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Manifestation of deformation and nonlocality in α and cluster decay
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It is common to study the strong decay of a heavy nucleus as a tunneling phenomenon where the α (4He) or
a light nuclear cluster tunnels through the Coulomb barrier formed by its interaction with the heavier daughter
nucleus. The position and width of the Coulomb barrier is determined by the total interaction potential between
the two daughter nuclei. We examine the effects of including nonlocality and deformation in the interaction
potential by calculating the half-lives, t1/2, and thereby phenomenological preformation factors of several nuclei,
which have the possibility of decaying by emitting either an α or a light nuclear cluster. The effect of deformation
manifests itself by a decrease in t1/2 for all the decays studied. The effect of nonlocality is studied within two
different models of the nuclear potential: the energy independent but angular momentum (l) dependent Mumbai
(M) potential and the energy dependent Perey-Buck (PB) potential. The nonlocal nuclear interaction leads to
a decrease in all half-lives studied. Though the decrease is larger due to the Perey-Buck potential, half-lives
evaluated using the Mumbai potential show a strong sensitivity to the l value in the decay. This feature of the
α and cluster decay half-lives can provide a complementary tool in addition to scattering data which are more
commonly used to fix the parameters of a nonlocal potential in literature.

DOI: 10.1103/PhysRevC.105.034311

I. INTRODUCTION

α decay of radioactive nuclei, discovered in 1899 by
Rutherford [1], is one of the most important decay modes
in providing information about the structure of heavy nuclei
such as the radius, deformation, and shell effects [2–4]. In
addition to this, cluster radioactivity (CR) has also been very
instrumental in providing structure information of heavy nu-
clei [5]. The spontaneous emission of light fragments heavier
than the α particle but lighter than a typical mass of a light
fragment in the fission process (A � 60) is referred to as
cluster radioactivity or cluster decay. Theoretically predicted
cluster decay [6] was experimentally confirmed in 1984 by
Rose and Jones [7]. Study of both the α and cluster decays for
the isotopes of the same element provides insight about the
impact of shell effects and deformations on the probabilities of
these processes. In an investigation involving the comparison
of different models for cluster radioactivity in superheavy
nuclei [8], the authors found that a universal decay law which
can predict light and heavy CR leads to the shortest half-
lives when the daughter nuclei are around the doubly magic
208Pb nucleus. Another interesting conclusion was that the CR
dominates over α decay for Z � 118 nuclei. Because of the
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large difference in the masses of the cluster and the daughter
nucleus, just like the α decay, the cluster decay is also treated
as a tunneling problem for the calculation of half-lives of
nuclei.

In a recent work [9], we have investigated the effects of
nonlocality on α-decay half-lives of nuclei. It is observed
that the effective potential obtained between the α and the
daughter nucleus within the nonlocal framework decreases the
half-lives. This study was limited to α decay involving spher-
ical nuclei and deformation was not considered. In the present
work, we study the nonlocal effect for the α and cluster
decay modes of a given parent nucleus. Furthermore, we also
study the impact of nonlocality in the presence of deformation
which modifies the barrier characteristics. In the α decay, the
shape of the daughter nucleus contributes to the deformation
term, whereas in the cluster decay, the shape of the lighter
cluster in the decay channel contributes to the deformation.

The article is organized as follows. In Sec. II, we give a
brief overview of the density-dependent double-folding (DF)
model used to evaluate the potential between the cluster and
the daughter nucleus followed by the formalism for the evalu-
ation of decay half-lives. The two models used to study the
nonlocal effects in the α and cluster decay of some heavy
nuclei are also discussed. In order to extend the half-life calcu-
lations in the presence of deformation, we provide the details
about the deformed DF nuclear potential and calculation of
the half-lives from the deformed decay width. In Sec. III, we
present the results and discuss them. Finally, in Sec. IV we
summarize our findings.
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II. FORMALISM FOR α AND CLUSTER DECAY

In previous studies on α and cluster decay [2–4], it has been
found that the half-life is an important observable related to
the nuclear structure. In most of the theoretical models, the α

and cluster decay half-life of a nucleus is evaluated as

t1/2 = h̄ ln 2

�
, (1)

where the decay width � can be calculated within the
framework of the semiclassical Jeffreys-Wentzel–Kramers–
Brillouin (JWKB) approximation [10–12], as

� = Pi
h̄2

2μ

[∫ r2

r1

dr

k(r)

]−1

exp

[
−2

∫ r3

r2

k(r) dr

]
, (2)

where k(r) =
√

2μ

h̄2 |V (r) − E |. Pi (with i = α or c) is the pre-
formation factor in α or cluster (c) decay, μ is the reduced
mass of the cluster-daughter system, and ri (i = 1, 2, 3) are
the three classical turning points. These latter are solutions
of V (ri ) = E , where the energy E of the α particle or cluster
is usually taken to be the same as the Q value for the decay.
The exponential factor exp [−2

∫ r3

r2
k(r) dr] is known as the

penetration probability and the factor [
∫ r2

r1
dr/k(r)]−1 in front

of this arises from the normalization of the bound-state wave
function in the region between the turning points r1 and r2

[10–12]. An essential ingredient for evaluating both factors
is the interaction potential V (r) between the emitted particle
and the daughter nucleus that will be explained below. The
appearance of a preformation factor Pi (i = α or c) in Eq. (2)
takes into account the nonzero probability for the existence
of the preformed cluster or α particle inside the parent as
suggested by several theoretical models [13,14]. In the present
study, we compare the effects of nonlocalities and deforma-
tion in different models. Hence, we shall set Pi = 1 when we
compare the half-lives calculated within the different models.

A. Double folding model

α and cluster decay are treated as a tunneling problem
where the emitted particle, preformed inside the parent nu-
cleus, tunnels through the potential barrier. The interaction
potential between the daughter nucleus and the cluster con-
sists of the nuclear VN , Coulomb VC , and centrifugal potentials
and is given by

V (r) = λVN (r) + VC (r) + h̄2
(
l + 1

2

)2

2μr2
, (3)

where r is the separation between the center of mass of the
cluster and the center of mass of the daughter nucleus, l is
the angular momentum carried by the emitted cluster, and λ is
the strength of the nuclear interaction (see Fig. 1). The latter
has been left as a parameter in order to ensure that the Bohr-
Sommerfeld quantization condition [11] is satisfied. Thus λ

fixes the strength of the nuclear potential. The centrifugal term
containing, l (l + 1), is replaced by the correction, (l + 1

2 )2,
introduced by Langer when one uses the semiclassical approx-
imation [15]. This is essential to ensure the correct behavior of

FIG. 1. Coordinates used in the DF calculations. Vectors rc and
rd correspond to the position of a nucleon in the cluster and daughter
nucleus, respectively.

the JWKB wave function near the origin. The potential used
in the calculation then has three turning points, r1, r2, and r3.

For the nuclear potential, it is desirable to relate the
nucleus-nucleus interaction to the NN interaction. This can
be obtained by folding an effective NN interaction over the
density distribution of the two nuclei. This model is known as
the double folding (DF) model [16]. It has been used widely
and has been found to be quite successful in evaluating the
α decay half-lives [9,11,12]. The folded nuclear potential is
written as

VN (r) =
∫

drcdrd ρ1(rc)vN (|s| = |r + rc − rd |)ρ2(rd ),

(4)

where ρi (i = 1, 2) are the densities of the cluster and the
daughter nucleus in a decay, and vN (|s|) is the nucleon-
nucleon (NN) interaction. The matter density distribution of
the daughter or cluster nucleus can be calculated as

ρ(r) = ρ0

1 + exp
(

r−R
a

) , (5)

where ρ0 is obtained by normalizing ρ(r) to the mass number,∫
ρ(r) dr = A, and the constants are given as R = 1.07A1/3

fm and a = 0.54 fm. If the emitted cluster is an α particle, its
matter density distribution is given using a standard Gaussian
form [16], namely,

ρα (r) = 0.4229 exp(−0.7024 r2). (6)

A popular choice of the effective NN interaction is based
on the M3Y-Reid-type soft core potential,

vN (|s|) = 7999
exp (−4|s|)

4|s| − 2134
exp (−2.5|s|)

2.5|s| , (7)

where |s| = |r + rc − rd | is the distance between a nucleon
in the daughter nucleus and a nucleon in the cluster (Fig. 1).
This consists of a short-ranged repulsion and a long-ranged
attraction responsible for the direct component of the interac-
tion. An additional zero-range contribution J00δ(s) with J00 =
−276(1 − 0.005 E/Ac ) called knock-on exchange term takes
into account the antisymmetrization of identical nucleons in
the cluster and the daughter nucleus. The latter represents
a kind of nonlocality in the DF potential and is usually not
included in the calculation if one uses nonlocal nuclear poten-
tials, in order to avoid double counting. Hence, the results in
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the present work will also be presented without the inclusion
of the knock-on exchange term.

As mentioned above, the nuclear potential is modified,
multiplying by a constant λ such that the Bohr-Sommerfeld
quantization condition is satisfied:∫ r2

r1

k(r) dr =
(

n + 1

2

)
π, (8)

where k(r) =
√

2μ

h̄2 |V (r) − Q| and n is the number of nodes of
the quasibound wave function of the cluster nucleus relative
motion. This is expressed as n = (G − l )/2, where G is a
global quantum number and l is the orbital angular momen-
tum quantum number. The calculated optimal value of G for
cluster decay is chosen according to the Wildermuth-Tang
condition [17,18],

G = 2n + l =
Ac∑

i=1

(
g(Ac+Ad )

i − g(Ac )
i

)
, (9)

where g(Ad+Ac)
i are the oscillator quantum numbers of the

nucleons forming the cluster required to ensure that the clus-
ter is completely outside the shell occupied by the daughter
nucleus, and g(Ac)

i are the internal quantum numbers of the
nucleons in the emitted cluster. The values of gi are taken as
gi = 4 for nucleons in the 50 � Z , N � 82 shell, gi = 5 for
nucleons in the 82 < Z , N � 126 shell, gi = 6 for nucleons
in the N � 184, and gi = 7 for nucleons outside the N = 184
neutron shell closure. These values correspond to the 4h̄ω,
5h̄ω, 6h̄ω, and 7h̄ω harmonic-oscillator shells, respectively.

The condition in Eq. (9) ensures that the bound state be-
tween the light cluster and the heavy daughter nucleus is an
allowed state. It gives us the global quantum number, G, that
relates the number of nodes, n, to the shell model (in this case
within a harmonic oscillator basis) and ensures that the Pauli
exclusion principle is satisfied [18]. In other words, it ensures
that the α or light cluster is outside the shell occupied by the
daughter. This nonlocality is not the same as that included
through the exchange term or the nonlocal framework of the
present work. We refer the reader to Refs. [19,20] for possible
ambiguities introduced by the introduction of this condition in
the case of certain kind of potentials.

The Coulomb potential VC (r) is obtained by using a similar
DF procedure with the matter density distributions being re-
placed by their respective charge density distributions, ρC (r).
The charge density distributions are taken to have a similar
form as that of the matter densities but they are normalized
to the number of protons,

∫
ρC (r) dr = Z . The fundamental

interaction is the standard proton-proton Coulomb interac-
tion vC (s) = e2

|s| . For both nuclear and Coulomb potentials,
six-dimensional integrals are involved. These are solved nu-
merically by working in momentum space. The detailed
procedure can be found in Ref. [16].

B. Nonlocality

The existence of nonlocal interactions is a purely quantum
mechanical phenomenon. This phenomenon arises because of
the very nature of nucleons. When calculating an interaction

potential between nuclei, a nonlocality effect appears. This
kind of effect has often been discussed in literature in the
context of nucleon-nucleus scattering [21–23]. Taking into
account nonlocal approaches improves the description of nu-
clear interactions; however, introducing nonlocality results in
an integrodifferential Schrödinger equation which can be, in
principle, quite difficult to solve. The general form of this
equation is written as

− h̄2

2μ
∇2	(r) + [VL(r) − E ]	(r)

= −
∫

dr′ VNL(r, r′)	(r′), (10)

where VL can be some isolated local potential and VNL can be
the nonlocal one.

The sources of nonlocalities in literature are globally clas-
sified into two types: the Feshbach and the Pauli nonlocalities
[24]. The Feshbach nonlocality is attributed to inelastic in-
termediate transitions in scattering processes. In other words,
the description of an excitation at a point r in space followed
by an intermediate state which propagates and de-excites at
some point r′ to get back to the elastic channel (virtual excita-
tions) is contained in the right-hand side of Eq. (10). In this
work, we shall not consider the Feshbach nonlocality. The
Pauli nonlocality is attributed to the exchange effects which
require antisymmetrization of the wave function between the
projectile and the target.

In order to solve Eq. (10), it is necessary to know the
explicit form of VNL(r, r′), which as such is not known.
However, we do know that VNL should be such, that in the
limit of vanishing nonlocality (represented by a nonlocality
parameter b, with b → 0), the integrodifferential Schrödinger
equation reduces to the homogeneous one. Assuming this, a
nonlocal kernel is usually described in literature [25–27] in
terms of a factorized form of the potential. The latter is then
used to obtain an effective (local) potential which can be used
in the homogeneous Schrödinger equation.

In this article, we use two nonlocality models to construct
the effective local potential and study the effects of the nonlo-
cality in the α and cluster decay of some heavy nuclei which
can decay by both modes. The first approach we consider
in which nonlocality is included was proposed by Perey and
Buck in the early 1960s [25]. In the Perey-Buck (PB) model,
an energy-independent nonlocal potential for elastic neutron-
nucleus scattering is suggested in order to study how far
the energy dependence of phenomenological local potentials
which had been used earlier could be accounted for by nonlo-
cality. To facilitate calculations, the authors assumed that the
nonlocal kernel can be written using a separable form with
a local potential times a Gaussian part which contains the
nonlocality

VNL(r, r′) = 1

π3/2b3
UN

(
1

2
|r + r′|

)
exp

[
−

(
r − r′

b

)2]
,

(11)

where b is the nonlocality range parameter and UN is
the energy-independent potential. The nonlocality range
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parameter in the case of nucleus-nucleus scattering can be
expressed as b = b0m0/μ, where b0 is the nonlocal range
of the nucleon-nucleus interaction, m0 is the nucleon mass,
and μ is the α-daughter or cluster-daughter reduced mass
[28]. For our calculations, we choose b0 = 0.85 fm. By using
the factorized form of Eq. (11), the nonlocal Schrödinger
equation is given as[

h̄2

2μ
∇2 + E

]
	N (r) = 1

π3/2b3

∫
UN

(
1

2
|r + r′|

)

× exp

[
−

(
r − r′

b

)2]
dr′. (12)

By assuming that the nonlocal and local wave functions are
approximately the same [	N (r) ≈ 	L(r)], and the potential
inside the nucleus is constant, the authors finally obtained a
local equivalent potential given by

U PB(r) exp

{
μb2

2h̄2 [E − U PB(r)]

}
= UN (r). (13)

The r dependence in the equation above is introduced by
hand and is justified a posteriori due to the success of the
model in reproducing data. Finally, the transcendental equa-
tion [Eq. (13)] is solved to obtain U PB(r). The approximations
used by the authors introduce an inconsistency at small r [9],
which as we will see later leads to differences in the results
between the two nonlocality models we use.

The second approach in which nonlocality is included was
developed in Ref. [27]. We will refer to this approach as the
Mumbai (M) model. In this approach, the authors use the
mean value theorem of integral calculus to solve the inte-
grodifferential Eq. (10). Performing a partial wave expansion
of VNL(r, r′) and 	(r′) in Eq. (10), they obtained the radial
equation, which, in the absence of the spin orbit and Coulomb
interaction was given as

h2

2μ

(
d2

dr2
− l (l + 1)

r2

)
ul (r) + Eul (r)

=
∫ ∞

0
gl (r, r′)ul (r

′) dr′, (14)

where

gl (r, r′) =
(

2rr′
√

πb3

)
exp

(
− r2 + r′2

b2

)

×
∫ 1

−1
UN

( |r + r′|
2

)
exp

(
2rr′x

b2

)
Pl (x) dx. (15)

By making use of the mean value theorem to rewrite the
integral on the right-hand side of Eq. (14), and after some
simplifications, the authors obtained the homogenized form
of the Schrödinger equation,[

d2

dr2
− l (l + 1)

r2
+ 2μ

h̄2

(
E − U M

l (r)
)]

ul (r) = 0, (16)

with an effective strong potential given by [27]

U M
l (r) =

∫ rm

0
gl (r, r′) dr′, (17)

where gl (r, r′) is written as in Eq. (15). The upper limit of
the integration over gl (r, r′) is numerically chosen to be the
distance at which the integral becomes negligible, which in
our case is essentially the range of the nuclear interaction.
In contrast to the PB model, the effective potential obtained
in the Mumbai approach is energy independent. However,
it is dependent on the angular momentum quantum number,
l . As a result of these two differences, it shows a different
behavior at small distances with U M

l → 0 for r → 0. We
refer the reader to Ref. [9] for a detailed discussion of the
above differences in the PB and M models. Here we show
a comparison of the DF potential VN (r) and the effective
potentials in Figs. 2 and 3. To find the PB local equivalent po-
tential U PB(r), we replace UN (r) with VN (r) and use Eq. (13).
The local effective Mumbai potential [U M

l (r)] is found us-
ing Eq. (17) by doing a similar replacement; namely, UN in
Eq. (15) is replaced by VN (r). We choose different isotopes
of the same nucleus, uranium (U), for comparison in order
to see the effect of the l dependence in the potentials. As
expected, the behavior of the M and PB potentials is quite
different at small distances. Due to the approximation used in
the PB model, the potential appears to be almost the same for
the different decays and is insensitive to the change in the l
value. This pattern is more evident in α decay than in cluster
decay.

A few comments regarding the inclusion of antisym-
metrization and medium effects within a nonlocal framework
are in order here. The authors in Refs. [29,30] have studied
the cluster and α decays of several nuclei within a for-
malism which includes the antisymmetrization through the
finite-range exchange part of the nucleon-nucleon interaction
[31]. The folding potential in this case becomes energy de-
pendent and becomes nonlocal through the exchange term.
The equivalent local potential is obtained by using a localized
approximation for the nonlocal densities of the interacting nu-
clei. One can also include the density dependence of the NN
interaction within such a model [32]. As mentioned earlier, in
the present work, including antisymmetrization which leads
to the so-called “knock-on exchange” term in the M3Y NN
interaction will result in double counting. The effective non-
local potentials used in this work include the exchange term
and medium effects of the NN interaction in a phenomenolog-
ical way through the nonlocality parameter. In Ref. [33], the
authors provided a good description of the nucleus-nucleus
scattering data with the São Paulo potential (which is similar
in spirit to the PB potential) without the exchange term or den-
sity dependence included in the NN interaction. The authors
noted explicitly that including these effects amounts to double
counting of the nonlocality effects and does not provide a
good description of data. The nonlocality parameter defined
earlier, namely, b = b0m0/μ, where b0 is the nonlocal range of
the nucleon-nucleus interaction, m0 is the nucleon mass, and
μ is the α-daughter or cluster-daughter reduced mass, takes
the antisymmetrization and medium effects into account in a
phenomenological way.

Finally, we discuss one of the first attempts to evaluate
the effects of nonlocality in α decay by Chaudhury [34,35].
The author considered an interaction potential consisting of
the pointlike Coulomb interaction between the α and the
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FIG. 2. The nuclear interaction potential between 4He and different isotopes of thorium (Th) in the α decay of the uranium (U) isotopes.
The boxes show a comparison of the effective potentials, U PB(r) (dash-dotted line), U M

l (r) (dashed line), and the DF potential VN (r) (solid
line) for decays involving different values of the angular momentum quantum number, l .

daughter nucleus superimposed by a nonlocal nuclear poten-
tial. The latter was taken to be the Igo potential with the
nonlocal part given by a Gaussian function as is used in the
approaches mentioned above too. The author obtained a ra-
dial differential equation starting from the integrodifferential
Eq. (10) with nonlocality and used it to write the JWKB
penetration factor. The equation, however, was not the stan-
dard radial Schrödinger equation but rather an equation of the

form[
d2

dr2
− l (l + 1)

r2
+ 2μE ε(r)

h̄2 − 2μV (r) ε(r)

h̄2

]
ul (r) = 0,

(18)

where the factor ε(r) contained the nonlocality parameter b.
The standard JWKB penetration factor is derived by starting

FIG. 3. Same as Fig. 2 but for the different cluster decay modes of the uranium (U) isotopes.
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from the radial Schrödinger equation for a particle with energy
E , tunneling a potential barrier V (r). However, the author
mentions using a JWKB solution of the above equation to
obtain the following preformation factor:

P = exp

{
− 2

√
2μ

h̄2

∫ r0

ri

[
2(Z − 2)e2

r
ε(r)

− V0 f (r) ε(r) + h̄2

2μ

l (l + 1)

r2
− E ε(r)

]1/2

dr

}
(19)

where ε(r) = [1 + η f (r)]−1 and η = (μb2/2h̄2)V0. The
strong potential, V0 f (r) was taken from the Igo potential.
The penetrability was found to increase by about 50% due
to nonlocality for the nuclei studied.

C. Potentials for deformed nuclei

The cluster decay half-lives are calculated using the ex-
pression of the decay width given by Eq. (2) for the case
of spherical nuclei. To extend the cluster decay half-life cal-
culations to deformed nuclei, axial symmetry of nuclei is
considered [36]. An additional simplification of the problem is
done by considering just one of the nuclei to be deformed [37].
The latter simplification seems to be justified for the decays
studied in the present work. Since it is reasonable to consider
the α (4He nucleus) to be spherical, in the case of α decay
the deformation of the heavy daughter nucleus is taken into
account. The heavier daughter in the case of cluster decay is
often (the doubly magic nucleus) 208Pb or a nucleus close to it.
Thus, in case of cluster decay, we take the deformation of the
light cluster into account. This implies the tunneling particle
is spherical for α decay and deformed for cluster decay.

For the spherical-deformed interacting system, we begin
by writing the nuclear potential between the heavy daughter
and the light cluster (or α particle) in Eq. (4) with one spher-
ical density, ρ1(r), and the other density deformed with axial
symmetry, ρ2(r, θ ). The latter is given as

ρ2(r, θ ) = ρ0

1 + exp
[ r−R(θ )

a(θ )

] , (20)

where the value of ρ0 is fixed by normalizing the density dis-
tribution ρ(r, θ ) and the angle-dependent half-density radius
R(θ ) and diffuseness a(θ ) are given by [37–39]

R(θ ) = R0(1 + β2Y20(θ ) + β4Y40(θ )) (21)

and

a(θ ) = a⊥(θ )
√

1 + | 	∇R(θ )|r=R(θ )|2, (22)

respectively. In the above expressions, R0 = 1.07A1/3
d fm, β2

and β4 are quadrupole and hexadecapole deformation param-
eters of the deformed nucleus, and

a⊥(θ ) = a0(1 + β2Y20(θ ) + β4Y40(θ )), (23)

where a0 is taken to be 0.54 fm. As mentioned earlier, the
potential in coordinate space is evaluated by converting the
six-dimensional integral in Eq. (4) to a momentum space
integral. For the decay problem under consideration, this
reduces to a one-dimensional integral in momentum space

FIG. 4. Schematic representation of the spherical deformed in-
teracting nuclei. φ is the orientation angle of the symmetry axis of
the deformed nucleus with respect to the vector connecting the center
of masses of the two nuclei.

(see Ref. [16] for a detailed derivation with spherical nuclei).
When the interacting nuclei are deformed, the shape as well as
the orientation of the two nuclei must be taken into account.
Assuming one nucleus to be deformed but axially symmetric
and the other spherical (for the general case of two deformed
nuclei, see Ref. [36]) the DF nuclear potential can be evalu-
ated as a sum of different multipole components [36,40,41]

VN (r, φ) =
∑

L=0,2,4...

V L
N (r, φ), (24)

where φ is the orientation angle of the symmetry axis of the
deformed nucleus with respect to the vector connecting the
center of masses of the two nuclei (Fig. 4). Each of the multi-
pole component is given by the momentum space integral,

V L
N (r, φ) = 2

π

[
2L + 1

4π

]1/2

PL(cos φ)

×
∫ ∞

0
dk k2 jL(kr)ρ1(k) ρL

2 (k) vN (k), (25)

such that ρL
2 (k) is the Fourier transform of

ρL
2 (r) = 2π

∫
ρ2(r, θ )YL0(θ ) d(cos θ ). (26)

The above is obtained simply from the multipole expansion

ρ2(r, θ ) =
∑

L=0,2,4

ρL(r)YL0(θ ). (27)

The sum in Eqs. (27) and (24) is usually truncated at
L = 4 to take the dominant form factors into account. The
Bohr-Sommerfeld quantization condition, Eq. (8), which is an
important constraint for the α and cluster decay half-lives cal-
culations (within the JWKB approximation) and determines
the depth of the nuclear potential, is now calculated at each
angle. This condition is rewritten as∫ r2(φ)

r1(φ)
k(r, φ) dr = (G − l + 1)

π

2
, (28)

where the turning points are similarly obtained by
V (ri(φ), φ) = Q. l is the orbital angular momentum quantum
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TABLE I. α and cluster decay data. Columns 3 to 6 refer, respectively, to Q value of the decay from the parent ground state (g.s.) to the
daughter g.s., the nonlocality parameter, the angular momentum carried by the emitted particle [45,46], and global quantum number given by
Eq. (9). The last columns refer to quadrupole β2 and hexadecapole β4 deformation parameters of the emitted cluster (c) and daughter nucleus
(d), respectively [47,48].

Parent Decay mode Q [MeV] b [fm] lmin G β
(c)
2 β

(c)
4 β

(d )
2 β

(d )
4

222Ra α + 218Rn 6.678 0.2160 0 22 0 0 0.040 0.029
14C + 209Pb 33.049 0.0648 0 68 −0.016 0.000 0 0

223Ra α + 219Rn 5.979 0.2160 2 22 0 0 0.103 0.072
14C + 209Pb 31.828 0.0648 4 68 −0.016 0.000 0 0

228Th α + 224Ra 5.520 0.2160 0 22 0 0 0.164 0.112
20O + 208Pb 44.723 0.0466 0 92 0.003 −0.108 0 0

231Pa α + 227Ac 5.150 0.2160 0 22 0 0 0.172 0.112
23F + 208Pb 51.888 0.0411 1 103 −0.202 0.110 0 0

232U α + 228Th 5.413 0.2160 0 22 0 0 0.182 0.112
24Ne + 208Pb 62.310 0.0395 0 106 −0.215 0.155 0 0

233U α + 229Th 4.908 0.2160 0 22 0 0 0.190 0.114
24Ne + 209Pb 60.485 0.0395 2 106 −0.215 0.155 0 0

28Mg + 205Hg 74.226 0.0345 3 117 0.323 −0.136 0 0
235U α + 231Th 4.678 0.2160 1 22 0 0 0.198 0.115

25Ne + 210Pb 57.683 0.0381 3 110 0 0 0 0
28Mg + 207Hg 72.425 0.0345 1 118 0.323 −0.136 0 0

237Np α + 233Pa 4.958 0.2160 1 22 0 0 0.207 0.117
30Mg + 207Tl 74.790 0.0325 2 127 −0.222 −0.112 0 0

236Pu α + 232U 5.867 0.2160 0 22 0 0 0.207 0.117
28Mg + 208Pb 79.669 0.0345 0 120 0.323 −0.136 0 0

241Am α + 237Np 5.637 0.2160 1 22 0 0 0.215 0.102
34Si + 207Tl 93.926 0.0291 3 141 0 0 0 0

242Cm α + 238Pu 6.215 0.2160 0 22 0 0 0.215 0.102
34Si + 208Pb 96.509 0.0291 0 142 0 0 0 0

number. The global quantum number G is taken to be the
same as in the spherical case and is determined by using the
Wildermuth-Tang condition, Eq. (9). The deformed Coulomb
potential is evaluated in a similar manner by using deformed
charge density distributions as in Eq. (20). Thus, the total
potential is given by

V (r, φ) = λVN (r, φ) + VC (r, φ) + h̄2

2μ

(
l + 1

2

)2

r2
. (29)

As a consequence of this orientation angle dependence
of the interaction potential, the wave number is also angle
dependent, k(r, φ). Since this term is required to obtain the
decay width �, it is necessary to average over all possible
orientation angles of the deformed nucleus. Some authors av-
erage the penetration probability and the normalization factor
(or the so-called assault frequency of the tunneling particle
related to this) and then multiply them [29,37,41]. However,
it is not appropriate since the penetration probability and the
normalization factor are not independent of each other. The
suitable way to obtain the decay width is then calculating an
angle-dependent width,

�(φ) = h̄2

2μ

[∫ r2(φ)

r1(φ)

dr

k(r, φ)

]−1

exp

[
−2

∫ r3(φ)

r2(φ)
k(r, φ) dr

]
,

(30)

and then averaging it over all directions [42–44],

� = 1

2

∫ π

0
�(φ) sin φ dφ. (31)

The α and cluster decay half-lives related to the decay width
are calculated using Eqs. (1), (30), and (31). The preformation
factor is chosen to be 1 and will be determined phenomeno-
logically later.

III. RESULTS AND DISCUSSION

The nonlocal nuclear interaction has been shown to de-
crease the half-life of spherical nuclei decaying by the
emission of α particles [9]. Here we study the combined
effects of nonlocality and deformation of the nuclei involved
in the decay process. In Table I, Q value of the decay from the
parent ground state (g.s.) to the daughter g.s., the nonlocality
parameter, the angular momentum carried by the emitted par-
ticle [45,46], and global quantum number given by Eq. (9) are
listed in columns 3–6. The last columns refer to quadrupole β2

and hexadecapole β4 deformation parameters of the emitted
cluster (c) and daughter nucleus (d), respectively [47,48].

A. Half-lives

In this section, we shall study the effects of nonlocality
and deformation individually as well as their joint manifes-
tation in the α and cluster decay half-lives. The calculations
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TABLE II. The calculated α- and cluster-decay half-lives using the DF model (fifth column) and the percentage decrease in the half-lives
of different models of nonlocality compared to those evaluated using the DF model without nonlocality. λ, λM , and λPB are the strengths of the
nuclear potentials in the DF, M, and PB models.

Double folding Mumbai Perey-Buck

Parent Decay mode lmin λ t1/2 [s] λM PC λPB PC

222Ra α + 218Rn 0 2.04 3.28 2.05 3.2 2.32 35.8
14C + 208Pb 0 1.61 1.10 × 105 1.61 4.1 1.86 76.9

223Ra α + 219Rn 2 2.04 7.09 × 103 2.10 12.3 2.37 37.0
14C + 209Pb 4 1.61 3.25 × 107 1.63 17.7 1.86 77.8

228Th α + 224Ra 0 2.04 8.60 × 106 2.06 3.4 2.37 37.5
20O + 208Pb 0 1.49 6.78 × 1012 1.49 3.9 1.72 87.2

231Pa α + 227Ac 0 2.04 4.30 × 109 2.06 3.2 2.36 38.2
23F + 208Pb 1 1.43 2.00 × 1014 1.44 6.4 1.66 90.2

232U α + 228Th 0 2.04 3.61 × 108 2.05 3.2 2.37 38.2
24Ne + 208Pb 0 1.42 1.43 × 1010 1.42 3.8 1.65 91.2

233U α + 229Th 0 2.04 5.82 × 1011 2.06 3.3 2.37 38.9
24Ne + 209Pb 2 1.42 7.25 × 1012 1.43 10.0 1.65 91.8

28Mg + 205Hg 3 1.35 5.80 × 1013 1.36 13.6 1.57 94.6
235U α + 231Th 1 2.02 3.06 × 1013 2.07 12.2 2.34 38.9

25Ne + 210Pb 3 1.41 4.57 × 1017 1.42 13.6 1.63 92.6
28Mg + 207Hg 1 1.36 1.10 × 1016 1.37 6.9 1.58 94.9

237Np α + 233Pa 1 2.01 1.11 × 1012 2.06 12.4 2.33 39.2
30Mg + 207Tl 2 1.35 3.11 × 1014 1.35 9.6 1.56 94.9

236Pu α + 232U 0 2.02 9.94 × 106 2.04 3.3 2.35 38.5
28Mg + 208Pb 0 1.38 1.07 × 109 1.38 3.7 1.60 94.0

241Am α + 237Np 1 1.99 6.55 × 108 2.04 12.4 2.33 38.9
34Si + 207Tl 3 1.32 4.33 × 1010 1.33 12.7 1.54 96.2

242Cm α + 238Pu 0 1.99 1.28 × 106 2.01 3.4 2.33 39.4
34Si + 208Pb 0 1.33 9.54 × 108 1.33 3.5 1.55 96.1

are done for two kinds of nonlocal potentials, namely, the
energy-independent, so-called Mumbai potential which is l
dependent and the well-known Perey-Buck potential which is
energy dependent but does not depend on l . We define the
percentage change (PC) in the half-life of a nucleus as

PC = tDF
1/2 − t1/2

tDF
1/2

100, (32)

where tDF
1/2 is the half-life calculated using the DF model only

and t1/2 is the half-life evaluated within the DF model includ-
ing nonlocality or deformation or both.

1. Effects of nonlocality

In order to study the change in the half-lives of nuclei due
to the nonlocal interaction potential between the decay prod-
ucts, as mentioned before, we use two nonlocal approaches
[25,27] from literature which are formally very different.
We shall see that though both the approaches are equally
successful in reproducing the scattering cross-section data,
the manifestation of the nonlocal effects in nuclear decay is
quite different within the two approaches. In Table II, the
half-lives calculated within the DF model are shown for the
α and cluster decay modes of different nuclei. The percentage
decrease in the half-life due to the inclusion of nonlocality
within the Mumbai and Perey-Buck approach is listed in the
next columns. A close look at the numbers reveals the differ-

ences in the two models which are rooted in the nature of the
nonlocality model. The main features to be noted from this
table are the following:

(i) The percentage decrease [listed as PC and evaluated
using Eq. (32)] is much larger in the Perey-Buck
approach as compared to the Mumbai model.

(ii) Whereas the PC remains almost constant (around
38% decrease for α decay and around 90% decrease
in many cases of cluster decay) within the Perey-Buck
approach, this is not the case when the Mumbai model
is used.

(iii) Within the Mumbai approach, the percentage de-
crease in half-life increases significantly with in-
creasing value of the relative angular momentum,
l , between the cluster (or α) and the daughter
nucleus.

(iv) The decrease in half-lives due to nonlocality is always
less in the case of α decay as compared to cluster de-
cay of the same nucleus when the Perey-Buck model
is used. Such a pattern does not exist if the nonlocal
effects are included within the Mumbai model.

The above features can be understood by noting that (i)
whereas the Perey-Buck local equivalent potential, U PB(r),
is derived starting from the full nonlocal Schrödinger equa-
tion, the effective Mumbai potential, U M

l (r), is derived from
the radial part of the same equation. (ii) As a direct conse-
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TABLE III. The calculated α- and cluster-decay half-lives using the DF model (fourth column) and the percentage decrease in the half-lives
when different kinds of deformation are included. The fifth column displays the percentage decrease of the half-lives including only the
quadrupole deformation parameter β2 in both R(θ ) and a⊥(θ ). The sixth column displays the percentage decrease including both the quadrupole
and hexadecapole deformation parameters in R(θ ). The diffuseness parameter is constant. The seventh column includes the quadrupole and
hexadecapole deformation parameters in both the radius and surface diffuseness parameters.

t1/2 [s] PC

Spherical Deformed with Deformed with Deformed with
Double R(θ ; β2) R(θ ; β2, β4) R(θ ; β2, β4)

Parent Decay mode lmin folding a⊥(θ ; β2) a0 a⊥(θ ; β2, β4)

222Ra α + 218Rn 0 3.28 5.9 0.4 8.8
14C + 208Pb 0 1.10 × 105 0.4 0.1 0.4

223Ra α + 219Rn 2 7.09 × 103 8.78 24.8 33.4
14C + 209Pb 4 3.25 × 107 0.4 0.1 0.4

228Th α + 224Ra 0 8.62 × 106 49.1 53.3 66.2
20O + 208Pb 0 6.78 × 1012 0.0 4.3 17.1

231Pa α + 227Ac 0 4.30 × 109 41.3 57.4 68.2
23F + 208Pb 1 2.00 × 1014 65.7 52.4 78.0

232U α + 228Th 0 3.63 × 108 46.8 53.9 62.1
24Ne + 208Pb 0 1.43 × 1010 72.0 62.7 87.5

233U α + 229Th 0 5.82 × 1011 62.5 48.5 75.4
24Ne + 209Pb 2 7.25 × 1012 72.2 62.9 87.5

28Mg + 205Hg 3 5.80 × 1013 99.5 92.9 98.6
235U α + 231Th 1 3.06 × 1013 45.1 66.1 77.9

28Mg + 207Hg 1 1.10 × 1016 99.5 93.1 98.6
237Np α + 233Pa 1 1.11 × 1012 51.5 68.8 81.6

30Mg + 207Tl 2 3.11 × 1014 83.7 63.0 80.0
236Pu α + 232U 0 9.94 × 106 49.3 65.9 76.2

28Mg + 208Pb 0 1.07 × 109 99.5 92.7 98.6
241Am α + 237Np 1 6.55 × 108 54.7 34.5 77.6
242Cm α + 238Pu 0 1.28 × 106 51.9 62.8 81.2

quence of (i), the Mumbai potential becomes l dependent [see
Eqs. (15) and (17)]. (iii) As a consequence of starting with the
three-dimensional Schrödinger equation and approximating
the nonlocal wave function by the local one, the Perey-Buck
potential becomes energy dependent [see Eq. (13)]. (iv) Fi-
nally, it must be noted that the derivation of U PB is done under
the assumption of a constant potential and the r dependence
is introduced a posteriori. The latter gives rise to the biggest
difference between the two nonlocal potentials; namely, the
Mumbai potential vanishes near the origin whereas the Perey-
Buck potential attains a large constant value.

In Table II, we also list the values of λ which decide
the strength of the nuclear interaction and are obtained by
imposing the Bohr-Sommerfeld condition, Eq. (8). They re-
main roughly the same for the decay processes that have the
same emitted cluster and do not display any strong l depen-
dence.

2. Role of deformation

The decay products in the α and cluster decays considered
in the present work are not necessarily spherical nuclei. In
the case of α decay, it is the daughter nucleus which can be
deformed whereas in case of the cluster decay, it is mostly
the light cluster which is deformed. The heavier daughter in
this latter case is mostly spherical. The nuclear deformation
is incorporated through a modification of the interaction po-

tential as described in Sec. II C. In the previous table, we
noticed that for a given parent nucleus and within a given
approach for nonlocality, the manifestation of the nonlocal
effects in the half-life of the nucleus depends on the mode
of decay (α or cluster). In the same spirit, we could also ask
if a deformed interaction potential would affect the half-lives
of the same parent nucleus decaying by α or cluster decay,
in a different way. In a semiclassical scheme as that of the
present work, the decay is described by the tunneling of the
lighter decay product through the Coulomb barrier created by
the interaction between the decay products. Seeing it from this
point of view, in the case of α decay, the tunneling nucleus is
spherical (and the heavy daughter deformed), whereas in case
of cluster decay, it is the deformed light nucleus which tunnels
through the barrier generated due to its interaction with the
spherical heavier daughter nucleus.

Table III displays the percentage change in the half-lives
of various nuclei decaying by the two modes, namely, α

and cluster decay. The last column lists the results with a
complete inclusion of the deformation effects in the radius
as well as diffuseness parameter in the potential. The fifth
and the sixth columns show the effect of ignoring some
of the terms involving the hexadecapole and quadrupole
deformation (these columns are listed for completeness
since such omissions are sometimes found in literature). In
spite of the tunneling picture considered above, deformation
manifests itself in a similar way in both α and cluster decay.
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TABLE IV. The calculated α- and cluster-decay half-lives using the DF model and the percentage decrease in half-lives when different
models of nonlocality and different kinds of deformation are included. The last two columns represent the complete calculation with β2 and β4

included in the radius and surface diffuseness parameters. Other columns show the effect of dropping one or both deformation parameters for
each model of nonlocality.

t1/2 [s] PC

Spherical Deformed with Deformed with Deformed with R(θ ; β2,

double R(θ ; β2) and a⊥(θ ; β2) R(θ ; β2, β4) and a0 β4) and a⊥(θ ; β2, β4)

Parent Decay mode lmin folding Mumbai Perey-Buck Mumbai Perey-Buck Mumbai Perey-Buck

222Ra α + 218Rn 0 3.28 9.1 39.6 4.2 35.9 12.3 40.8
14C + 209Pb 0 1.10 × 105 4.4 77.0 4.2 76.9 4.4 77.0

223Ra α + 219Rn 2 7.09 × 103 28.4 42.2 33.2 52.3 40.8 57.5
14C + 209Pb 4 3.25 × 107 18.0 77.9 17.8 77.9 18.0 77.9

228Th α + 224Ra 0 8.62 × 106 50.3 68.0 54.2 70.8 67.3 79.8
20O + 208Pb 0 6.78 × 1012 3.9 87.2 8.0 87.8 20.4 89.5

231Pa α + 227Ac 0 4.30 × 109 41.5 64.4 58.8 73.8 69.8 83.4
23F + 208Pb 1 2.00 × 1014 68.0 96.8 55.5 95.5 79.4 98.0

232U α + 228Th 0 3.63 × 108 54.1 65.7 55.5 71.6 63.9 77.0
24Ne + 208Pb 0 1.43 × 1010 73.0 97.7 64.2 96.9 88.0 99.0

233U α + 229Th 0 5.82 × 1011 63.8 76.9 50.3 67.2 76.8 86.2
24Ne + 209Pb 2 7.25 × 1012 75.0 97.8 66.7 97.1 88.8 99.1

28Mg + 205Hg 3 5.80 × 1013 99.6 100.0 93.8 99.6 98.8 99.9
235U α + 231Th 1 3.06 × 1013 62.7 64.5 70.3 80.5 78.3 86.9

25Ne + 210Pb 3 4.57 × 1017 13.6 92.6 13.6 92.6 13.6 92.6
28Mg + 207Hg 1 1.10 × 1016 99.5 100.0 93.6 99.7 98.7 99.9

237Np α + 233Pa 1 1.11 × 1012 63.8 67.7 72.5 81.8 82.9 89.3
30Mg + 207Tl 2 3.11 × 1014 85.3 99.2 66.5 98.1 81.9 99.0

236Pu α + 232U 0 9.97 × 106 53.3 69.4 66.9 79.8 77.3 87.2
28Mg + 208Pb 0 1.07 × 109 99.5 100.0 93.0 99.6 98.6 99.9

241Am α + 237Np 1 6.55 × 108 55.8 73.5 43.2 61.1 78.5 86.1
34Si + 207Tl 3 4.33 × 1010 12.7 96.2 12.7 96.2 12.7 96.2

242Cm α + 238Pu 0 1.28 × 106 54.9 71.0 65.4 77.8 81.9 87.3
34Si + 208Pb 0 9.54 × 108 3.5 96.1 3.5 96.1 3.5 96.1

The half-lives decrease after the inclusion of deformation
in the interaction potential. The effect is not sensitive to the
sign of the deformation parameters but is greater for larger
magnitudes of the parameters.

3. Half-lives with a nonlocal and deformed interaction potential

In Table IV, we show the effects of including both non-
locality and deformation in the interaction potential between
the daughter nuclei. This table is in principle meant to dis-
play the overlap of the effects shown in Tables II and III.
However, the overlap of the two effects cannot be expected to
be linear. Nonlocality and deformation both lead to a decrease
in the α as well as cluster decay half-lives. Since the decrease
due to nonlocality in the Perey-Buck model is already large,
one does not see a significant difference in the results with
nonlocality and deformation together. The Mumbai model,
however, displayed a smaller decrease in half-lives due to
nonlocality and including deformation enhances the effect
a lot. The effect is more enhanced for larger values of the
angular momentum quantum number l . Once again, this dif-
ference between the results using the two different approaches
for nonlocality could be due to the fact that whereas the
Mumbai potential is l dependent but energy independent, the

Perey-Buck potential is energy dependent but not l dependent.
It is interesting to note that both potentials can reproduce
scattering data equally well. The latter is understandable since
the differences in the models would not show up in the calcu-
lation of total cross sections (where we sum over all partial
waves). In this sense, the α or the cluster decay of a nucleus
which picks up a particular l value can be a better handle to
distinguish between different models of nonlocality and fine
tune them in a better way.

B. Preformation factors

The phenomenon of the emission of 4He (α) and light
nuclei such as 14C, 20O, 23F, 24−25Ne, 28−30Mg, and 34Si in
the radioactive decay of nuclei can be explained quite well
within a preformed cluster model where the decaying parent
nucleus is a cluster of the two decay products [29,30,49]. The
probability of formation of an α particle or a light cluster
inside the parent nucleus is proportional to the overlap of the
wave function of the final state with that of the initial state.
However, one can determine this quantity in a phenomeno-
logical way within the preformed cluster model. Within such a
model, one usually defines the decay constant or the width as a
product of the preformation factor, Pi (i = α or c here), assault
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TABLE V. The calculated α- and cluster-decay preformation factor Pi (i = α or c) using the DF model (fourth column), different models
of nonlocality (fifth and sixth columns), and including different kinds of deformation (seventh, eighth, and ninth columns). The last column
represents the calculation with β2 and β4 included in the radius and diffuseness parameters. Since the calculations are performed for transitions
from the parent to the daughter ground state (g.s), the branching ratio (B.R.) for the g.s. → g.s. transition, whenever available from experiment
is given.

Pi

Spherical Deformation

double Nonlocality R(θ ; β2) R(θ ; β2, β4) R(θ ; β2, β4)

Parent Decay mode B.R. lmin folding Mumbai Perey-Buck a⊥(θ ; β2) a0 a⊥(θ ; β2, β4)

222Ra α + 218Rn 0.969 0 8.63 × 10−2 8.35 × 10−2 5.54 × 10−2 8.11 × 10−2 8.59 × 10−2 7.82 × 10−2

14C + 208Pb − 0 8.64 × 10−7 8.29 × 10−7 2.00 × 10−7 8.61 × 10−7 8.63 × 10−7 8.61 × 10−7

223Ra α + 219Rn 0.01 2 7.18 × 10−3 6.30 × 10−3 5.42 × 10−3 6.55 × 10−3 5.40 × 10−3 4.82 × 10−3

14C + 209Pb − 4 2.93 × 10−8 2.41 × 10−8 6.50 × 10−9 2.92 × 10−8 2.92 × 10−8 2.92 × 10−8

228Th α + 224Ra 0.734 0 1.40 × 10−1 1.37 × 10−1 8.37 × 10−2 7.28 × 10−2 6.68 × 10−2 5.23 × 10−2

20O + 208Pb − 0 1.12 × 10−8 1.08 × 10−8 1.44 × 10−9 1.12 × 10−8 1.08 × 10−8 9.31 × 10−9

231Pa α + 227Ac 0.110 0 4.16 × 10−3 4.03 × 10−3 2.57 × 10−3 2.44 × 10−3 1.78 × 10−3 1.38 × 10−3

23F + 208Pb − 1 1.91 × 10−12 1.79 × 10−12 1.87 × 10−13 6.56 × 10−13 9.11 × 10−13 4.21 × 10−13

232U α + 228Th 0.685 0 1.67 × 10−1 1.61 × 10−1 1.02 × 10−1 8.88 × 10−2 7.69 × 10−2 6.53 × 10−2

24Ne + 208Pb − 0 5.91 × 10−11 1.65 × 10−11 5.20 × 10−12 1.48 × 10−10 2.20 × 10−11 7.39 × 10−12

233U α + 229Th 0.843 0 1.15 × 10−1 1.12 × 10−1 7.08 × 10−2 4.42 × 10−2 5.95 × 10−2 3.08 × 10−2

24Ne + 209Pb − 2 1.04 × 10−12 9.36 × 10−13 9.57 × 10−14 2.89 × 10−13 1.99 × 10−12 1.30 × 10−13

28Mg + 205Hg − 3 1.50 × 10−14 1.30 × 10−14 8.12 × 10−16 7.78 × 10−17 1.07 × 10−15 2.12 × 10−16

235U α + 231Th 0.0477 1 1.37 × 10−3 1.21 × 10−3 8.42 × 10−4 7.56 × 10−4 4.67 × 10−4 3.23 × 10−4

25Ne + 210Pb − 3 1.65 × 10−10 1.42 × 10−10 1.22 × 10−11 1.65 × 10−10 1.65 × 10−10 1.65 × 10−10

28Mg + 207Hg − 1 3.97 × 10−12 3.70 × 10−12 2.03 × 10−13 1.98 × 10−14 2.74 × 10−13 5.41 × 10−14

237Np α + 233Pa 0.0239 1 1.64 × 10−2 1.44 × 10−2 1.00 × 10−2 8.00 × 10−3 5.14 × 10−2 3.71 × 10−2

30Mg + 207Tl − 2 1.84 × 10−13 1.66 × 10−13 9.37 × 10−15 2.99 × 10−14 6.80 × 10−14 3.68 × 10−14

236Pu α + 232U 0.691 0 1.10 × 10−1 1.06 × 10−1 6.80 × 10−2 5.60 × 10−2 3.77 × 10−2 2.78 × 10−2

28Mg + 208Pb − 0 2.38 × 10−13 2.29 × 10−13 1.43 × 10−14 1.17 × 10−15 1.74 × 10−14 4.02 × 10−13

241Am α + 237Np 0.0037 1 4.80 × 10−2 4.20 × 10−2 2.93 × 10−2 2.22 × 10−2 3.09 × 10−2 1.18 × 10−2

34Si + 207Tl − 3 2.35 × 10−15 2.05 × 10−15 8.92 × 10−17 2.35 × 10−15 2.35 × 10−15 2.35 × 10−15

242Cm α + 238Pu 0.748 0 9.16 × 10−2 8.85 × 10−2 5.52 × 10−2 4.40 × 10−2 3.40 × 10−2 1.88 × 10−2

34Si + 208Pb − 0 6.78 × 10−15 6.55 × 10−15 2.65 × 10−16 6.78 × 10−15 6.78 × 10−15 6.78 × 10−15

frequency, and the penetration probability. Calculations are
performed by setting Pi = 1 and the disagreement with the
experimental half-life is then attributed to the performation
probability. Thus, one evaluates the theoretical width � as
in Eq. (2), or Eq. (31), with Pi = 1, and then defines the
probability for cluster formation as [49], Pi = �exp/�. Here
�exp = h̄ ln 2/t exp

1/2 is given by the experimental half-life. Note
that in case the parent nucleus decays into more than one
channel, one must take the branching ratio for the channel
under consideration into account. For decays involving the
parents as well as daughter nuclei with nonzero spins, the
α or the light cluster can be emitted with a nonzero an-
gular momentum quantum number. In this case, the width
calculated using Eq. (2) is in principle a partial width, �l .
In order to compare with the experimental (full) width, one
would in principle have to consider the sum

∑
l P(l )

i �l =
�exp. Indeed, in microscopic calculations, one does consider
the so-called “reduced widths” and evaluates the l-dependent
preformation factor within a given theoretical model. One of
the first such calculations was performed by Mang [50,51] in
a test of the shell model with the Po and At isotopes. For a
phenomenological determination of the preformation factor

within the preformed cluster model, however, it is customary
to define Pi as

Pi = �exp

�lmin

(33)

with �lmin evaluated for the minimum l value using Eq. (2)
with Pi = 1. The above relation is a good approximation if
the preformation factors and widths for all l > lmin are much
smaller than those for lmin. In the absence of any theoretical
calculations of Pi confirming the latter, we shall evaluate
the preformation factors using Eq. (33), which is commonly
found in literature. In the Tables V and VI, we present the
effects of nonlocality and deformation on the values of Pi

for the different decays discussed earlier. The notation is
similar to that used in the tables showing the half-lives and
the percentage changes due to nonlocality and deformation.
We note that the preformation factors in the tables have been
evaluated only for the transitions from the parent ground state
(g.s) to the g.s. of the heavy daughter nucleus using Eq. (33).
The branching ratio (B.R.) for the transition from (parent) g.s.
→ (daughter) g.s. is listed in the table in case of α decay
and should be multiplied with the values of Pi given in the
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TABLE VI. The calculated α- and cluster-decay preformation factor Pi (i = α or c) using the DF model and different models of nonlocality
(including deformation partly and fully). The last two columns represent the complete calculation with β2 and β4 included in the radius and
diffuseness parameters. Other columns show the effect of dropping one or both deformation parameters. B.R. is the branching ratio for the
transition from the parent ground state to the daughter ground state as in Table V.

Pi

Spherical Deformed with Deformed with Deformed with R(θ ; β2,

double R(θ ; β2) and a⊥(θ ; β2) R(θ ; β2, β4) and a0 β4) and a⊥(θ ; β2, β4)

Parent Decay mode B.R. lmin folding Mumbai Perey-Buck Mumbai Perey-Buck Mumbai Perey-Buck

222Ra α + 218Rn 0.969 0 8.63 × 10−2 7.84 × 10−2 5.20 × 10−2 8.26 × 10−2 5.52 × 10−2 7.58 × 10−2 5.10 × 10−2

14C + 208Pb − 0 8.64 × 10−7 8.26 × 10−7 1.99 × 10−7 8.28 × 10−7 2.00 × 10−7 8.26 × 10−7 1.99 × 10−7

223Ra α + 219Rn 0.01 2 7.18 × 10−3 5.14 × 10−3 4.15 × 10−3 4.80 × 10−3 3.42 × 10−3 4.25 × 10−3 3.05 × 10−3

14C + 209Pb − 4 2.93 × 10−8 2.40 × 10−8 6.46 × 10−9 2.41 × 10−8 6.48 × 10−9 2.40 × 10−8 6.46 × 10−9

228Th α + 224Ra 0.734 0 1.40 × 10−1 7.21 × 10−2 4.57 × 10−2 6.54 × 10−2 4.61 × 10−2 4.99 × 10−2 2.46 × 10−2

20O + 208Pb − 0 1.12 × 10−8 1.08 × 10−8 1.44 × 10−9 1.03 × 10−8 1.38 × 10−9 8.95 × 10−9 1.19 × 10−9

231Pa α + 227Ac 0.110 0 4.16 × 10−3 2.43 × 10−3 1.48 × 10−3 1.71 × 10−3 1.09 × 10−3 1.34 × 10−3 8.30 × 10−4

23F + 208Pb − 1 1.91 × 10−12 6.13 × 10−13 6.18 × 10−14 8.51 × 10−13 8.65 × 10−14 3.93 × 10−13 3.84 × 10−14

232U α + 228Th 0.685 0 1.67 × 10−1 7.66 × 10−2 5.73 × 10−2 7.61 × 10−2 4.73 × 10−2 6.31 × 10−2 4.25 × 10−2

24Ne + 208Pb − 0 5.91 × 10−11 1.59 × 10−11 1.38 × 10−12 2.12 × 10−11 1.84 × 10−12 7.11 × 10−12 5.86 × 10−13

233U α + 229Th 0.843 0 1.15 × 10−1 5.68 × 10−2 2.67 × 10−2 5.76 × 10−2 3.80 × 10−2 2.98 × 10−2 1.81 × 10−2

24Ne + 209Pb − 2 1.04 × 10−12 2.60 × 10−13 2.27 × 10−14 3.46 × 10−13 3.03 × 10−14 1.17 × 10−13 9.69 × 10−15

28Mg + 205Hg − 3 1.50 × 10−14 6.71 × 10−14 3.49 × 10−15 9.29 × 10−16 5.64 × 10−17 1.84 × 10−16 1.08 × 10−17

235U α + 231Th 0.0477 1 1.37 × 10−3 5.14 × 10−4 4.88 × 10−4 4.09 × 10−4 2.67 × 10−4 2.99 × 10−4 1.80 × 10−4

25Ne + 210Pb − 3 1.65 × 10−10 1.42 × 10−10 1.22 × 10−11 1.42 × 10−10 1.22 × 10−11 1.42 × 10−10 1.22 × 10−11

28Mg + 207Hg − 1 3.97 × 10−12 1.84 × 10−14 8.50 × 10−16 2.56 × 10−13 1.38 × 10−14 5.05 × 10−14 2.63 × 10−15

237Np α + 233Pa 0.0239 1 1.64 × 10−2 5.94 × 10−3 4.31 × 10−3 4.52 × 10−3 3.00 × 10−3 3.24 × 10−3 2.09 × 10−3

30Mg + 207Tl − 2 1.84 × 10−13 2.70 × 10−14 1.45 × 10−15 6.16 × 10−14 3.46 × 10−15 3.33 × 10−14 1.85 × 10−15

236Pu α + 232U 0.691 0 1.10 × 10−1 6.27 × 10−2 3.38 × 10−2 3.65 × 10−2 2.28 × 10−2 2.62 × 10−2 1.56 × 10−2

28Mg + 208Pb − 0 2.38 × 10−13 1.13 × 10−15 5.94 × 10−17 1.67 × 10−14 1.03 × 10−15 3.88 × 10−13 2.81 × 10−14

241Am α + 237Np 0.0037 1 4.80 × 10−2 2.24 × 10−2 1.27 × 10−2 2.69 × 10−2 1.86 × 10−2 1.03 × 10−2 6.65 × 10−3

34Si + 207Tl − 3 2.35 × 10−15 2.05 × 10−15 8.92 × 10−17 2.05 × 10−15 8.92 × 10−17 2.05 × 10−15 8.92 × 10−17

242Cm α + 238Pu 0.748 0 9.16 × 10−2 3.90 × 10−2 2.64 × 10−2 3.16 × 10−2 2.03 × 10−2 2.27 × 10−2 1.37 × 10−2

34Si + 208Pb − 0 6.78 × 10−15 6.55 × 10−15 2.65 × 10−16 6.55 × 10−15 2.65 × 10−16 6.55 × 10−15 2.65 × 10−16

table in order to determine the performation probability for
this particular transition. Thus, the preformation factors for
transitions from the parent g.s. to the different excited states
of the daughter will differ depending on the B.R. to that level.
Since the focus of the present work is to investigate the effects
of nonlocality and deformation, we leave such an investigation
of g.s. to excited states transitions for the future.

Though the tables give all details of the dependence of
the preformation factors on deformation and nonlocality (in-
dividually as well as the combined effect), in Fig. 5, we plot
the values of Pi for α and cluster decay as a function of the
Q values in order to visualize these effects. The two panels
show the calculations with two different models of nonlocality
with the inclusion of deformation with all the relevant terms in
the radius and the diffuseness parameters. The insets show a
magnified view of the preformation factors, Pi (with i = α)
for α decay which appear in the left corner of each panel.
Different interesting features emerge from this figure:

(i) All values of Pi evaluated for different isotopes seem
to lie on a band, displaying a linear dependence as a
function of energy.

(ii) For a given energy, the preformation factors decrease
as a function of l (shown by the colored symbols).

(iii) The effect of nonlocality + deformation is more pro-
nounced in case of the Perey-Buck (PB) model (right
panel) as compared to the Mumbai model (left panel).
The black symbols represent the calculations within
the double folding (DF) model without the inclusion
of nonlocality or deformation.

The Q values or the energies carried by the α or light
cluster are related to the binding energies of the parent and
daughter nuclei which in turn also define the formation energy
of a cluster [52]. A bigger binding energy of the daughter
therefore implies a higher Q value and more internal energy
available for the two nuclei in the cluster. The latter explains
the decrease in the values of Pi with increasing values of Q.
The observation of a linear dependence of the phenomeno-
logically evaluated Pi in Fig. 5 can be useful for theoretical
investigations of cluster formation probabilities.

C. Comparison of penetration probabilities

In the section discussing the different approaches for non-
locality, we mentioned one of the earliest works [34,35]
studying the effects of the nonlocal strong interaction in α

decay. The author evaluated the penetration probabilities for
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FIG. 5. Preformation factors Pi (i = α or c) as a function of the Q value or energy of the emitted particle in α and cluster decay of different
isotopes. The left panel corresponds to the comparison between the DF model (black symbols) and the Mumbai potential including complete
deformation (colored symbols representing different values of lmin). The right panel compares Pi calculated using the DF and PB models with
deformation. The inset shows a magnified view of the α preformation factors which appear to be clubbed together at the small Q values. Most
points appear to lie on a band around a straight line which is shown to guide the eye.

the α decay of several nuclei using Eq. (19). In Table VII,
we compare the penetration factors obtained in the Mumbai
approach studied in this work with that of Ref. [35]. However,
in order to perform a consistent comparison, we replace the

Igo potential used in Ref. [35] by the DF one used here and
similarly the point-like Coulomb interaction in Eq. (19) is
replaced by that obtained using the DF procedure too. Apart
from this, recalling that applying the JWKB procedure to the

TABLE VII. Comparison of the penetration probabilities calculated within the Mumbai (M) and Chaudhury (Ch) approach. The effect of
nonlocality is expressed in terms of a percentage increase in the penetration factor within the M or Ch model as compared to the double folding
model and is given by PC (NL) = (P(NL) − P(DF) ) × 100/P(DF).

Parent Decay mode Q [MeV] lmin P(DF) PC(M ) PC(Ch)

222Ra α + 218Rn 6.678 0 7.40 × 10−23 3.9 7.1
14C + 208Pb 33.049 0 3.23 × 10−27 4.1 7.9

223Ra α + 219Rn 5.979 2 3.41 × 10−26 12.2 7.4
14C + 209Pb 31.828 4 1.08 × 10−29 21.1 8.3

228Th α + 224Ra 5.520 0 2.78 × 10−29 4.1 5.3
20O + 208Pb 44.723 0 5.56 × 10−35 4.0 10.2

231Pa α + 227Ac 5.150 0 5.55 × 10−32 4.2 8.1
23F + 208Pb 51.888 1 1.95 × 10−36 6.8 10.9

232U α + 228Th 5.413 0 6.60 × 10−31 4.2 8.1
24Ne + 208Pb 62.310 0 2.78 × 10−32 3.9 10.9

233U α + 229Th 4.908 0 4.13 × 10−34 4.1 8.4
24Ne + 209Pb 60.485 2 5.41 × 10−35 11.0 11.7

28Mg + 205Hg 74.226 3 7.00 × 10−36 15.7 13.1
235U α + 231Th 4.678 1 7.94 × 10−36 11.8 8.4

25Ne + 210Pb 57.683 3 8.57 × 10−40 15.6 12.5
28Mg + 207Hg 72.425 1 3.65 × 10−38 7.2 13.8

237Np α + 233Pa 4.958 1 2.19 × 10−34 11.8 8.0
30Mg + 207Tl 74.790 2 1.34 × 10−36 10.5 12.3

236Pu α + 232U 5.867 0 2.41 × 10−29 4.0 8.1
28Mg + 208Pb 79.669 0 3.86 × 10−31 3.8 11.6

241Am α + 237Np 5.637 1 3.75 × 10−31 11.9 8.2
34Si + 207Tl 93.926 3 1.00 × 10−32 14.4 12.0

242Cm α + 238Pu 6.215 0 1.88 × 10−28 4.1 8.1
34Si + 208Pb 96.510 0 4.59 × 10−31 3.6 11.5
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radial equation leads to an improper behavior of the solution
near the origin unless one replaces the centrifugal term by
the Langer modified term mentioned earlier [15], we replace
l (l + 1) in Eq. (19) by (l + 1/2)2. The Bohr-Sommerfeld
quantization, which was not considered in Ref. [35], is also
taken into account to obtain a modified version of Eq. (19)
given by

PCh = exp

{
− 2

√
2μ

h̄2

∫ r3

r2

[
(λVN (r) + VC (r) − E )

× ε(r) + h̄2(l + 1/2)2

2μr2

]1/2

dr

}
(34)

where VN is the attractive strong potential whose depth is mod-
ified by the factor λ due to the Bohr-Sommerfeld condition.
The turning points r2 and r3 are given by V (r) = E as before
with E taken to be the Q value of the decay.

The penetration factors in both models are found to in-
crease due to the inclusion of nonlocality in the nuclear
potential. This is consistent with the fact that the half-lives in
general decrease due to nonlocality. The effect is expressed in
terms of a percentage change in the penetration probability
given by PC(NL) = (P(NL) − P(DF)) × 100/P(DF). The order
of magnitude of the changes are similar in both the models
considered. However, the results within the Mumbai approach
are sensitive to the l value in the decay. This is expected since
the potential defined by Eq. (17), obtained within the Mumbai
approach is l dependent.

IV. SUMMARY

In an earlier work [9], the effect of including nonlocality
in the nuclear interaction potential was found to decrease the
s-wave (l = 0) α decay half-lives of spherical nuclei. Re-
sults in Ref. [9] indicated that whereas the energy-dependent
Perey-Buck (PB) model produced a decrease of 20–40% in
the half-lives, t1/2, the energy-independent Mumbai (M) po-
tential decreased the half-lives by only 2–4%. Since both the
Perey-Buck and Mumbai potentials reproduce the scattering
data quite well, this large difference in the decrease of t1/2

was surprising. The Mumbai potential is l dependent whereas
the Perey-Buck potential does not depend on l . In the cal-
culation of cross sections, where one usually sums over all
possible l values to compare with data, the differences be-
tween the Mumbai and Perey-Buck potentials do not become
quite evident. However, if one considers a nuclear decay,
one is actually picking up a particular value of l . Hence, in
the present work, different nuclear decays involving nonzero
values of l were investigated. Considering nuclei with l 
= 0 to
be spherical is not always a good approximation. Hence, the
above studies were carried out by using a deformed potential
whenever necessary. The latter allowed us to also study the
effect of deformation on nonlocality.

When a nucleus has the possibility of decaying by emitting
an α particle (4He nucleus) or a light cluster (such as 14C,
24Ne, 28Mg, etc.), one can consider the decaying nucleus to

be a preformed cluster of an α and a heavy daughter or a
light nucleus and a not-so-heavy daughter (232U considered
as a preformed cluster of 4He + 228Th or 24Ne + 208Pb, for
example). Would the effects of nonlocality (and deformation)
show up differently in the two scenarios? To answer this ques-
tion, the half-lives were calculated for those nuclei which can
decay by emitting both an α or a light nucleus. The exercise
was rewarding not only in the sense of finding the different
manifestation of nonlocality in the two kinds of decays of the
same parent nucleus but also in noting the differences in the
two nonlocality models studied here.

Since the detailed observations are many, we summarize
here the global conclusions drawn from the results:

(i) In the tunneling decay of a nucleus which is con-
sidered to be a preformed cluster of the tunneling
light nucleus and a heavy daughter, it is important
to consider the nonlocality in the interaction potential
between the two nuclei forming the cluster.

(ii) Including the effects of deformation of the light nu-
cleus in cluster decay or the heavy daughter in α

decay both lead to a decrease in the half-lives of the
nuclei. The amount of decrease is decided by the mag-
nitude of the deformation parameters but not affected
by the sign of the parameters.

(iii) Sensitivity of the results to the l value (angular
momentum) in the decay is manifested within the
Mumbai model for nonlocality.

(iv) The combined effect of including deformation and
nonlocality (on the half-lives of nuclei) is in general
quite large within both models of nonlocality studied
here.

(v) Phenomenologically determined cluster preformation
factors display a linear dependence on the Q value or
the energy carried by the emitted α or light cluster.

Finally, we add that given the nature of the present work
with the many ingredients entering into the calculations of
half-lives, there is surely scope for better calculations. For
example, one could improve the tunneling model by including
the intrinsic degrees of freedom of the composite tunneling
object as shown in Ref. [53]. Though the nonlocality in the
two body interaction has been taken into account, there re-
mains the possibility of including the nonlocality inside the
interacting nuclei. Finally, one could replace the semiclassical
approach used here by a fully quantum mechanical one or
study the nuclear decay within different approaches as in
Ref. [43]. Future investigations in this direction can prove
useful for a better understanding of nuclear structure as well
as nonlocal nuclear interactions.
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