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Ab initio coupled-cluster calculations of ground and dipole excited states in 8He
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We perform coupled-cluster calculations of ground- and dipole excited-state properties of the 8He halo nucleus
with nucleon-nucleon and three-nucleon interactions from chiral effective field theory, both with and without
explicit delta degrees of freedom. By increasing the precision in our coupled-cluster calculations via the inclusion
of leading-order three-particle three-hole excitations in the cluster operator, we obtain a ground-state energy and
a charge radius that are consistent with experiment, albeit with a slight underbinding. We also investigate the
excited states induced by the electric dipole operator and present a discussion on the Thomas-Reiche-Kuhn and
cluster sum rules. Finally, we compute the electric dipole polarizability, providing a theoretical benchmark for
future experimental determinations that will study this exotic nucleus.
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I. INTRODUCTION

Light nuclei close to the driplines exhibit fascinating phe-
nomena, such as the formation of diluted structures where a
tightly bound core is surrounded by a halo of one or more
weakly bound nucleons. Signatures for halo structures are
both a small separation energy and a large matter radius, that
does not follow the typical A1/3 behavior characterizing stable
nuclei. Since their discovery in the 1980s [1,2], halo nuclei
have attracted a lot of attention in the nuclear physics commu-
nity, both from the experimental and the theoretical point of
view. While from the experimental side enormous progress
has been made and precision measurements of masses and
radii are nowadays possible even for very short lived systems
(see, e.g., Ref. [3]), halo nuclei still represent an arduous
task for nuclear theory. The reason lies in their extended size,
which challenges several of the available many-body methods.

The helium isotope chain is particularly interesting in
terms of the physics of halo nuclei. The chain presents an
unbound-bound staggering when adding an odd-even number
of neutrons on top of 4He: 5He is unbound, 6He is a bound
halo nucleus, 7He is unbound, and 8He is again a bound halo
nucleus. Of the two halo nuclei, 6He is a borromean halo sys-
tem [4], and 8He is the only known four-neutron halo nucleus.
Both 6He and 8He have already been extensively investigated
in the literature also with the so-called ab initio methods (see,
e.g., Refs. [5–12]).

In this paper, we will focus on the 8He halo nucleus and
present a study based on the ab initio coupled-cluster (CC)
method [13–19]. Two reasons motivate this analysis. On the
one hand, 8He can be seen as the most exotic nucleus having
the largest neutron-to-proton ratio across the nuclear chart
(N/Z = 3), and as such it is interesting to test the models
of nuclear forces developed in the ab initio community on

this nucleus. On the other hand, there have been some re-
cent updates on the experimental determinations of the 8He
ground-state properties, for example of its charge radius [20],
and measurements of its excitation spectrum have either been
made [12] or are being planned [21]. Hence, new calculations
based on the most modern interactions and many-body meth-
ods are interesting.

Our starting point to describe the nucleus of 8He is the
intrinsic nuclear Hamiltonian

H = 1

2mA

A∑
i< j

( �pi − �p j )
2 +

A∑
i< j

Vi j +
A∑

i< j<k

Wi jk, (1)

where m is the nucleon mass, A = 8 is the mass number, Vi j is
the two-body force, and Wi jk is the three-body force. In the last
years, a lot of progress has been achieved in deriving two- and
three-body forces from chiral effective field theory (χEFT)
[22–24], and different optimization strategies have been im-
plemented for the low-energy constants (LECs) [25,26]. In
particular, chiral interactions with explicit delta degrees of
freedom are also becoming available [27–32]. In this paper
we will explore both delta-full and delta-less interactions in
our computations of 8He.

We will focus on ground-state properties such as the bind-
ing energy and the charge radius, and on the low-energy
excited states of dipole nature. For the latter, we will perform
calculations based on a method that merges the Lorentz inte-
gral transform (LIT) with CC theory, called LIT-CC [33,34].
This approach has already proved to be successful in capturing
properties of unstable neutron-rich nuclei, such as 22O in
Ref. [34], where the pygmy dipole resonance was reproduced
using a chiral two-body interaction. With respect to Ref. [34],
we now have the advantage that we are able to include
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three-nucleon forces and effects of triples correlations in the
CC expansion [35].

The paper is organized as follows. In Sec. II, a description
of our theoretical approach is provided. In Sec. III, we present
an overview of our results, separating the ground-state observ-
ables from the dipole excited-state properties. For the latter we
devote one subsection to the energy-weighted sum rule and
one subsection to the electric dipole polarizability. In Sec. IV,
we draw our conclusions.

II. COMPUTATIONAL TOOLS

For a given nuclear Hamiltonian H , the CC approach is
based on an exponential ansatz for the nuclear many-body
wave function:

|�0〉 = eT |�0〉. (2)

Here, |�0〉 is a reference Slater determinant state, typically
obtained from a Hartree-Fock calculation, where single-
particle states are projected onto the harmonic oscillator (HO)
basis. The cluster operator T introduces correlations in the
many-body wave function, and can be expanded in terms of
n-particle n-hole excitations as

T = T1 + T2 + T3 + · · · + TA. (3)

The Schrödinger equation for the ground state of an A-particle
system can be rewritten in the following form:

HN |�0〉 = E0|�0〉, (4)

where

HN = e−T HN eT (5)

is the similarity-transformed Hamiltonian obtained starting
from HN , which is the normal-ordered Hamiltonian of Eq. (1)
with respect to the reference |�0〉. In this paper we use the
normal-ordered Hamiltonian in the two-body approximation
[36,37]. Since the similarity-transformed Hamiltonian is non-
Hermitian, the calculation of expectation values in CC theory
requires the knowledge of both the left and right eigenstates.
The right ground state is given by |0〉 = |�0〉, while the left
ground state is

〈0| = 〈�0|(1 + �), � = �1 + �2 + . . . , (6)

where the operator � is expanded as a sum of particle-hole
deexcitation operators.

Our goal is to study also the dipole excitation of 8He and
related sum rules. For this purpose, we first introduce the
dipole response function

R(ω) =
∑

μ

|〈�μ|�|�0〉|2δ(Eμ − E0 − ω), (7)

where |�μ〉 are the excited states connected to the ground state
by the dipole operator �, and ω is the photon energy. The
dipole operator is given by

� =
A∑
k

(rk − Rc.m.)

(
1 + τ 3

k

2

)
, (8)

where rk and Rc.m. are the coordinates of the kth nucleon
and the center of mass, respectively, while τ 3

k is the third
component of the isospin operator.

Due to the non-Hermitian nature of the similarity trans-
formed Hamiltonian, also for the excited states we have to
distinguish between right and left eigenstates of the Hamilto-
nian. The latter are obtained using the CC equation-of-motion
(EOM) method [38] and are defined as

HN Rμ|�0〉 = EμRμ|�0〉,
(9)

〈�0|LμHN = Eμ〈�0|Lμ,

where the operators Rμ and Lμ are expressed in terms of a
linear combination of particle-hole excitations as well.

Using Eqs. (6) and (9), we can write the response function
corresponding to the similarity-transformed Hamiltonian as

R(ω) =
∑

μ

〈�0|(1 + �)�
†
N Rμ|�0〉〈�0|Lμ�N |�0〉

× δ(Eμ − E0 − ω) (10)

where

�N = e−T �N eT (11)

is the similarity transformed transition operator. It is impor-
tant to observe that the sum over μ in R(ω) corresponds to
both a sum over discrete excited states and an integral over
continuum eigenstates of the Hamiltonian. In particular, the
calculation of the latter represents a formidable task. Contin-
uum state wave functions, in fact, contain information about
all the possible fragmentation channels of the nucleus at a
given energy. To avoid the issue of explicitly computing the
states in the continuum, we merged the CC method with the
LIT technique [39,40], originally used in few-body calcula-
tions. This led to the development of the so-called LIT-CC
method, where the calculation of an integral transform of R(ω)
with Lorentzian kernel

L(σ, �) = �

π

∫
dω

R(ω)

(ω − σ )2 + �2
(12)

is directly related to the CC equation-of-motion method with
a source term [33,34]. Once L(σ, �) is calculated, a numerical
inversion procedure allows one to recover R(ω) (see Ref. [40]
for details).

Starting from the LIT, one can easily obtain an esti-
mate of the electromagnetic sum rules, i.e., the moments of
the response function interpreted as a distribution function.
Knowing all the moments is equivalent to knowing the distri-
bution itself. However, it is sometimes easier to compute just a
few moments of a distribution rather than the full distribution,
and yet obtain substantial insights into the dynamics of a
quantum system.

The moments (or sum rules) of the response function are
defined as

mn =
∫

dω ωnR(ω), (13)
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where n is an integer. Because in the limit � → 0 the
Lorentzian kernel becomes a delta function, we have that

L(σ, � → 0) =
∫

dω R(ω)δ(ω − σ ) = R(σ ), (14)

i.e., the moments can be computed from the LIT as

mn =
∫

dσ σ nL(σ, � → 0). (15)

As shown in Ref. [41], this method is equivalent to obtaining
first R(ω) and then integrating it, with the advantage that one
does not have to perform an inversion, a procedure which can
add to the total numerical error budget. In this paper, we will
focus on the calculation of two dipole sum rules: the energy-
weighted m1 and the inverse-energy weighted m−1.

III. RESULTS

In this paper we aim at performing a systematic study of
the ground- and dipole excited-state properties of 8He, sup-
ported by a reliable estimate of our theoretical uncertainties.
Our computations are affected mainly by three sources of
uncertainties: (i) the model space truncation, (ii) the many-
body truncation, and (iii) the dependence on the employed
interaction model.

In order to address (i), we need to take into account the
fact that the expansion on the model space is controlled by
the maximum number of HO shells Nmax included in the
calculation, for a given HO frequency h̄. For sufficiently
large Nmax the results should be virtually independent of the
choice of h̄. In this paper, we use Nmax = 14, 16 and use
the small residual h̄ dependence (varying h̄ in the range
12–16 MeV) as a way to assess the uncertainty in the model
space truncation.

In CC theory the particle-hole expansion of the cluster
operator is truncated due to computational limitations. To
address (ii) in this paper we explore the effect of the CC
truncation on both the ground and the excited states. In com-
puting ground-state properties, the most frequently adopted
approximation is CC with singles and doubles excitations,
corresponding to T = T1 + T2 and � = �1 + �2. We will
denote this truncation scheme with D. Next, we will also
analyze results obtained by including leading-order 3p-3h ex-
citations, which we denote here with T -1 [42]. In calculating
excited-state observables, we will also make two choices for
the approximation level of the EOM computation, either D
or T -1 [43,44]. Since the calculation of the dipole response
functions and sum rules require us to perform a particle-hole
expansion for the ground state (T and �), and a corresponding
one for the EOM computation of the excited states (Rμ and
Lμ), we indicate two expansion schemes. The resulting CC
truncation schemes for the dipole sum rule calculation are
listed in Table I. We estimate the uncertainty (ii) at the optimal
HO frequency h̄ by computing the difference between the
results obtained with two CC schemes.

Finally, to address (iii), we compare the results obtained us-
ing three different chiral EFT interactions: NNLOsat[26] and
the �-full interactions �NNLOGO(394) and �NNLOGO(450)
[32]. These interactions are all given at next-to-next-to-

TABLE I. List of labels used to identify the CC truncation for
the ground state (left of the solidus) and the excited state (right of
the solidus). Note that for Eq. (11), we include only up to 2p-2h
excitations in the T , as the effect of triples corrections is negligible
[35].

Ground state EOM calculation Truncation scheme

D D D/D
T -1 D T -1/D
T -1 T -1 T -1/T -1

leading order in the chiral expansion, and include three-body
forces. It is worth noticing that the two �-full interactions dif-
fer just by the value of the cutoff, which is 394 and 450 MeV/c
for �NNLOGO(394) and �NNLOGO(450), respectively. Em-
ploying these three different chiral interaction models enables
us to appreciate the effect of including explicit delta isobars,
varying the cutoff and the employed optimization protocol
used for the LECs on the observables under analysis. A
rigourous order-by-order treatment of χEFT uncertainty is
left for future work.

In the results we will display in this section, the uncer-
tainties stemming from (i) and (ii) are added in quadrature,
following Ref. [45]. Regarding (iii), we work with three inter-
actions and present them separately in tables and figures.

A. Ground-state properties

We start by presenting CC results for the ground-state
energy EGS of 8He. While EGS was already obtained from
coupled-cluster theory using the NNLOsat interaction in
Ref. [26], in this paper we further extend the analysis by show-
ing the convergence with respect to the CC truncation, Nmax

and h̄, and by comparing the results from NNLOsat with
those from �NNLOGO(394) and �NNLOGO(450).

The model space convergence for EGS with a compari-
son to experimental data is shown in Fig. 1, for the D and
T -1 truncation schemes. At the optimal frequency h̄ = 16
MeV, the ground-state energy values are converged with re-
spect to Nmax for all three interactions. In the case of the
�-full interactions it is interesting to discuss the effect of the
different values of the cutoff on the h̄ dependence: while the
�NNLOGO(394) results for h̄ = 12 and 16 MeV are fully
overlapped, for �NNLOGO(450) the dependence on the HO
frequency remains apparent. This is expected, as the higher
cutoff leads to a harder interaction. The role of triples correc-
tions is crucial in bringing theory closer to experiment. For
all the interactions, 3p-3h excitations represent between 8 and
9% of the CCSD correlation energy, moving our theoretical
results in the direction of the experimental value. The final
outcomes for the ground-state energy are reported in Table II.
We remark that the uncertainty, obtained summing (i) and
(ii) in quadrature, is dominated by the CC truncation. The
NNLOsat interaction gives the best agreement with respect
to the experimental energy. We note that it has recently been
shown that 8He is soft towards being deformed in its ground
state [11,12]. The static correlations associated with deforma-
tion are not accurately captured in our spherical CC approach,
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FIG. 1. Ground-state energy of 8He in the D and T -1 scheme
as a function of the model-size Nmax for the three Hamiltonians.
The experimental value of the ground-state energy is taken from
Ref. [46].

and this might explain the slight underbinding we find for
�NNLOGO(450) and �NNLOGO(394). Next we turn to our
results for the charge radius of 8He. In order to analyze the
nuclear charge radius Rch, we first compute the point-proton
radius Rpp. Coupled-cluster results of Rpp as a function of h̄

are shown in Fig. 2, for the D and T -1 truncation schemes. For
each interaction, we identify the optimal frequency, leading to
the best convergence as a function of the model space size,
with the crossing point of the curves characterized by different
Nmax. In particular, for NNLOsat and �NNLOGO(450) (both
with cutoff of 450 MeV/c) the optimal frequency is h̄ =
14 MeV, while for �NNLOGO(394) the optimal frequency is
12 MeV. As in the case of the ground-state energy, we see that
the cutoff affects the h̄ dependence of our results, leading to
a faster convergence when the cutoff is lower. Moreover, we
notice that the effect of triples corrections for Rpp is smaller
than in the case of EGS. At the optimal frequency, in fact, the
difference between the Rpp values for D and T -1 amounts to
around 1.5% for all interactions.

Starting from Rpp, we then compute the charge radius using

〈
R2

ch

〉 = 〈
R2

pp

〉 + R2
p + N

Z
R2

n + 3

4M2
p

+ R2
SO, (16)

where Rp = 0.8414(19) fm [47] is the proton charge radius,
R2

n = −0.106+0.007
−0.005 fm2 [48] is the neutron charge radius,

TABLE II. Theoretical predictions for the ground-state energy
of 8He in MeV for the three different interactions in comparison to
experiment.

Interaction Ground-state energy

NNLOsat −31(1)
�NNLOGO(450) −30(1)
�NNLOGO(394) −30.3(8)
Experiment [46] −31.60972(11)

FIG. 2. Point-proton radius of 8He in the D and T -1 scheme as a
function of the HO frequency h̄ for the three Hamiltonians.

3/(4M2
p ) = 0.033 fm2 is the Darwin-Foldy term, and R2

SO is
the spin-orbit correction. In Ref. [49] it has been pointed out
that R2

SO could give a remarkable contribution to the charge
radius of halo nuclei. Therefore, we have consistently calcu-
lated this correction in CC theory, improving in this respect
Ref. [26]. Our results are reported in Table III, in compar-
ison to previous theoretical estimates. Also in this case the
uncertainties are obtained by summing in quadrature (i) and
(ii). The prediction of Ref. [49] is based on a shell model
calculation, while in Ref. [50] the complex-energy configu-
ration interaction method is employed. In this framework, the
CC approach allows us to account for many-body correlations,
leading to a significant improvement with respect to previous
calculations of this quantity. In fact, in CC the magnitude of
R2

SO is reduced by about 10% with respect to Ref. [50], and by
approximately 20% with respect to the shell model estimate.

The final results for the charge radius of 8He are illustrated
in Fig. 3 in comparison to three experimental determinations.
The charge radius of 8He can be experimentally obtained from
a measurement of the isotope shift, namely, the frequency
difference δνA,A′ between 8He and the reference isotope 4He,
in the same atomic transition. The frequency shift is related
to the difference δ〈R2

ch〉A,A′ in the charge radius between 8He
and 4He by

δνA,A′ = δmass
A,A′ + KFSδ

〈
R2

ch

〉
A,A′ , (17)

TABLE III. Theoretical predictions for the spin-orbit correction
to the charge radius of 8He for the three different interactions in
comparison to previous theoretical results.

Interaction R2
SO ( fm2)

NNLOsat −0.143(6)
�NNLOGO(450) −0.134(9)
�NNLOGO(394) −0.141(6)
Ref. [49] −0.17
Ref. [50] −0.158

034313-4



AB INITIO COUPLED-CLUSTER … PHYSICAL REVIEW C 105, 034313 (2022)

FIG. 3. Comparison between the coupled-cluster theoretical
values for the charge radius of 8He using the three different Hamil-
tonians and the experimental results of Mueller et al. [51], Brodeur
et al. [46], and Krauth et al. [20].

where the mass shift δmass
A,A′ and the field shift constant KFS

are obtained from precise atomic theory calculations. The first
determination of the charge radius of 8He using this method
stems from Ref. [51], where the radius of 4He measured from
electron scattering was used as a reference. Later, Ref. [46]
provided an improved estimate of the mass and field shift
parameters, based on precise nuclear mass measurements.
More recently, Ref. [20] achieved the first determination of
the 4He charge radius from muonic atoms, which, improving
the reference, slightly modified the Rch for 8He.

In general, we find that our theoretical results are in good
accordance with the experimental determinations, as seen in
Fig. 3. In particular, the �NNLOGO(450) interaction leads to
the largest charge radius, equal to 1.92(2) fm, which agrees
best with Ref. [51]. The larger radius is due to the interplay
between the higher value for Rpp and the smaller value of
R2

SO obtained with this interaction in comparison to the other
two. Moreover, the distance between the upper end of the
�NNLOGO(450) error bar and the lower end of that of the
most recent experimental determination [20] amounts to 10−4

fm. Comparing this to the scale of the values involved, we can
still claim a good agreement between these two results.

B. Discretized dipole response function and energy-weighted
sum rule

We now address the dipole excited states in 8He by first
looking at the discretized response function. In our frame-
work, this quantity can be simply calculated taking the limit of
the LIT for � → 0, as shown in Eq. (14). In Fig. 4, we show
the LIT with � = 10−4 MeV for the three different interac-
tions. For all the potentials, the discretized response function
presents low-energy peaks emerging at around 5 MeV. On the
one hand, our results are consistent with the analysis of the
3H(6He, p) 8He transfer reaction in Ref. [52] where a low-
lying dipole strength around 3 MeV was indicated. On the
other hand, the recent inelastic proton scattering experiment

FIG. 4. Discretized response function of 8He with � = 10−4

MeV in the T -1/T -1 scheme for the different chiral EFT interactions.

on 8He [12] did not observe any low-lying dipole resonance
below 5 MeV. The larger number of states that we observe at
about 20 MeV for all three interactions correspond to the giant
dipole resonance.

Starting from the discretized response function and using
Eq. (15), we can study the energy-weighted dipole sum rule
m1. Figure 5 illustrates its behavior as a function of h̄ for
various Nmax in the D/D and T -1/T -1 truncation scheme. At
a first glance, we immediately notice that the energy-weighted
sum rule converges quite quickly. In the case of m1, the largest
contribution to the integral of Eq. (15) is represented by the
high-energy dipole-excited states, which are well converged.
It is interesting to look at the effect of varying the interaction
cutoff on the h̄ convergence pattern: while for NNLOsat and
�NNLOGO(450) we achieve a negligible dependence on Nmax

at h̄ = 14 MeV, in the case of �NNLOGO(394) the optimal
frequency corresponds to h̄ = 12 MeV.

The contribution of triples, going from the D/D to the
T -1/T -1 truncation scheme is substantial and amounts to

FIG. 5. Energy-weighted dipole sum rule for 8He as a function
of h̄ for the three Hamiltonians in the D/D and T -1/T -1 truncation
scheme.
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TABLE IV. Theoretical predictions for the energy-weighted
dipole sum rule of 8He and the enhancement factor for the three
different chiral EFT interactions under consideration.

Interaction m1 ( MeV fm2) κ

NNLOsat 63(1) 1.02(3)
�NNLOGO(450) 62(1) 1.00(3)
�NNLOGO(394) 60.5(9) 0.94(3)

3.5% for NNLOsat and �NNLOGO(450), and to 3% for
�NNLOGO(394). However, we have noticed that the differ-
ences between the T -1/D (not shown in Fig. 5) and T -1/T -1
results are of the order of 0.01%, hence negligible. This fact
can be understood if we consider an alternative expression for
the energy-weighted sum rule. Let us assume we can write the
similarity transformed Hamiltonian HN in a tridiagonal form
using the Lanczos algorithm [53]. Choosing the vectors

〈w0| = 〈0|�†
N√

〈0|�†
N�N |0〉

, |v0〉 = �N |0〉√
〈0|�†

N�N |0〉
(18)

as the left and right pivots, respectively, the energy-weighted
sum rule can be calculated as the product between the non-

energy-weighted sum rule m0 = 〈0|�†
N�N |0〉 and the first

Lanczos coefficient a0 = 〈w0|HN |v0〉. Because m0 is a pure
ground-state expectation value, it is the same in both the
T -1/D and T -1/T -1 schemes. Therefore, triples contributions
from the EOM calculation enter in m1 only via a0, explaining
the small difference between the T -1/D and T -1/T -1 scheme.

Our result for the energy-weighted sum rule can be com-
pared to the Thomas-Reiche-Kuhn (TRK) sum rule, which
is often discussed when studying photoabsorption cross sec-
tions σγ (ω) [54]. The TRK sum rule is defined as∫ ∞

ωth

dω σγ (ω) = 5.974
NZ

A
MeV fm2 (1 + κ ), (19)

where ωth is the threshold energy and κ is the so-called en-
hancement factor [55]. The latter arises from the presence
of exchange terms in the nuclear force, which do not com-
mute with the dipole operator [54]. Considering that σγ (ω) =
4π2αωR(ω), we can connect m1 to the left-hand side of
Eq. (19) according to∫ ∞

ωth

dω σγ (ω) = 4π2αm1. (20)

Combining Eqs. (19) and (20), we are then able to evaluate
the enhancement factor for the employed interactions. Our
results for κ , accompanied by our final estimates for m1, are
shown in Table IV. Also in this case uncertainties are obtained
summing in quadrature the contributions of (i) and (ii). To be
more conservative in the uncertainty estimate, the CC trun-
cation uncertainty (ii) on m1 has been calculated comparing
the T -1/T -1 results directly with the D/D ones, instead of
considering the variations between the two best CC schemes
available (T -1/T -1 and T -1/D).

We observe that NNLOsat produces the largest value of
m1 and consequently of κ . The three interactions are all

consistent in predicting a quite large enhancement factor rang-
ing between 0.9 and 1. This is not surprising as there are
components of nonlocality in these interactions, both at the
nucleon-nucleon level and at the three-nucleon force level.
Large enhancement factors of about 0.6 had already been
observed in Ref. [34], where only two-body forces were used.

Further insight on the E1 strength function can be obtained
looking at the cluster sum rule [56,57]. This quantity is asso-
ciated with the excitation of a “molecular” dipole degree of
freedom, related to the relative motion of two clusters inside
the nucleus. Indicating with (Ai, Zi ), i = 1, 2 the mass and
proton number of the two clusters, and with (A, Z ) those of
the nucleus, we can connect the TRK sum rule to the cluster
sum rule as∫ ∞

ωth

dω
[
σγ (ω) − σ cl1

γ (ω) − σ cl2
γ (ω)

]

= 5.974
(Z1A2 − Z2A1)2

AA1A2
MeV fm2 (1 + κ ). (21)

The evaluation of the cluster sum rule becomes particularly
interesting for a halo nucleus such as 8He. The latter, in fact,
can be modeled as a 4He core, representing the first cluster
(cl1), surrounded by four neutrons, constituting the second
cluster (cl2). By choosing Z1 = 2, Z2 = 0 and A = 8, A1 =
4, A2 = 4 one can compute the right-hand side of Eq. (21) and
compare it to the left-hand side, which is obtained by integrat-
ing the photoabsorption cross section of 8He and subtracting
that of 4He given that σ cl2

γ = 0.
For the NNLOsat interaction, computing the energy-

weighted dipole sum rule of 4He in the CC framework, we
obtain 41.9(3) MeV fm2, which using Eq. (19) yields an
enhancement factor of 1.02(2), compatible with the results in
Table IV. The cluster sum rule for the NNLOsat interaction
becomes then∫ ∞

ωth

dω
[
σ

8He
γ (ω) − σ

4He
γ (ω)

] = 6.0(3) MeV fm2. (22)

By looking at the ratio of the cluster sum rule with respect to
the TRK sum rule, we are able to quantify how much of the
dipole strength of 8He is given by the relative motion between
core and halo. The latter turns out to be approximately 30%,
which means that the core-halo relative motion appears to
determine around 1/3 of the total E1 strength for 8He.

C. Electric dipole polarizability

Finally we turn to our calculations of the electric dipole
polarizability αD for 8He. The latter is related to the inverse-
energy weighted sum rule by

αD = 2α

∫
dω

R(ω)

ω
= 2αm−1, (23)

where m−1 is calculated using Eq. (15). This implies that αD

is mainly determined by the low-energy part of the discretized
spectrum of Fig. 4, in particular by the first states at about
5 MeV.

In Fig. 6, we show the convergence pattern of αD with
respect to h̄, in the D/D and T -1/T -1 truncation schemes.

034313-6



AB INITIO COUPLED-CLUSTER … PHYSICAL REVIEW C 105, 034313 (2022)

FIG. 6. Dipole polarizability of 8He as a function of the harmonic
oscillator frequency h̄ for the three Hamiltonians, in the D/D and
T -1/T -1 truncation schemes.

For all three interactions we observe a quite pronounced de-
pendence of the results on the CC truncation and model space
parameters. Variations with respect to Nmax tend to reduce in
correspondence to small values of the HO frequency. This
slow convergence of the polarizability is probably related to
the slow convergence of low-lying dipole states.

Triples corrections give a significant contribution to αD

both in the ground- and excited-state part of the CC calcu-
lation. For h̄ = 12 MeV, the inclusion of 3p-3h excitations
just in the ground state (T -1/D scheme, not shown in Fig. 6)
leads to an increase of αD between 3 and 5% with respect to
the D/D scheme results. If we add triples also in the EOM
calculation (T -1/T -1 shown in Fig. 6), we achieve an overall
10% enhancement of the polarizability compared to the full
doubles computation. This is different with respect to what is
observed for m1. The reason is that, as shown in Ref. [41], αD

can be rewritten as a continued fraction involving the whole
set of Lanczos coefficients available, while m1 just depends
on the first one of them, a0.

Our final results for the dipole polarizability are reported in
Table V. Uncertainties are obtained by summing in quadrature
(i) and (ii), where the CC truncation error is computed as
the difference between the results of the T -1/T -1 and D/D
schemes. Our theoretical uncertainty varies between 7 and
10% of the central value for the different interactions. It is
worth noticing that with respect to the other observables pre-
viously discussed, we get a more conservative estimate for
the uncertainty, which reflects the slow convergence for αD.

TABLE V. Theoretical predictions for the dipole polarizability of
8He for the three Hamiltonians.

Interaction αD ( fm3)

NNLOsat 0.37(3)
�NNLOGO(450) 0.42(3)
�NNLOGO(394) 0.39(2)

This might be due to the loosely bound halo neutrons in 8He,
which determine a more extended wave function, and as a
consequence a slower convergence. Finally, the fact that the
�NNLOGO(450) yields the largest prediction for αD as seen
in Table V is related to the dipole strength showing a state at
slightly lower energies with respect to the other interactions
(see Fig. 4).

Interestingly, our calculations show that the dipole polar-
izability of 8He is more than five times larger than that of
4He. Combining the photoabsorption cross section data of
Refs. [58–60] the latter amounts to 0.074(9) fm3, which is
compatible with the results of Ref. [41]. A larger polarizability
is expected in halo nuclei due to soft dipole mode excitations,
such as those shown in Fig. 4 at about 5 MeV, which are not
seen in 4He [34,41].

IV. CONCLUSIONS

In this paper we carried out a systematic investigation of
ground and dipole excited states of the 8He halo nucleus
using CC theory and different chiral nucleon-nucleon and
three-nucleon forces. We obtain results that are consistent
with experiment for the ground-state energy, albeit with a
slight underbinding, and the nuclear charge radius. Looking
at the three implemented Hamiltonians separately, we see
that the �-full interaction �NNLOGO(450) delivers the best
agreement with the most recent experimental update of the
charge radius of 8He [20].

We also presented the first theoretical predictions for the
energy-weighted and inverse energy-weighted sum rules of
8He. From the former we compare the TRK and cluster
sum rules to conclude that about 1/3 of the dipole strength
is due to the excitation of the molecular dipole degrees
of freedom. For the latter, we provide a prediction that
could be tested in future experiments. An experimental de-
termination of the dipole strength of 8He, performed with
Coulomb excitation at RIKEN in Japan, is currently under
analysis [21].

To address the recent theoretical and experimental indica-
tions of deformation in the ground state of 8He [11,12] we
plan to extend the CC calculations reported in this paper by
starting from an axially symmetric reference state following
Ref. [61]. We also plan to address EFT truncation errors by
performing an order-by-order study of the χEFT uncertainty,
supported by Bayesian statistical tools [62].
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