] J. A. Sheikh, P. Ring, E. Lopes, and R. Rossignoli, Phys. Rev.

C 66, 044318 (2002).
[53] C. W. Johnson, W. Ormand, and P. G. Krastev, Comput. Phys.

Commun. 184, 2761 (2013).
[54] S. M. Lauber, H. C. Frye, and C. W. Johnson, J. Phys. G 48,

095107 (2021).
[55] C. W. Johnson, K. A. Luu, and Y. Lu, J. Phys. G 47, 105107

(2020).
[56] N. Nica and B. Singh, Nucl. Data Sheets 113, 1563 (2012).
[57] S. Kanno, T. Gomi, T. Motobayashi, K. Yoneda, N. Aoi,

Y. Ando, H. Baba, K. Demichi, Z. Fulop, U. Futakami,
H. Hasegawa, Y. Higurashi, K. Ieki, N. Imai, N. Iwasa, H.
Iwasaki, T. Kubo, S. Kubono, M. Kunibu, Y. U. Matsuyama,
S. Michimasa, T. Minemura, H. Murakami, T. Nakamura, A.
Saito, H. Sakurai, M. Serata, S. Shimoura, T. Sugimoto, E.
Takeshita, S. Takeuchi, K. Ue, K. Yamada, Y. Yanagisawa, A.
Yoshida, and M. Ishihara, Prog. Theor. Phys. 146, 575 (2002).

[58] M. Basunia and A. Hurst, Nucl. Data Sheets 134, 1 (2016).
[59] M. Shamsuzzoha Basunia, Nucl. Data Sheets 114, 1189 (2013).
[60] M. Shamsuzzoha Basunia, Nucl. Data Sheets 111, 2331

(2010).
[61] J. P. Dufour, R. Del Moral, A. Fleury, F. Hubert, D. Jean, M. S.

Pravikoff, H. Delagrange, H. Geissel, and K. H. Schmidt, Z.
Phys. A 324, 487 (1986).

[62] S.-C. Wu, Nucl. Data Sheets 91, 1 (2000).
[63] T. Burrows, Nucl. Data Sheets 107, 1747 (2006).
[64] J. Chen and B. Singh, Nucl. Data Sheets 157, 1 (2019).
[65] Y. Dong and H. Junde, Nucl. Data Sheets 128, 185 (2015).
[66] F. Stephens and R. Simon, Nucl. Phys. A 183, 257 (1972).
[67] J. L. Wood, A.-M. Oros-Peusquens, R. Zaballa, J. M. Allmond,

and W. D. Kulp, Phys. Rev. C 70, 024308 (2004).
[68] J. Blachot, Nucl. Data Sheets 108, 2035 (2007).
[69] D. De Frenne and A. Negret, Nucl. Data Sheets 109, 943 (2008).
[70] B. Silvestre-Brac and R. Piepenbring, Phys. Rev. C 26, 2640

(1982).

034317-12

https://doi.org/10.1103/PhysRevC.89.014322
https://doi.org/10.1103/PhysRevLett.110.172504
https://doi.org/10.1103/PhysRevC.95.061306
https://doi.org/10.1016/j.ppnp.2015.09.001
https://doi.org/10.1016/j.ppnp.2019.02.008
https://doi.org/10.1103/PhysRevC.103.024315
https://doi.org/10.1103/PhysRevC.104.054306
https://doi.org/10.1103/PhysRevC.100.044308
https://doi.org/10.1103/PhysRevC.103.064302
https://doi.org/10.1103/PhysRevLett.70.2876
https://doi.org/10.1016/0375-9474(84)90240-9
https://doi.org/10.1103/PhysRevC.78.024309
https://doi.org/10.1016/j.cpc.2017.03.007
https://doi.org/10.1103/PhysRevC.61.064323
https://doi.org/10.1016/S0146-6410(01)00157-0
https://doi.org/10.1103/RevModPhys.77.427
https://doi.org/10.1016/S0146-6410(01)00159-4
https://doi.org/10.1103/PhysRevC.74.034315
https://doi.org/10.1103/PhysRevC.65.061301
https://doi.org/10.1140/epjad/i2005-06-032-2
https://doi.org/10.1103/PhysRevC.99.014302
https://doi.org/10.1103/PhysRevC.93.064307
https://doi.org/10.1088/0954-3899/42/11/115105
https://doi.org/10.1016/j.physrep.2014.07.002
https://doi.org/10.1103/PhysRevC.65.054317
https://doi.org/10.1103/PhysRevC.102.024304
https://doi.org/10.1088/1674-1137/abe3ed
https://doi.org/10.1016/0370-2693(78)90260-5
https://doi.org/10.1103/PhysRevC.50.R571
https://doi.org/10.1103/PhysRevC.51.1861
https://doi.org/10.1016/j.physletb.2020.135705
https://doi.org/10.1103/PhysRevC.104.024312
https://doi.org/10.1103/PhysRevC.102.024310
https://doi.org/10.1103/PhysRevC.104.L031305
https://doi.org/10.1063/1.1704794
https://doi.org/10.1103/PhysRevC.44.R598
https://doi.org/10.1016/0375-9474(94)00472-Y
https://doi.org/10.1103/PhysRevC.96.064304
https://doi.org/10.1088/1361-6471/aaee20
https://doi.org/10.1103/PhysRevC.86.044323
https://doi.org/10.1137/1026027
https://doi.org/10.1088/0031-8949/91/4/043005
https://doi.org/10.1103/PhysRevC.81.044311
https://doi.org/10.1016/S0375-9474(02)01019-9
https://doi.org/10.1103/PhysRevC.66.044318
https://doi.org/10.1016/j.cpc.2013.07.022
https://doi.org/10.1088/1361-6471/ac1390
https://doi.org/10.1088/1361-6471/abacda
https://doi.org/10.1016/j.nds.2012.06.001
https://doi.org/10.1143/PTPS.146.575
https://doi.org/10.1016/j.nds.2016.04.001
https://doi.org/10.1016/j.nds.2013.10.001
https://doi.org/10.1016/j.nds.2010.09.001
https://doi.org/10.1006/ndsh.2000.0014
https://doi.org/10.1016/j.nds.2006.05.005
https://doi.org/10.1016/j.nds.2019.04.001
https://doi.org/10.1016/j.nds.2015.08.003
https://doi.org/10.1016/0375-9474(72)90658-6
https://doi.org/10.1103/PhysRevC.70.024308
https://doi.org/10.1016/j.nds.2007.09.001
https://doi.org/10.1016/j.nds.2008.03.002
https://doi.org/10.1103/PhysRevC.26.2640

