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For the first time, the calculation of the nuclear matrix element of the double-β decay of 100Mo, with and
without the emission of two neutrinos, is performed in the framework of the nuclear shell model. This task is
accomplished starting from a realistic nucleon-nucleon potential, then the effective shell-model Hamiltonian and
decay operators are derived within the many-body perturbation theory. The exotic features which characterize
the structure of Mo isotopes—such as shape coexistence and triaxiality softness—push the shell-model compu-
tational problem beyond its present limits, making it necessary to truncate the model space. This has been done
with the goal to preserve as much as possible the role of the rejected degrees of freedom in an effective approach
that has been introduced and tested in previous studies. This procedure is grounded on the analysis of the effective
single-particle energies of a large-scale shell-model Hamiltonian, that leads to a truncation of the number of the
orbitals belonging to the model space. Then, the original Hamiltonian generates a new one by way of a unitary
transformation onto the reduced model space, to retain effectively the role of the excluded single-particle orbitals.
The predictivity of our calculation of the nuclear matrix element for the neutrinoless double-β decay of 100Mo
is supported by comparison with experiments of the calculated spectra, electromagnetic transition strengths,
Gamow-Teller transition strengths, and the two-neutrino double-β nuclear matrix elements.

DOI: 10.1103/PhysRevC.105.034312

I. INTRODUCTION

Between the late 1990s and the early 2000s, the observa-
tion that solar and atmospheric neutrinos oscillate [1,2] has
indicated that these elusive particles have nonzero mass, and
has supported investigations to search for physics beyond
the standard model [3,4]. This discovery has revived interest
in the study of neutrinoless double-β decay (0νββ), a rare
second-order electroweak process that, if occurring, would
provide fundamental knowledge about the nature of the neu-
trino. In fact, such a decay would demonstrate that neutrinos
are Majorana particles, namely they are their own antiparti-
cles, and violate the conservation of lepton quantum number.
Moreover, the measurement of the half-life of 0νββ decay
would be a source of knowledge about the absolute scale of
neutrino masses and their hierarchy, normal or inverted [5].

The standard mechanism that is considered in a 0νββ

decay is the exchange of a light Majorana neutrino, and in
such a framework the half-life is expressed as

[
T 0ν

1/2

]−1 = G0νg4
A|M0ν |2

∣∣∣∣ 〈mν〉
me

∣∣∣∣
2

, (1)

where G0ν is the phase-space factor [6,7], M0ν is the nuclear
matrix element directly related to the wave functions of the
parent and granddaughter nuclei, gA is the axial coupling con-
stant, me is the electron mass, and 〈mν〉 = ∑

i(Uei )2mi is the

effective neutrino mass, as expressed in terms of the neutrino
masses mi and their mixing matrix elements Uei.

The expression in (1) makes explicit the crucial role of
the physics of nuclear structure, since the calculation of M0ν ,
which cannot be measured, provides the value of the neutrino
effective mass in terms of the half-life T 0ν

1/2 and of the nuclear
structure factor FN = G0ν |M0ν |2g4

A. The value of M0ν is also
important to estimate the half-life that an experiment should
measure in order to be sensitive to a particular value of the
neutrino effective mass [8], by combining the nuclear struc-
ture factor, the neutrino mixing parameters [9], and present
limits on 〈mν〉 from current observations.

It is then highly desirable that the theory could provide
reliable calculations of M0ν , namely that all uncertainties and
truncations which characterize the application of a nuclear
model are under control, leading eventually to an estimate
of the theoretical error. This is currently within reach of
ab initio calculations, but at present this approach has been
pursued mainly for light nuclei [10–12] whereas the best
candidates of experimental interest are located in the region of
medium- and heavy-mass nuclei. The nuclear matrix element
of 0νββ decay of 48Ca, the lightest nuclide of experimental
interest, has been also calculated using both an ab initio
approach which combines the in-medium similarity renormal-
ization group (IMSRG) with the generator coordinate method
[13], and the coupled cluster method [14]. More recently, a

2469-9985/2022/105(3)/034312(13) 034312-1 ©2022 American Physical Society

https://orcid.org/0000-0002-4327-9107
https://orcid.org/0000-0003-0253-915X
https://orcid.org/0000-0003-1302-7387
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.105.034312&domain=pdf&date_stamp=2022-03-10
https://doi.org/10.1103/PhysRevC.105.034312


L. CORAGGIO et al. PHYSICAL REVIEW C 105, 034312 (2022)

calculation of M0ν’s for the 0νββ decay of 48Ca, 76Ge, and
82Se was performed in terms of the in-medium similarity
renormalization group [15].

Presently, the study of nuclei that are the target of on-
going experiments cannot be performed within the ab initio
framework, and the nuclear structure models which are
mostly employed are the interacting boson model (IBM)
[16], the quasiparticle random-phase approximation (QRPA)
[17,18], energy density functional (EDF) methods [19,20],
the covariant density functional theory [21,22], the generator-
goordinate method (GCM) [23,24], and the shell model (SM)
[25–30].

Among several candidates for the detection of 0νββ de-
cay, 100Mo is nowadays one of the most interesting ones.
100Mo is characterized by one of the largest decay energies
(Qββ = 3034.36 ± 0.17 keV) [31], which largely suppresses
the γ background, and its natural abundance of 9.7% makes
experiments that are targeted to this nuclide accessible with
ton-scale detectors.

Experiments that are searching 0νββ decay of 100Mo are
AMoRE [32,33], NEMO 3 [34], CUPID-Mo [35,36], and in
future the ton-scale CUPID (CUORE Upgrade with Particle
IDentification) [37].

Recently, the CUPID-Mo experiment imposed a new limit
on the half-life of 0νββ decay in 100Mo of T 0ν

1/2 > 1.5 ×
1024 yr [36].

Despite its encouraging features as a candidate for the
detection of neutrinoless double-β decay, the structure of
100Mo poses serious difficulties for a microscopic calculation
of the β-decay properties of this nuclide and consequently
of its 0νββ-decay nuclear matrix element. Since the 1970s
there is experimental evidence for a rotational behavior of
neutron-rich Mo isotopes [38], and many nuclear structure
studies have been carried out to study their transition from
spherical to deformed shapes, as well as to search for shape
coexistence and triaxiality [39–43].

Collective models are then better endowed for a sat-
isfactory description of heavy-mass molybdenum isotopes
than microscopic ones, and there are few calculations of
100Mo spectroscopic properties within the nuclear shell model
[44,45]. Calculation of β-decay properties of 100Mo and
estimates of its 0νββ-decay nuclear matrix element have
been carried out within the framework of EDF [21,46],
IBM [16,47], and extensively with QRPA and proton-neutron
QRPA (pnQRPA) [48–52].

In the present work, for the first time, the study of the
double-β decay of 100Mo is approached from the point of view
of the realistic shell model (RSM) [53], namely the effective
SM Hamiltonian Heff and decay operators are consistently de-
rived starting from a realistic nucleon-nucleon (NN) potential
V NN .

The starting point is the high-precision CD-Bonn NN po-
tential [54], whose repulsive high-momentum components
are renormalized using the Vlow-k procedure [55]. The low-
momentum Vlow-k is amenable to a perturbative expansion
of the shell-model effective Hamiltonian [56–59] and decay
operators [60,61], so that single-particle (SP) energies, two-
body matrix elements of the residual interaction (TBMEs),
matrix elements of effective electromagnetic transitions and

Gamow-Teller (GT) decay operators, as well as two-body
matrix elements of the effective 0νββ-decay operator are
derived in terms of a microscopic approach, without adjusting
SM parameters to reproduce data. This approach was recently
employed first to study two-neutrino double-β (2νββ) decay
of 48Ca, 76Ge, 82Se, 130Te, and 136Xe [62,63], and then to
calculate M0ν’s of the same nuclides for their 0νββ decay
[64].

The model space we choose to calculate the nuclear wave
functions of 100Mo and 100Ru, which are the main charac-
ters of the decay process we investigate in this work, is
spanned by four proton orbitals 0 f5/2, 1p3/2, 1p1/2, 0g9/2 and
five neutron orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2 outside
78Ni core, which is characterized by the Z = 28, N = 50 shell
closures. This means that the structure of 100Mo should be
described in terms of 14 and 8 valence protons and neutrons,
respectively, interacting in such a large model space, while
100Ru is characterized by 16 and 6 valence protons and neu-
trons.

Note that such a model space may not be large enough
to account for the ground-state deformation of nuclei around
A ≈ 100 such as 100Zr [65], and that perhaps Z, N = 50 cross-
shell excitations should be explicitly included to reproduce
the large observed B(E2; 2+

1 → 0+
1 ) values [66]. However,

as we will see in Sec. III, this choice of the model space
does not seem to affect the overall comparison between the
experimental and our calculated B(E2)’s, for both 100Mo and
100Ru.

The computational problem has a high degree of difficulty,
being at the limit of actual capabilities and burdensome to
handle. We have employed a procedure that aims to reduce the
computational complexity of large-scale shell-model calcula-
tions, by preserving effectively the role of the rejected degrees
of freedom. First, the truncation is driven by the analysis of
the effective SP energies (ESPE) of the original Hamiltonian,
in order to locate the relevant degrees of freedom to describe
A = 100 Mo, Tc, and Ru isotopes, namely the single-particle
orbitals that will constitute a smaller and manageable model
space. As a second step, we perform a unitary transformation
of the original Hamiltonian, defined in the model space that is
made up respectively by four and five proton and neutron or-
bitals (labeled as [4 5]), onto the truncated model space. This
transformation generates a new shell-model Hamiltonian that,
even if defined within a smaller number of configurations,
retains effectively the role of the excluded SP orbitals.

This double-step procedure, that is, to derive a first Heff in
a large space and then from this a new one in a smaller space,
was introduced in Refs. [66,67] for nuclei in the mass region
A ≈ 100 outside the 88Sr core, and successfully applied also
for Mo isotopes up to A = 98 [66].

In the following section we outline first the derivation of
Heff and SM effective decay operators by way of the many-
body perturbation theory. Then, we sketch out some details
about the double-step procedure to derive a new Heff in a
smaller space, and show an example aimed to support its
validity. In Sec. III we report the calculated low-energy spec-
troscopic properties of the nuclei involved in the double-β
decay process under investigation, the parent and granddaugh-
ter nuclei 100Mo, Ru, as well as the calculated GT-strength
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distributions and M2ν’s, and compare them with available
data. In the same section we report the results of the calcula-
tion of M0ν for 100Mo, together with an analysis of the angular
momentum-parity matrix-element distributions, and a com-
parison with the results obtained with other nuclear structure
models. Finally, the last section is devoted to a summary of
the present work and an outlook of our future developments.

II. THEORETICAL FRAMEWORK

A. The effective SM Hamiltonian

The starting point of our calculation is the high-
precision CD-Bonn NN potential [54], whose repulsive
high-momentum components—that prevent a perturbative ap-
proach to the many-body problem—are renormalized by way
of the Vlow-k approach [53,55].

This unitary transformation provides a smooth potential
that preserves the values of all NN observables calculated
with the CD-Bonn potential, as well as the contribution of
the short-range correlations (SRC). The latter account for
the action of a two-body decay operator on an unperturbed
(uncorrelated) wave function, which is employed to derive the
SM effective 0νββ operator; this is different from applying
the same operator on the real (correlated) nuclear wave func-
tion. The details about the treatment of SRC consistently with
the Vlow-k transformation are reported in Refs. [30,64,68].

The Vlow-k matrix elements are then employed as interac-
tion vertices of the perturbative expansion of Heff , and detailed
surveys about this topic can be found in Refs. [57,59,61].
Here, we sketch briefly the procedure that has been followed
to derive Heff and SM effective decay operators.

We begin by considering the full nuclear Hamiltonian for
A interacting nucleons H , which, within the nuclear shell
model, is broken up as a sum of a one-body term H0, whose
eigenvectors set up the SM basis, and a residual interaction
H1, by way of harmonic-oscillator (HO) one-body potential
U :

H = T + Vlow-k = (T + U ) + (Vlow-k − U )

= H0 + H1. (2)

Since this Hamiltonian cannot be diagonalized for a
many-body system in an infinite basis of eigenvectors of
H0, we derive an effective Hamiltonian, which operates in
a truncated model space that, in order to obtain a satis-
factory description of 100Mo, is spanned by four proton
orbitals (0 f5/2, 1p3/2, 1p1/2, 0g9/2) and five neutron orbitals
(0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2) outside the 78Ni core. From
now on, we denote this model space as [4 5].

To this end, we perform a similarity transformation which
provides, within the full Hilbert space of the configurations, a
decoupling of the model space P, where the valence nucleons
are constrained, from its complement Q = 1 − P.

This may be obtained within the time-dependent pertur-
bation theory, namely we derive Heff through the Kuo-Lee-
Ratcliff folded-diagram expansion in terms of the Q̂ box
vertex function [57,59,69]:

H eff
1 (ω) = Q̂(ε0) − PH1Q

1

ε0 − QHQ
ωH eff

1 (ω), (3)

c

ba

p

ff

a b

h

A B
dc

ee

d

FIG. 1. Second-order three-body diagrams. The sum over the
intermediate lines runs over particle and hole states outside the model
space. For each topology A and B, only one of the diagrams which
correspond to the permutations of the external lines is reported.

where ω is the wave operator decoupling the P and Q sub-
spaces, and ε0 is the eigenvalue of the unperturbed degenerate
Hamiltonian H0.

The Q̂ box is defined as

Q̂(ε) = PH1P + PH1Q
1

ε − QHQ
QH1P, (4)

and ε is an energy parameter called “starting energy.”
An exact calculation of the Q̂ box is computationally pro-

hibitive, so the term 1/(ε − QHQ) is expanded as a power
series

1

ε − QHQ
=

∞∑
n=0

1

ε − QH0Q

(
QH1Q

ε − QH0Q

)n

; (5)

namely, we perform an expansion of the Q̂ box up to the third
order in perturbation theory [61].

Then, the Q̂ box is the building block to solve the non-
linear matrix equation (3) to derive Heff through iterative
techniques such as the Kuo-Krenciglowa and Lee-Suzuki ones
[70,71], or graphical noniterative methods [72].

This theoretical framework has been well established for
systems with one- and two-valence nucleon systems, but,
because of the choice of the model space, the nuclei that
are involved in the decay process under investigation—
100Mo, Tc, Ru—are characterized by 22 valence nucleons.
Then, one should derive a many-body Heff which depends
on this number of valence particles, and introduce a formal-
ism that may become very difficult to manage. A minimal
choice is to include in the calculation of the Q̂ box at least
contributions from three-body diagrams, which account for
the interaction via the two-body force of the valence nucleons
with configurations outside the model space (see Fig. 1).

Since we employ the SM code ANTOINE to calculate the
spectra and double β-decay nuclear matrix elements [73],
a diagonalization of a three-body Heff cannot be performed
and we derive a density-dependent two-body term from the
three-body contribution arising at second order in perturbation
theory. The details of such an approach, as well as a discussion
about the role of such contributions to the eigenvalues of the
SM Hamiltonian, can be found in Refs. [61,74].
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TABLE I. Theoretical proton and neutron SP energy spacings (in
MeV) from H [4 5]

eff .

Proton orbitals εp Neutron orbitals εn

0 f5/2 0.0 0g7/2 2.8
1p3/2 1.6 1d5/2 0.4
1p1/2 2.1 1d3/2 1.1
0g9/2 4.3 2s1/2 0.0

0h11/2 3.2

In the Introduction we pointed out that the current limits of
the available SM codes prevent the calculation of the nuclear
matrix elements of double-β decay within the [4 5] model
space. In order to overcome this computational difficulty, we
perform a truncation of the number of SP orbitals following a
method we introduced in Ref. [67], and whose details may be
found in Ref. [66].

We now sketch the main steps of this procedure.
First, we study the evolution of the proton and/or neutron

ESPE as a function of the valence nucleons, that may justify
the exclusion of one or more SP levels from the original model
space (in our case [4 5]). Since 100Mo is described in terms
of 14 valence protons and 8 valence neutrons with respect to
78Ni, this means that a truncation may be applied only to the
number of the neutron orbitals.

In Table I we report the SP energy spacings calculated
using the effective Hamiltonian H [4 5]

eff , which is defined within
the model space [4 5], and in Fig. 2 we show the behavior of
the neutron ESPE of the Mo isotopes. From the inspection
of the table and the figure, we observe that there is an energy
gap separating the 1d5/2, 1d3/2, 2s1/2 neutron orbitals from the
0g7/2, 0h11/2 ones, which enlarges by increasing the number
of valence neutrons.

Therefore, we deem reasonable the possibility to exclude
both 0g7/2 and 0h11/2 neutron orbitals, and deal with a smaller
model space that should still provide the relevant features
of the physics of the nuclei under investigation, namely
the parent and granddaughter nuclei 100Mo, Ru. However,
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FIG. 2. Neutron effective single-particle energies of Mo isotopes
calculated with H [4 5]

eff .
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FIG. 3. Low-energy spectrum of 96Mo, calculated with H [4 5]
eff ,

H [4 4]
eff , and constraining H [4 5]

eff in the [4 4] model space. Also reported
are the values of the significant B(E2) transition rates in e2fm4.

to calculate the nuclear matrix element for the two-neutrino
double-β decay M2ν of 100Mo we need to retain at least
the neutron 0g7/2 orbital in the model space, otherwise the
selection rules of the GT operator would forbid such a decay
because of the choice of the proton model subspace.

On these grounds, we derive a new effective Hamilto-
nian H [4 4]

eff , defined within a model space spanned by the
0 f5/2, 1p3/2, 1p1/2, 0g9/2 proton and 0g7/2, 1d5/2, 1d3/2, 2s1/2

neutron orbitals, by way of a unitary transformation of H [4 5]
eff

(see details in Ref. [66]). We label this smaller model space
[4 4] and in Fig. 3 we report the energy spectrum of 96Mo, that
is calculated employing H [4 5]

eff and H [4 4]
eff , and also constraining

the action of H [4 5]
eff in the [4 4] model space.

From the inspection of Fig. 3, it can be noted that H [4 4]
eff is

able to provide a better agreement with the energy spectrum
obtained through the “mother Hamiltonian” H [4 5] than the re-
sults provided by constraining the diagonalization of the latter
Hamiltonian to model space [4 4]. It is also worth pointing out
that the values of the B(E2) transition rates, that are calculated
with H [4 5]

eff and H [4 4]
eff , are very close.

The above results evidence the adequacy of the truncation
scheme we have adopted, and the diagonalization of the SM
Hamiltonian for 100Mo and 100Ru has been performed by way
of H [4 4]

eff .
The TBMEs of H [4 4]

eff , that have been calculated also in-
cluding three-body correlations to account for the number of
valence nucleons characterizing 100Mo, can be found in the
Supplemental Material [75].

B. Effective shell-model decay operators

We are interested not only in calculating energies, but also
the matrix elements of decay operators � which are connected
to measurable quantities such as B(E2) strengths, and the
nuclear matrix element of the 2νββ decay M2ν , as well as
the 0νββ decay matrix element M0ν .
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Since the diagonalization of the Heff does not provide the
true wave functions, but their projections onto the chosen
model space P, we need to renormalize any decay operator
� to take into account the neglected degrees of freedom cor-
responding to the Q space.

The derivation of SM effective operators within a pertur-
bative approach dates back to the earliest attempts to employ
realistic potentials for SM calculations [60,76–80], and we
follow the procedure that has been introduced by Suzuki and
Okamoto in Ref. [58]. This allows a calculation of decay
operators �eff which is consistent with the one we carry out
of Heff , and that is based on perturbative expansion of a vertex
function �̂ box, analogously with the derivation of Heff in
terms of the Q̂ box (see Sec. II A). The procedure has been
reported in detail in Ref. [61], and in the following we only
report the main building blocks.

The starting point is the perturbative calculation of the two
energy-dependent vertex functions

�̂(ε) = P�P + P�Q
1

ε − QHQ
QH1P,

�̂(ε1; ε2) = PH1Q
1

ε1 − QHQ
Q�Q

1

ε2 − QHQ
QH1P,

and of their derivatives calculated in ε = ε0, ε0 being the
eigenvalue of the degenerate unperturbed Hamiltonian H0:

�̂m = 1

m!

dm�̂(ε)

dεm

∣∣∣∣
ε=ε0

,

�̂mn = 1

m!n!

dm

dεm
1

dn

dεn
2

�̂(ε1; ε2)

∣∣∣∣
ε1=ε0,ε2=ε0

.

Then, a series of operators χn is calculated:

χ0 = (�̂0 + H.c.) + �̂00, (6)

χ1 = (�̂1Q̂ + H.c.) + (�̂01Q̂ + H.c.),

χ2 = (�̂1Q̂1Q̂ + H.c.) + (�̂2Q̂Q̂ + H.c.)

+ (�̂02Q̂Q̂ + H.c.) + Q̂�̂11Q̂, (7)
...

that allows us to write �eff in the following form:

�eff = HeffQ̂
−1(χ0 + χ1 + χ2 + · · · ). (8)

In this work we arrest the χn series at n = 2, and the �̂

function is expanded up to third order in perturbation theory.
The issue of the convergence of the χn series and of

the perturbative expansion of the �̂ box has been treated in
Refs. [63,64,81], and in Fig. 4 are given all the diagrams up to
second order appearing in the �̂(ε0) expansion for a one-body
operator �.

In the present work, the decay operators � are the
one-body electric-quadrupole transition E2 qp,nr2Y 2

m (r̂)—the
charge qp,n being e for protons and 0 for neutrons—and GT
�στ± operators, as well as the two-body transition operator for
the 0νββ decay [see Eqs. (13)–(15) in the following subsec-
tion].

h

a

b

h

p

a

b

+ + +

a

p

b

a

b

FIG. 4. One-body second-order diagrams included in the pertur-
bative expansion of �̂(ε0 ). The asterisk indicates the bare operator
�, the wavy lines denote the two-body NN interaction, and the circle
with a cross inside accounts for the (V -U )-insertion contribution (see
Ref. [61]).

C. The 2νββ- and 0νββ-decay operators

This section is devoted to outlining the structure of 2νββ-
and 0νββ-decay operators.

It is worth pointing out that these two nuclear-decay mech-
anisms differ in the characteristic value of the momentum
transfer, which for 2νββ decay is few MeV, at variance with
the order of hundreds of MeV in 0νββ decay. This difference,
as we will see in the following, affects the procedure to be
followed to calculate M2ν and M0ν .

As is well known, 2νββ decays are the occurrence of two
single-β decay transitions inside a nucleus, and the expres-
sions of the GT and Fermi components of their nuclear matrix
elements M2ν are the following:

M2ν
GT =

∑
n

〈0+
f ||(�στ−)I||1+

n 〉〈1+
n ||(�στ−)I||0+

i 〉
En + E0

, (9)

M2ν
F =

∑
n

〈0+
f ||(τ−)I||0+

n 〉〈0+
n ||(τ−)I||0+

i 〉
En + E0

, (10)

where the subscript I indicates we are employing the matrix
elements of either the bare or the effective one-body GT and
F operators.

In these equations, En is the excitation energy of the Jπ =
0+

n , 1+
n intermediate state, and E0 = 1

2 Qββ (0+) + �M, where
Qββ (0+) and �M are the Q value of the transition and the
mass difference of the parent and daughter nuclear states,
respectively. The index n runs over all possible intermediate
states induced by the given transition operator. It should be
pointed out that the Fermi component plays a marginal role
[82,83] and in most calculations is neglected altogether.

The most efficient way to obtain M2ν , by including a
number of intermediate states that is sufficient to provide
the needed accuracy for its calculation, is the Lanczos
strength-function method [73], which we have adopted for our
calculations.

The evaluation of M2ν could be also carried out employing
the so-called closure approximation, commonly adopted to
study 0νββ-decay NMEs [82]. On these grounds, within such
an approximation the energies of the intermediate states, En,
appearing in Eqs. (9) and (10), may be replaced by an average
value En + E0 → 〈E〉, that allows one to avoid to explicitly
calculate the intermediate Jπ = 1+

n states, but then the two
one-body transition operators become a two-body operator.
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Actually, the closure approximation is a valuable tool to
evaluate M0ν , since in the 0νββ decay the neutrino’s momen-
tum is about one order of magnitude larger than the average
excitation energy of the intermediate states. This allows us to
neglect, within this process, the intermediate-state-dependent
energies from the energy denominator appearing in the neu-
trino potential, as we will see in a while. In contrast, the
closure approximation is unsatisfactory when used to cal-
culate M2ν , because, as mentioned before, the momentum
transfer in the 2νββ process is much smaller.

Once the theoretical value on M2ν has been calculated,
it can be then compared with the experimental counterpart,
which is extracted from the observed half-life T 2ν

1/2,

[
T 2ν

1/2

]−1 = G2ν
∣∣M2ν

GT

∣∣2
, (11)

G2ν being the 2νββ-decay phase-space (or kinematic) factor
[6,7].

We now turn our attention to the bare 0νββ operator, for
the light-neutrino-exchange channel [84].

The formal expression of M0ν
α , where α stands for Fermi

(F ), Gamow-Teller (GT), or tensor (T ) decay channels, is
written in terms of the one-body transition-density matrix ele-
ments between the daughter and parent nuclei (granddaughter
and daughter nuclei) 〈k|a†

p′an′ |i〉 (〈 f |a†
pan|k〉). The subscripts

p and n denote proton and neutron states, and i, k, f refer to
the parent, daughter, and granddaughter nuclei, respectively.

The nuclear matrix element M0ν
α is formulated as [25,85]

M0ν
α =

∑
kJ

∑
jp jp′ jn jn′

(−1) jn+ jn′ +J Ĵ
{

jp jn Jκ

jn′ jp′ J
}

×〈 jp jp′ ;J ||�k
α|| jn jn′ ;J 〉

× 〈k||[a†
p ⊗ ãn]Jk ||i〉〈k||[a†

n′ ⊗ ãp′]Jk || f 〉∗

=
∑

k

∑
jp jp′ jn jn′

〈 f |a†
pan|k〉〈k|a†

p′an′ |i〉

× 〈 jp jp′ |�k
α| jn jn′ 〉, (12)

where the tilde denotes a time-conjugated state, ã jm =
(−1) j+maj−m, and the �k

α are two-body operators.
The expression of the operators �k

α is [84]

�k
GT = [

τ−
1 τ−

2 (�σ1 · �σ2)Hk
GT(r)

]
I, (13)

�k
F = [

τ−
1 τ−

2 Hk
F (r)

]
I, (14)

�k
T = [

τ−
1 τ−

2 {3(�σ1 · r̂)(�σ1 · r̂) − �σ1 · �σ2}Hk
T (r)

]
I, (15)

where Hα are the neutrino potentials and are defined as

Hk
α (r) = 2R

π

∫ ∞

0

jnα
(qr)hα (q2)q dq

q + Ek − (Ei + E f )/2
, (16)

and, again, the subscript I labels the application of either the
bare or the effective two-body decay operators.

In Eq. (16), R = 1.2A1/3 fm, jnα
(qr) is the spherical Bessel

function, nα = 0 for Fermi and Gamow-Teller components,
while nα = 2 for the tensor component. In the following, we
also present the explicit expressions of neutrino form func-

tions, hα (q), for light-neutrino exchange [84]:

hF (q2) = g2
V (q2),

hGT(q2) = g2
A(q2)

g2
A

[
1 − 2

3

q2

q2 + m2
π

+ 1

3

(
q2

q2 + m2
π

)2
]

+2

3

g2
M (q2)

g2
A

q2

4m2
p

,

hT (q2) = g2
A(q2)

g2
A

[
2

3

q2

q2 + m2
π

− 1

3

(
q2

q2 + m2
π

)2
]

+1

3

g2
M (q2)

g2
A

q2

4m2
p

, (17)

In the present work, we use the dipole approximation for
the vector, gV (q2), axial-vector, gA(q2), and weak-magnetism,
gM (q2), form factors:

gV (q2) = gV(
1 + q2/�2

V

)2 ,

gM (q2) = (μp − μn)gV (q2), (18)

gA(q2) = gA(
1 + q2/�2

A

)2 ,

where gV = 1, gA ≡ gfree
A = 1.2723, (μp − μn) = 4.7, and the

cutoff parameters are �V = 850 MeV and �A = 1086 MeV.
Then, the total nuclear matrix element M0ν is written as

M0ν = M0ν
GT − g2

V

g2
A

M0ν
F + M0ν

T . (19)

The expression in Eq. (12) cannot be easily calculated
within the nuclear shell model because of the computational
complexity of calculating a large number of intermediate
states (the Lanczos strength-function method [73] can be ap-
plied only for the single-β-decay process). Therefore, most
SM calculations resort to the closure approximation, which
is based on the observation that the relative momentum q of
the neutrino, appearing in the propagator of Eq. (16), is of
the order of 100–200 MeV [84], and the excitation energies
of the nuclei involved in the transition are of the order of
10 MeV [25]. On these grounds, the energies of the intermedi-
ate states appearing in Eq. (16) may be replaced by an average
value Ek − (Ei + E f )/2 → 〈E〉, that leads to a simpler form
of both Eqs. (12) and (16). Consequently, M0ν

α can be rewritten
in terms of the two-body transition-density matrix elements
〈 f |a†

pana†
p′an′ |i〉 as

M0ν
α =

∑
jn jn′ jp jp′

〈 f |a†
pana†

p′an′ |i〉

× 〈 jp jp′ | τ−
1 τ−

2 �α | jn jn′ 〉, (20)

and the neutrino potentials become

Hα (r) = 2R

π

∫ ∞

0

jnα
(qr)hα (q2)q dq

q + 〈E〉 . (21)

As in most SM calculations, we adopt the closure approxi-
mation to define the � operators given in Eqs. (13)–(15), and
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take the average energy 〈E〉 = 11.2 MeV from the evaluation
of Ref. [48]. Regarding the soundness of the closure approxi-
mation to evaluate M0ν , we should point out that in Ref. [25]
the authors performed SM calculations of 48Ca 0νββ decay
both within and beyond the closure approximation, and found
that in the second case the results are ≈10% larger.

As mentioned in Sec. II A, one needs to consider short-
range correlations when computing the radial matrix elements
of the neutrino potentials 〈ψnl (r)|Hα|ψn′l ′ (r)〉.

SRC account for the physics that is missing in all models
that expand nuclear wave functions in terms of a truncated
noncorrelated SP basis [86,87]. This is related to the highly
repulsive nature of the short-range two-nucleon interaction,
and in order to carry out our SM calculation, that is based
on effective operators derived from a realistic potential, we
perform a consistent regularization both of the two-nucleon
potential, V NN , and the 0νββ-decay operator [68].

The Vlow-k procedure [55] renormalizes the repulsive high-
momentum components of the V NN potential through a
unitary transformation �. The latter is an operator which
decouples the full momentum space of the two-nucleon
Hamiltonian, HNN , into two subspaces; the first one is as-
sociated with the relative-momentum configurations below a
cutoff � and is specified by a projector operator P; the second
one is defined in terms of its complement Q = 1 − P [68]. As
unitary transformation, � preserves the physics of the original
potential for the two-nucleon system; namely, the calculated
values of all NN observables are the same as those reproduced
by solving the Schrödinger equation for two nucleons interact-
ing via V NN .

In order to benefit from this procedure, we calculate the
two-body 0νββ operator, �, in the momentum space. Then, �
is renormalized using �, to provide consistency with the V NN

potential, whose high-momentum (short range) components
are dumped by the introduction of the cutoff �. The new
decay operator is defined as �low-k ≡ P���−1P for relative
momenta k < �, and is set to zero for k > �, and its matrix
elements are employed as vertices in the perturbative expan-
sion of the �̂ box.

The magnitude of the overall effect of this renormalization
procedure is comparable to using the SRC modeled by the
unitary correlation operator method [88], that is a lighter soft-
ening of M0ν with respect to the one provided by Jastrow type
SRC [68].

III. RESULTS

In this section we present the results of our SM cal-
culations. First, we compare theoretical and experimental
low-energy spectroscopic properties of the parent and grand-
daughter nuclei 100Mo and 100Ru, respectively. We show also
the results of the GT− strength distribution and the calculated
NMEs of the 2νββ decay for 100Mo and compare them with
the available data.

Then, we calculate the nuclear matrix element of the 0νββ

decay and study the convergence behavior of the effective
SM operator we have derived consistently with Heff . We also
discuss the effects of three-valence-nucleon diagrams which

FIG. 5. Experimental and calculated spectra of 100Mo and 100Ru
up to 2 MeV excitation energy.

correct the Pauli-principle violation introduced in systems
with more than two valence nucleons [80].

As already mentioned, all the calculations are per-
formed employing theoretical SP energies and TBMEs
obtained from the effective Hamiltonian H [4 4]

eff , whose model
space is defined by 0 f5/2, 1p3/2, 1p1/2, 0g9/2 proton and
0g7/2, 1d5/2, 1d3/2, 2s1/2 neutron orbitals, that can be found in
the Supplemental Material [75].

A. Spectroscopy of 100Mo and 100Ru

In Fig. 5, we compare the calculated low-energy spectra of
100Mo and 100Ru, as well as their experimental counterparts.

As can be seen, our Heff provides a reasonable reproduction
of 100Mo low-lying states, despite the large number of valence
nucleons involved in the diagonalization of the SM Hamilto-
nian. The larger discrepancy between observed and theoretical
spectra occurs for the yrare Jπ = 0+ state, which exhibits
experimentally a pronounced collective behavior. This is also
testified by the B(E2) strength between the Jπ = 0+

2 and
Jπ = 2+

1 levels, that is reported in Table III. In fact, from
the inspection of Table III, we see that there is a general
agreement between theoretical and experimental values, but
our calculation fails to reproduce the large B(E2; 0+

2 → 2+
1 ).

Once more, it is worth stressing that to calculate the
B(E2) strengths the effective proton/neutron charges have
been derived from theory (see Sec. II B), without any empiri-
cal adjustment, and their values can be found in Table II.

Rearding the low-energy spectrum of 100Ru, our calcula-
tion provides a satisfactory reproduction of the experiment,
and this is also confirmed by the comparison of the theoret-
ical B(E2) strengths with the available data, as reported in
Table IV.

We now proceed to examine the results of the calculation
of quantities that are directly related to the double-β decay of
100Mo. It is worth pointing out that, because of the proton and
neutron model spaces, the effective GT+ operator consists of
one matrix element that corresponds to the π0g9/2 → ν0g7/2

decay, whose calculated quenching factor is q = 0.454. Sim-
ilarly, the only matrix element of the effective GT− operator
ν0g9/2 → π0g7/2 provides a quenching factor q = 0.503.

The reason for a non-Hermitian effective GT decay op-
erator is threefold: the proton and neutron model spaces we
have chosen are different, the proton-neutron symmetry is
broken because the Coulomb interaction is included in the
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TABLE II. Proton and neutron effective charges of the electric
quadrupole operator E2.

nala ja nblb jb 〈a||ep||b〉 nala ja nblb jb 〈a||en||b〉
0 f5/2 0 f5/2 1.62 0g7/2 0g7/2 1.00
0 f5/2 1p3/2 1.45 0g7/2 1d5/2 0.73
0 f5/2 1p1/2 1.47 0g7/2 1d3/2 0.70
1p3/2 0 f5/2 1.28 1d5/2 0g7/2 0.68
1p3/2 1p3/2 1.20 1d5/2 1d5/2 0.47
1p3/2 1p1/2 1.21 1d5/2 1d3/2 0.48
1p1/2 0 f5/2 1.31 1d5/2 2s1/2 0.43
0g1/2 1p3/2 1.22 1d3/2 0g7/2 0.66
0g9/2 0g9/2 1.70 1d3/2 1d5/2 0.48

1d3/2 1d3/2 0.55
1d3/2 2s1/2 0.50
2s1/2 1d5/2 0.43
2s1/2 1d3/2 0.50

0h11/2 0h11/2 0.79

perturbative expansion, and the procedure that has been fol-
lowed to derive the effective operators is non-Hermitian [58].

In Table V we report the observed and calculated values
of the M2ν’s for the 2νββ decay of 100Mo from the Jπ = 0+

1
ground state (g.s.) to the 100Ru Jπ = 0+

1 , 0+
2 states. For both

decays the value of M2ν obtained with the bare operator
overestimates the experimental one by a factor of 3–4, but,
employing the matrix elements of the effective GT+ and GT−

operators, we reach a result that is in a good agreement with
the observed M2ν’s.

In Fig. 6, the calculated
∑

B(GT) for 100Mo are shown as
a function of the 100Tc excitation energy, and compared with
the data, reported with a red line [91]. The results obtained
with the bare operator are drawn with a blue line, while those
obtained employing the effective GT operator are plotted a
black line.

It can be seen that the distribution obtained using the bare
operator overestimates the observed one, but the quenching
induced by the effective operator provides an underestimation
of the values extracted from the experiment.

Here, recall that the “experimental” GT strengths obtained
from charge-exchange reactions are not directly observed

TABLE III. Experimental and calculated B(E2) strengths (in
e2fm4) for 100Mo; data are taken from Ref. [89]. We report those
for the observed states in Fig. 5.

Ji → Jf B(E2)Expt B(E2)Calc

2+
1 → 0+

1 1000 ± 100 820
0+

2 → 2+
1 2500 ± 100 55

2+
2 → 0+

1 17 ± 1 30
2+

2 → 2+
1 1400 ± 140 800

2+
2 → 0+

2 150 ± 20 540
4+

1 → 2+
1 1900 ± 100 1200

2+
3 → 2+

1 8 ± 2 15
2+

3 → 0+
2 400 ± 100 340

6+
1 → 4+

1 2500 ± 400 1240

TABLE IV. Experimental and calculated B(E2) strengths (in
e2fm4) for 100Ru; data are taken from Ref. [89]. We report those for
the observed states in Fig. 5.

Ji → Jf B(E2)Expt B(E2)Calc

2+
1 → 0+

1 980 ± 10 640
0+

2 → 2+
1 1000 ± 140 300

4+
1 → 2+

1 1400 ± 100 980
2+

2 → 2+
1 850 ± 170 570

2+
2 → 0+

1 55 ± 10 50
2+

3 → 4+
1 500 ± 140 90

2+
3 → 0+

2 1000 ± 250 360

data. The GT strength can be extracted from the GT com-
ponent of the cross section at zero degrees, following the
standard approach in the distorted-wave Born approximation
(DWBA):

dσ GT (0◦)

d�
=

(
μ

π h̄2

)2 k f

ki
Nστ

D |Jστ |2B(GT),

where Nστ
D is the distortion factor, |Jστ | is the volume integral

of the effective NN interaction, ki and k f are the initial and
final momenta, respectively, and μ is the reduced mass (see
the formula and description in Refs. [92,93]). Then, the values
of experimental GT strengths are somehow model dependent.

B. Neutrinoless double-β decay of 100Mo

As introduced in Sect. II, our calculation of M0ν accounts
for the light-neutrino exchange mechanism, the total nuclear
matrix element being expressed as in Eq. (19) and calculated
according to Eqs. (13)–(15), (20), and (21), namely within the
closure approximation.

The perturbative expansion of the 0νββ effective operator
�eff has been carried out including in the �̂ box diagrams up
to the third order (see Sec. II) and a number of intermediate
states which correspond to oscillator quanta up to Nmax = 14,
since the results are substantially convergent from Nmax = 12
on (see Ref. [64]).

Regarding the expansion of �eff as a function of the χn

operators, we stop at n = 2 since χ3 depends on the first,
second, and third derivatives of �̂0 and �̂00, as well as on the
first and second derivatives of the Q̂ box [see Eq. (7)], so the
χ3 contribution may be estimated to be at least one order of
magnitude smaller than the χ2 one. Moreover, in Ref. [64] we
have shown that the contributions from χ1 are relevant, while
those from χ2 are almost negligible.

TABLE V. Experimental [90] and calculated M2ν’s (in MeV−1)
for 100Mo 2νββ decay. The theoretical values are obtained employ-
ing both the bare (I) and effective (II) 2νββ operators.

100Mo → 100Ru decay branches Experiment I II

Jπ = 0+
1 → Jπ = 0+

1 0.224 ± 0.002 0.896 0.205
Jπ = 0+

1 → Jπ = 0+
2 0.182 ± 0.006 0.479 0.109
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FIG. 6. Running sums of the 100Mo
∑

B(GT) strengths as a
function of the excitation energy Ex up to 3 MeV.

First, we focus on the results of the order-by-order conver-
gence behavior by reporting in Figs. 7 and 8 the calculated
values of M0ν , M0ν

GT, M0ν
F , and M0ν

T for the decay of the
100Mo Jπ = 0+

1 state to the 100Ru Jπ = 0+
1 , 0+

2 ones, respec-
tively, from first order up to third order in perturbation theory.
As an indicator of the quality of the perturbative behavior [94],
we also report the values of their Padé approximant [2|1]. We
also point out that the same scale has been adopted in both
figures.

As in other decays we have studied in our previous work
[64], the perturbative behavior is driven by the Gamow-Teller
component, since the Fermi matrix element M0ν

F is weakly
affected by the renormalization procedure, and M0ν

T is almost
negligible. We observe a perturbative pattern of the calculated
M0ν of 100Mo that is better than the ones we have found for
48Ge, 76Ge, 82Se, 130Te, and 136Xe 0νββ decays, which have
been calculated within the same approach [64]. In fact, here
the difference between second- and third-order results is about

1 2 3
perturbative order

0

2

4

6

M
0

 100Mo

Pade` [2|1]

M0

M0
GT

M0
F

M0
T

FIG. 7. M0ν for the decay of the 100Mo Jπ = 0+
1 state to the

100Ru Jπ = 0+
1 one, as a function of the perturbative order. The green

triangles correspond to M0ν
F , the blue squares to M0ν

GT, the magenta
diamonds to M0ν

T , and the black dots to the full M0ν .

1 2 3
perturbative order

0

2

4

6

M
0

 100Mo

Pade` [2|1]

M0

M0
GT

M0
F

M0
T

FIG. 8. Same as in Fig. 7, but for the decay of the 100Mo Jπ = 0+
1

state to the 100Ru Jπ = 0+
2 one.

13% and 21% for the decay of the 100Mo Jπ = 0+
1 state to the

100Ru Jπ = 0+
1 and Jπ = 0+

2 ones, respectively.
In Table VI the values of M0ν , which we have cal-

culated by using both the bare operator—namely without
considering either SRC or renormalizations due to the trun-
cation of the model space—and �eff , are reported, along
with their Gamow-Teller, Fermi, and tensor components. Our
results are also compared with those obtained employing
other nuclear models, such as the interacting boson model
with isospin restoration (IBM-2) [47], the energy density
functional method including deformation and pairing fluctu-
ations (EDF) [46], the beyond-mean-field covariant density
functional theory (BMF-CDFT) [21], and the quasiparticle
random-phase approximation with isospin symmetry restora-
tion (pnQRPA) [51,52].

The SM results obtained with the bare 0νββ operator (I)
can be better compared with other nuclear models, since in
the latter no effective operator has been considered, and we
see that our M0ν’s are close to those in Refs. [47,52], where
the IBM-2 and pnQRPA models have been employed, respec-
tively. The other calculations provide M0ν’s that are much

TABLE VI. Calculated values of M0ν for the decay of the 100Mo
ground state to the yrast and yrare Jπ = 0+ states of 100Ru.

M0ν
GT M0ν

F M0ν
T M0ν

0+
1 → 0+

1

Present work (I) 3.418 −0.878 0.002 3.962
Present work (II) 1.634 −0.970 0.007 2.240
IBM-2 [47] 3.73 −0.48 0.19 4.22
EDF [46] 5.361 −1.986 6.588
BMF-CDFT [21] 10.91
pnQRPA [51] 4.950 −2.367 −0.571 5.850
pnQRPA [52] 3.13 −1.03 −0.26 3.90

0+
1 → 0+

2

Present work (I) 1.344 −0.308 0.001 1.535
Present work (II) 0.564 −0.361 0.001 0.788
IBM-2 [47] 0.99 −0.13 0.05 1.12

034312-9



L. CORAGGIO et al. PHYSICAL REVIEW C 105, 034312 (2022)

FIG. 9. Contributions from pairs of decaying neutrons with given
Jπ to M0ν

GT for 100Mo 0νββ decay. The solid blue bars correspond to
the results obtained with �eff ; those in crosshatched blue to the ones
calculated with the bare operator.

larger than our result, and it is worth pointing out that different
choices of the parameters for pnQRPA calculations may lead
to a remarkable difference of the calculated M0ν’s [51,52].

The action of the effective operator �eff quenches the value
of the two M0ν’s by a factor about 1/2, whose effect is smaller
than accounting for the quenching factor of the axial coupling
constant gA that comes out from the calculated effective GT±

operator, which is about q = 0.5.
These considerations are related to the question of whether

or not one should relate the derivation of the effective
one-body GT operator [63] with the renormalization of the
two-body GT component of the 0νββ operator. This issue has
a considerable impact on the detectability of 0νββ process
[95,96].

To complete our discussion about the M0ν’s, we show in
Figs. 9 and 10 the results of the decomposition of M0ν

GT and
M0ν

F , respectively, in terms of the contributions from the de-
caying pair of neutrons coupled to a given angular momentum
and parity Jπ , both for the decay to the 100Ru ground (blue
columns) and yrare Jπ = 0+ (green columns) states.

FIG. 10. Same as in Fig. 9, but for M0ν
F .

We report the contributions obtained by employing both
the effective 0νββ-decay operator �eff (filled columns) and
the bare one (crosshatched columns).

The results of the decomposition of M0ν
F confirm the ir-

relevance of the renormalization procedure, and exhibit the
dominance of the Jπ = 0+ component.

Regarding M0ν
GT, as should be expected, each Jπ contri-

bution calculated employing �eff is much smaller than the
one obtained with the bare 0νββ-decay operator. The main
contributions, both employing effective and bare operators,
correspond to the Jπ = 0+, 2+ components, being opposite
in sign, and a non-negligible role is played by the Jπ = 4+
component too.

IV. SUMMARY AND OUTLOOK

This work is the first attempt to calculate double-β decay
of 100Mo into 100Ru by way of the nuclear shell model.

Our study consisted first in verifying the ability of the tools
we have chosen, namely the model space and the shell-model
effective Hamiltonian and decay operators, to reproduce
the experimental spectroscopic properties of 100Mo, Ru—
excitation spectra and B(E2) strengths that are related to the
collective behavior of these systems—as well as the nuclear
matrix elements M2ν of the 2νββ decay and the GT strengths
obtained from charge-exchange reactions. Then, after having
tested and shown the degree of reliability of our wave func-
tions, we calculated the nuclear matrix elements M0ν of the
0νββ decay of the 100Mo ground state to the yrast and yrare
Jπ = 0+ states of 100Ru.

An important feature of our work is that shell-model ef-
fective Hamiltonians and decay operators have been derived
by way of many-body perturbation theory, starting from a
high-precision realistic potential CD-Bonn [54]. Such an ap-
proach has been previously applied to study the 48Ca → 48Ti,
76Ge → 76Se, 82Se → 82Kr, 130Te → 130Xe, and 136Xe →
136Ba decays [62–64].

The comparison of our results with the available data seems
to indicate that the realistic shell model can quantitatively de-
scribe most of the spectroscopy (low-lying excitation spectra,
electromagnetic transition strengths) of 100Mo, Ru and also
their β-decay properties (nuclear matrix elements of 2νββ

decay, GT strengths from charge-exchange reactions) without
resorting to empirical adjustments of Heff , effective charges,
or quenching the axial coupling constant. This should provide
support to our approach for the prediction of the M0ν’s for
the 0νββ decay of 100Mo, within the light-neutrino-exchange
channel, that is a conjugation of the action of shell-model
wave functions, emerging from the diagonalization of Heff ,
and effective decay operators, which are constructed consis-
tently with Heff .

We have also compared our results for the 0νββ decay of
100Mo with those obtained employing other nuclear methods,
leading to some relevant observations. To this end, we have
considered the results we obtain employing both the bare
0νββ operator—namely without any sort of normalization—
and the effective operator derived theoretically. The M0ν’s
we calculate with the bare operator are important for a fair
comparison with other nuclear models, since the latter do not
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employ any effective operator which accounts for the trunca-
tion of the Hilbert space.

First, it can be noticed that our results with the bare op-
erator are consistent with recent calculations performed with
IBM-2 [47] and pnQRPA [52], whereas the results obtained
within EDF [46] and BMF-CDFT [21] approaches, as well
as pnQRPA calculations performed by Šimkovic et al. [51],
provide larger values of M0ν’s.

Second, as in our previous study [64], the effect of the
renormalization of the 0νββ-decay operator, with respect to
the truncation of the full Hilbert space to the shell-model one,
is smaller than the one obtained for the 2νββ-decay one.

These results may be a valuable asset for the commu-
nity that is involved with the experimental detection of the
100Mo 0νββ decay, since this is the first time a microscopic
calculation has been performed of the M0ν’s of the 100Mo
ground-state decay to the two lowest-energy Jπ = 0+ states
of 100Ru.

Our future program to upgrade the study of nuclei with
mass A ≈ 100 which are candidates for 0νββ decay is
twofold.

On one side, we plan to start from nuclear forces that have
a firm link with QCD, namely we will construct effective
shell-model Hamiltonians and decay operators from two- and
three-body potentials derived within the framework of chiral
perturbation theory [74,97,98].

This step will allow us

(a) to evaluate the dependence of the predictions for M0ν’s
on the nuclear potential that is employed in a nuclear
structure calculation;

(b) to benchmark our results with those obtained with ab
initio calculations [13–15];

(c) to consider the contribution of the two-body meson-
exchange corrections to the electroweak currents,
originating from subnucleonic degrees of freedom,
that can be consistently tackled by employing nuclear
chiral potentials.

Alternatively, we are currently exploring the possibility of
employing larger model spaces, that would account better
for the low-energy collective behavior of nuclei with mass
A ≈ 100. This would provide major information about the
connection between the calculated values of the M0ν’s and the
dimension of the model space, and how theoretical effective
decay operators can compensate and reduce this dependence.

These goals are computationally challenging, but we are
confident that our current efforts may lead in the near future
to a first set of preliminary results.
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