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Machine learning approach to pattern recognition in nuclear dynamics
from the ab initio symmetry-adapted no-core shell model
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A novel machine learning approach is used to provide further insight into atomic nuclei and to detect orderly
patterns amid a vast data of large-scale calculations. The method utilizes a neural network that is trained on ab
initio results from the symmetry-adapted no-core shell model (SA-NCSM) for light nuclei. We show that the
SA-NCSM, which expands ab initio applications up to medium-mass nuclei by using dominant symmetries of
nuclear dynamics, can reach heavier nuclei when coupled with the machine learning approach. In particular,
we find that a neural network trained on probability amplitudes for s- and p-shell nuclear wave functions not
only predicts dominant configurations for heavier nuclei but in addition, when tested for the 20Ne ground state,
accurately reproduces the probability distribution. The non-negligible configurations predicted by the network
provide an important input to the SA-NCSM for reducing ultralarge model spaces to manageable sizes that can
be, in turn, utilized in SA-NCSM calculations to obtain accurate observables. The neural network is capable
of describing nuclear deformation and is used to track the shape evolution along the 20−42Mg isotopic chain,
suggesting a shape coexistence that is more pronounced toward the very neutron-rich isotopes. We provide first
descriptions of the structure and deformation of 24Si and 40Mg of interest to x-ray burst nucleosynthesis, and
even of the extremely heavy nuclei such as 166,168Er and 236U, that build on first-principles considerations.
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I. INTRODUCTION

Modeling atomic nuclei from first principles (or ab initio)
is a computationally demanding task. Ab initio approaches
use controlled approximations and interactions informed by
the few-nucleon physics only (including but not limited to
two-nucleon scattering data). Therefore, they are suitable to
determine reaction rates used in simulations of astrophysical
processes, which involve short-lived nuclei that are impossible
or difficult to be measured. The ab initio symmetry-adapted
no-core shell model (SA-NCSM) [1–3] utilizes symmetries
that are inherent to atomic nuclei, which allows the approach
to provide ab initio descriptions of alpha clustering [4,5]
and of nuclear structure and reactions as far as the calcium
region [6,7]. While recent progress has been made in ab
initio theory for applications to medium-mass nuclei [8–10],
reaching heavier nuclei across the nuclear chart remains a
challenge. The reason is that the number of basis states (model
space size) in no-core shell models exponentially increases
with the number of particles and the space they occupy.
While the SA-NCSM drastically reduces the model space
size based on an established symmetry-based prescription,
this selection is validated through multiple simulations that
ensure convergence of results. Therefore, novel computational
approaches are needed to study challenging nuclear systems,
such as 40Mg, that has been suggested to have an effect on
x-ray burst nucleosynthesis modeling [11], as well as nuclei

in the lanthanide and actinide regions of interest to r-process
simulations [12].

In this paper, we use a machine learning (ML) approach
based on a neural network with the goal to predict non-
negligible configurations to be used in SA-NCSM model
spaces in a much less computationally demanding way. In-
deed, a multilayer feedforward neural network can be used
to approximate complicated functions by adding hidden
units until it reaches a desired accuracy [13]. Deep learn-
ing algorithms have emerged as a promising alternative to
physics approaches [14] and have already been applied to
nuclear physics, including extrapolations of nuclear observ-
ables [15–17], machine learning–based inversion of nuclear
responses [18], studies of the unitary limit [19], as well as op-
timization of experimental techniques and data analysis [20].
Here we use data from ab initio SA-NCSM wave functions to
train a network on selected light nuclei in order to find general
patterns in nuclear dynamics and use these patterns to make
predictions for heavier nuclei.

Earlier SA-NCSM results for various nuclei have shown
the emergence from first principles of highly ordered patterns
that relate to the dominance of only a few nuclear shapes
in low-lying states that vibrate and rotate (with each shape
tracking with a symplectic Sp(3,R) irreducible representa-
tion) [1]. This suggests that a neural network can indeed be
beneficial and by detecting these patterns it can inform us
about nuclei that have not yet been modeled. The universality
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of these patterns ensures that the network can be applied
across the nuclear chart, while retaining the properties of the
training data. With a moderate size of training data, the net-
work can identify the collection of negligible configurations
that are eliminated from the SA-NCSM model space. This
results in significantly fewer calculations needed to achieve
convergence of results, thereby increasing the applicability of
the model. Furthermore, for data training sets that are suffi-
ciently large, we show that the network provides practically
accurate predictions of dominant configurations in light and
intermediate-mass nuclei, with probability amplitudes being
in a close agreement with those calculated in the SA-NCSM,
as evident in calculations of 4He and 20Ne. Remarkably, this
is achieved in a tiny fraction of the time, without the need for
full ab initio calculations.

Specifically, we explore the capabilities of the neural net-
work and its efficacy in using information rooted in first
principles to provide descriptions in nuclear regions where
large-scale calculations are computationally demanding or
practically impossible. We use the illustrative example of 4He
to demonstrate that such a network is able to train on data
from smaller model spaces to make accurate predictions for
the same nucleus in larger model spaces. We compare the
network predictions for the intermediate-mass nuclei, 20Ne,
24Si, and 28Mg, to available SA-NCSM calculations and use
the network to predict results in larger model spaces. In addi-
tion, we study Mg isotopes between the proton and neutron
driplines with a focus on the ground-state evolution with
neutron number and provide insights into the shape coexis-
tence phenomenon Finally, in an application of the network
to extreme cases of heavy nuclei, we provide predictions for
dominant configurations in 166Er, 168Er, and 236U.

II. THEORETICAL FRAMEWORK

A. Symmetry-adapted no-core shell model

The SA-NCSM provides ab initio descriptions of nu-
clei [2] by taking advantage of inherent symmetries of the
nuclear dynamics. The approach is able to eliminate negli-
gible nuclear configurations based on their deformations and
to achieve model spaces with a manageable size, which has
allowed ab initio descriptions for intermediate and medium-
mass nuclei [1,2,6,21,22]. The SA-NCSM takes as input the
interaction between the nucleons. In this paper, we utilize
wave functions obtained with the NNLOopt nucleon-nucleon
(NN) potential [23] derived in the chiral effective-field-theory
framework.

The SA-NCSM many-body basis states build on harmonic
oscillator (HO) single-particle states and are labeled schemat-
ically as:

|a; N (λ μ)κL; (SpSn)S; JM〉, (1)

where Sp, Sn, and S denote proton, neutron, and total intrinsic
spins, respectively, and N is the total number of HO excitation
quanta. The deformation is represented by λ and μ quan-
tum numbers, which inform how prolate and oblate a state
is, that is, (λ 0) indicates a prolate deformation, (0 μ) indi-
cates an oblate deformation, whereas (0 0) denotes a spherical
shape [2,6]. The label κ distinguishes multiple occurrences

of the same orbital momentum L in a given (λ μ). The L is
coupled with S to the total angular momentum J and its pro-
jection M. The symbol a schematically denotes the additional
quantum numbers needed to specify the basis.

Furthermore, the model space of the SA-NCSM is kept
finite in size by introducing a maximum total number of HO
excitation quanta Nmax above the valence-shell configuration,
that is, N = 0, . . . Nmax, which defines the overall size of the
model space. It also has an energy resolution of h̄�, defined
by the energy of a single HO excitation. Both Nmax and h̄�

are parameters of the basis, with converged results coinciding
with those in the infinite model-space size (Nmax → ∞) that
are independent of h̄�. Calculations in a model space with a
limited size (low Nmax) may result in enhanced deformations
not fully developed. In this case, important basis states are not
taken into account. Large-enough Nmax includes all necessary
basis states at the cost of computational resources. In the
SA-NCSM, the basis states are additionally selected above a
given N cutoff (labeled as 〈N〉Nmax). In this way, model sub-
spaces above N in the SA-NCSM include only non-negligible
configurations, and those are necessary to develop collective
and clustering correlations.

B. Network structure

A basic feedforward neural network, as shown in Figs. 1(a)
and 1(b), takes in inputs x ≡ a0 in the input layer and pro-
duces output a in the output layer. In each hidden layer i,
the activation function of a neuron k is determined from the
activation functions of the previous layer’s neurons j, ai

k =
f (

∑
j w

i
jkai−1

j + bi
k ), where the function f is discussed below,

and the network parameters W and b provide, respectively,
the weights between two neurons and the bias associated
with each neuron [24]. The value produced by the activation
function is transmitted to the neurons in the next layer where
this process happens again, until the output is reached. In
this work, all layers except the output layer use the rectified
linear unit (RLU) activation function for f . This RLU function
returns the input value if it is positive, and it returns zero
otherwise [24]. The output layer has a sigmoid activation
function S(x), where

S(x) = 1

1 + e−x
. (2)

To train a network, a set of data with inputs and their
corresponding outputs is used to determine network param-
eters W and b, for each connection and neuron, that minimize
the difference between the results of the network (activation
function of the output layer, apredicted), and the expected results
(data outputs, atrue). This difference defines a loss, which is
thereby calculated by a loss function. In this work, we use the
Poisson loss function for ND number of training points,

L = 1

ND

ND∑

i

[apredicted,i − atrue,i ln(apredicted,i )], (3)

which would prevent strict fitting to the true values in
favor for an expected probabilistic pattern. For our case,
using this instead of a standard mean-squared error loss

034306-2



MACHINE LEARNING APPROACH TO PATTERN … PHYSICAL REVIEW C 105, 034306 (2022)

FIG. 1. (a) Feedforward neural network with interconnected neu-
rons. Layers are labeled by index i; neurons are connected by weights
wi; each neuron has a bias bi and is assigned an activation function
ai. (b) A basic feedforward neural network with an input layer, two
hidden layers, and an output layer with one neuron. In this network,
every neuron in a layer is connected to every neuron in the previ-
ous layer. (c) A slightly more complicated network with segmented
layers. Here, there are two groupings where two input neurons are
exclusively connected to two hidden layer neurons but not the others.

function resulted in data points that are more closely clustered
around the expected values and yielded a better fit when
reproducing the training data (Fig. 2). Specifically, for given
atrue ∈ [0, 1], the loss function has a (nonzero) minimum for
apredicted = atrue, and this minimum increases with increasing
atrue [as illustrated in Fig. 2(c)] for f (apredicted ) = apredicted −
atrue ln(apredicted ). Hence, larger probabilities atrue effectively
enter with a larger weight, and the dominant configurations
are predicted most accurately. In addition, the loss function
is more sensitive to overestimates, especially for very small
probabilities. This ensures that the network efficiently detects
the negligible configurations that can be then eliminated from
the model space in SA-NCSM production runs and reduce
computational resources. This loss function appears ideal for
the purposes of this network but should be used with caution
if accurate estimates are needed for all orders of magnitude.

The loss function L is minimized using an optimizer [25],
which defines how the weights and biases are updated during

FIG. 2. Probability amplitudes across basis configurations for
16O in Nmax = 8 with h̄� = 20 MeV calculated in the large-scale
many-body model (labeled as “SA-NCSM”) and predicted by the
network (labeled as “ML”) trained on data for 4,8He, 6Li, 8Be,
10,12,14C, and 16O. Only basis states that have SA-NCSM probability
amplitudes above 10−7 are shown. For states where the network
predicts zero, no point is plotted for “ML.” (a) Predictions using
Poisson loss function. (b) Predictions using the mean-squared error
as the loss function. (c) The Poisson loss function for a single training
point shown for multiple values of atrue.

training. The present approach utilizes Adam optimization,
which is a stochastic gradient descent method with adaptive
learning rates between parameters and carried momentum be-
tween updates [26]. In this study, the activation functions, loss
function, and optimizer are chosen during test runs to ensure
that the network fits the data well and have a capability of
avoiding local minima. The training is run over 200 epochs
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and each epoch covers the entirety of the training set. In an
effort to further avoid local minima, multiple networks may be
individually trained to search for a network with nonzero and
nonconstant predictions for extreme cases, such as the heavy
Er and U isotopes. The computational implementation of the
network is achieved using the Keras deep learning application
programming interfaces [27].

In this work, the neural network takes in a specific many-
body basis configuration of a nuclear state and returns a value
for the probability amplitude of that configuration. Since this
network trains on data from SA-NCSM, it must have inputs
relating to the parameters of the SA-NCSM model space. The
presented results only use data with the NNLOopt interaction
to maintain consistency.

There are 11 input neurons. Each neuron has a single value
as input. The inputs for the neurons are the number of protons
Z; number of neutrons A − Z; total angular momentum J;
excitations N ; spin of protons Sp; spin of neutrons Sn; total
spin S, λ, and μ according to Eq. (1), as well Nmax and h̄�

(in MeV) basis parameters. However, for the purposes of
reducing the scope of the data used by the network for this
study, all of the cases have zero total angular momentum only.
The inputs are entered as an array:

[Z, A − Z, Nmax, h̄�, J, Sp, Sn, S, λ̃, μ̃, N], (4)

where λ̃ = λ − λ0 and μ̃ = μ − μ0 with (λ0 μ0) being the
configuration with the largest deformation and lowest intrinsic
spin in the N = 0 model subspace, also known as the leading
SU(3) configuration, which is unique for a given nucleus. This
is based on a pattern we notice in the existing SA-NCSM re-
sults across nuclei, namely the most dominant configurations
often lie in the set

N (λ μ) = {0(λ0 μ0), 2(λ0 + 2 μ0), 2(λ0 − 2 μ0 + 2),

4(λ0 + 4 μ0), 4(λ0 μ0 + 2),

6(λ0 + 6 μ0), 6(λ0 + 2 μ0 + 2), . . . } (5)

(see also Refs. [1,2]). By subtracting (λ0 μ0), we expect
the same pattern {0(0 0), 2(2 0), 2(−2 2), 4(4 0), 4(0 2),
6(6 0), 6(2 2), . . . } to be detected in all nuclei. For simplic-
ity, we will drop the tilde notations from (λ μ) in further
discussions of the neural network input. We emphasize that
this pattern naturally emerges from calculations in complete
model spaces without any a priori symmetry consideration.
In addition, the training data set, as described below, consists
mostly of complete model spaces; the selected model spaces
used include basis states that largely surpass in number the
configurations listed in Eq. (5).

As mentioned, in a basic neural network, when one layer
serves as input to a second layer, it is common for each neuron
in the second layer to be connected to every single neuron in
the first layer by some set of weights [Fig. 1(b)]. For applica-
tions to SA-NCSM, we find that a network with a segmented
first hidden layer, as schematically shown in Fig. 1(c), pro-
vides important improvements. Since the input layer includes
different kinds of information about the nucleus, including
particle numbers (Z , A − Z), basis parameters (Nmax and h̄�),
spins of a nuclear state (J , Sp, Sn, and S), and its deforma-
tion, (N , λ, and μ), it is beneficial to group these inputs into

FIG. 3. Neural network structure. Circles represent neurons and
lines represent weights. Darker circles signify a larger absolute value
of the bias. Darker lines signify a larger absolute value of the weight.
Input neurons are in the leftmost layer. There are two hidden layers.
The input layer and first hidden layer have their connections seg-
mented into groups. The input labels are shown next to the input
neurons in downward order. The second hidden layer and output
layer connect to all neurons before them. The output is the rightmost
neuron, and it yields the probability amplitude for a given input basis
state. The normalization of the entire wave function is performed
afterwards. The network has 581 parameters and is trained over
15 626 data points.

different sets (Fig. 3). Each of these sets will then have their
own segment of the first hidden layer that they connect to. This
segment will not use any values from the other sets as input.
For each of these sets we know that information within has
strong relationships that affects the output. Segmenting the
first layer, therefore, forces the network to detect correlations
between these inputs independently from other inputs.

As illustrated in Fig. 3, the first hidden layer has some seg-
ments with more neurons to reflect the increased complexity
expected for the relationship between the output and the spins,
and more so, the deformation N (λ μ). The second hidden
layer has 10 neurons but connects to all of the first hidden
layer. Finally, there is one output neuron giving the probability
of the configuration. The network is used to give a prediction
for the probability amplitudes for all possible configurations
for a nucleus with given J and for given h̄� and Nmax, which
are normalized afterwards. The number of neurons was cho-
sen in an effort to have the number of parameters be about 0.01
of the number of data points in the training set (Table I). For
the training data, we consider 14 complete model spaces and
4 selected model spaces that are sufficiently larger compared
to the number of configurations listed in Eq. (5).

III. RESULTS AND DISCUSSION

Results discussed in this paper, except those for 4He, are
presented for a training set that includes only the s- and p-shell
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TABLE I. Training and validation data sets. A data set for given
Nmax and h̄� includes tens through hundreds to thousands of con-
figurations. Complete model spaces are denoted by Nmax, whereas
selected model spaces are denoted as 〈N〉Nmax (e.g., for 20Ne, 〈2〉10
indicates the use of all basis states up to N = 2 and selected basis
states for N = 4, 6, 8, and 10). The number of inputs used in the
training data set shows the total number of N (λμ)SpSnS configura-
tions in all model spaces listed for each nucleus. Also shown is the
dimension (number of all basis states) of the largest J = 0 model
space listed for each nucleus.

Number of
Nucleus Nmax h̄� (MeV) inputs Dimension

Training data
4He 6,8,10,12,14 22 696 5.80×104

8He 6 15 218 3.18×104

6Li 8 15 208 6.78×104

8Be 8,10,12,〈8〉14 15 3417 1.53×108

10C 8 15 1037 4.44×106

12C 6,〈6〉10, 〈6〉12 15 3211 1.90×109

14C 6,〈6〉10 15 2113 4.03×108

16O 8 20,25 4726 3.01×107

Validation data
20Ne 〈4〉6, 〈4〉8, 〈2〉10 15 7.18×1010

28Mg 〈0〉6 15 9.77×109

24Si 4 20 2.59×107

nuclei. This includes the s-shell nucleus 4He and p-shell nu-
clei 6Li, 8He, 8Be, 10,12,14C, and 16O, as listed in Table I. The
neural network predicts probability amplitudes for the lowest
0+ wave function of each nucleus, which are subsequently
normalized to 1. In this section, we present network validation
(for 4He and 20Ne), as well as network predictions in heavier
nuclei (24Si, 28Mg, 166,168Er, and 236U), together with a shape
evolution along the Mg isotopic chain.

We note that the network results are for the specific inter-
action used in the training data set, namely for the NNLOopt

NN chiral potential, which has been found to reproduce
various observables, such as three- and four-nucleon bind-
ing energy [23], electric dipole polarizability [28], analyzing
power [29], and B(E2) transition strengths [21], without the
three-nucleon (3N) forces. In addition, limited number of
SA-NCSM calculations have been performed with other chiral
potentials, and we find that contribution percentages slightly
vary, but dominant features remain [1,5]. This also holds for
the NNLOsat [30], for which we include the corresponding 3N
forces as averages, leading to large improvement in binding
energy with no effect on the dominant pattern in the wave
functions [6]. Hence, the present neural network approach
could be applied to pattern recognition in calculations from
any NN+3N chiral potentials, given a sufficiently large train-
ing data set.

A. Network validation

We study the capability of the neural network to predict
larger model spaces by training on smaller ones, and show

FIG. 4. Probability amplitudes across basis configurations for
4He in Nmax = 16 calculated in the large-scale many-body model
(labeled as “SA-NCSM”) and predicted by the network (labeled as
“ML”) trained on data for 4He in Nmax = 8, 10, 12, and 14. Only basis
states with SA-NCSM probability amplitudes above 10−5 are shown.
For states where the network predicted zero, no point is plotted for
“ML.”

an example for the 4He ground state (Fig. 4). In this case,
we expect that 4He develops its most significant structures in
lower Nmax spaces and hence, no new patterns are expected as
one goes from Nmax = 12 with 22 716 basis states to Nmax =
14 with 58 080 basis states. However, probability amplitudes
for low-N basis states often vary with an increase in the size
of the model space. Indeed, the results show that the network
has the capability to make close predictions for the probability
amplitudes of basis states for data similar to the training data.

The most important objective of using machine learning in
the present approach is to predict information about heavier
nuclei using ab initio calculations for light nuclei. As an illus-
trative example we validate the network with results for the
intermediate-mass nucleus 20Ne from calculations of s- and
p-shell light nuclei for Nmax = 6, 8, and 10 (Table I). We show
predictions for the largest model space Nmax = 10 (Fig. 5).
What we predict is an sd-shell nucleus, 20Ne, which is not
included in the training set. We utilize a Nmax = 10 model
space that consists of about 1012 basis states that is currently
infeasible but can be reduced to several million SA basis states
with a solution in the SA-NCSM [1]. Remarkably, we find that
the network predictions for the most significant configurations
in the 20Ne ground state follow the same pattern as the one
revealed by the SA-NCSM and is associated with an impor-
tant and widely spread feature of nuclear dynamics, namely
vibrations of equilibrium shapes [1]. Note that for 20Ne,
(λ0 μ0) is (8 0), and the dominant configurations of Eq. (5),
0(8 0), 2(10 0), 2(6 2), 4(12 0), . . . , are clearly revealed, as
shown in Fig. 5. Even beyond, the network results are in a
very close agreement with the SA-NCSM probability ampli-
tudes. This implies that once the network is trained on light
nuclei, it can efficiently provide probability amplitudes for
a deformation-based wave function and related information,
e.g., shape dominance and coexistence along with moments
of inertia, without the need for large-scale computationally
intensive calculations. It can also provide an upper estimate
for E2 transition strengths. This result is important as it shows
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FIG. 5. Probability amplitudes of dominant configurations pre-
dicted for the 20Ne ground state in Nmax = 10 by the network trained
on 4,8He, 6Li, 8Be, 10,12,14C, and 16O, as compared to the SA-NCSM
calculations. The configurations are labeled by N (λμ) and shown for
the largest SA-NCSM probability amplitudes � 1%. The configura-
tions are labeled by N (λμ)S and, for each N , listed left to right with
decreasing deformation.

that it is not necessary to include sd-shell nuclei in the training
set to get good predictions in the sd-shell region. However, we
find that it is imperative to use sufficiently large training data
sets, as tests with networks trained only on a few nuclei result
in larger deviations, but increasing the volume of training data
remedies this.

It is interesting to examine the weights and biases of the
network itself (Fig. 3). From the proton and neutron inputs,
the outgoing weights are relatively small. This is expected
since the dominant configuration (λ0 μ0) is subtracted from
the (λ μ) before it enters as an input, as discussed above. This
dominant configuration depends heavily on the numbers of
these particles. If this subtraction was not implemented, then
we would expect more heavy weights from those neurons.
In our case, the network is building on top of the dominant
(λ0 μ0), so while the proton and neutron numbers still affect
the pattern, the network uses them for fine-tuning since the
pattern is indeed similar across different nuclei. The largest
deformation generally comes from a zero spin state, so this
is likely reflected in how the total spin S neuron has the
heaviest weight within the spin segment of the network. The
pattern previously noted in Eq. (5) also depends on N , thus
the network has multiple relatively heavier weights from the
N input neuron. The heaviest weights in the network are be-
tween the two hidden layers, most notably from the spins and
the deformation segments in the first hidden layer, showing
that the network reflects the complexity associated with these
quantum numbers. The biases mainly vary in the first hidden
layer. Both the biases in the second hidden and the weights
connecting to the output neuron have a smaller range. This

FIG. 6. Probability amplitudes of dominant configurations pre-
dicted for the 24Si ground state by the network (“ML”) trained on
4,8He, 6Li, 8Be, 10,12,14C, and 16O, and compared to available SA-
NCSM calculations. (a) Nmax = 4 model space; (b) Nmax = 12 model
space, with configurations with probability amplitudes � 1%. The
configurations are labeled by N (λμ)S and, for each N , listed left to
right with decreasing deformation.

suggests that the network calculates the final probability by
taking into account a number of similar contributions rather
than arising from a single main pattern stored in one neuron
in the last hidden layer.

B. Predictions for sd-shell nuclei

We present another example for an sd-shell nucleus, the
ground state of 24Si, where we compare no-core shell-model
results in small model spaces to the network prediction
(Fig. 6). The results largely differ when the SA-NCSM
calculations are limited to Nmax = 4. In this very small model
space, the dominant deformations cannot fully develop. How-
ever, larger model spaces are very computationally intensive
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and prohibitive for many models (the complete space in
Nmax = 6 has dimension of ∼1011). The network predicts
(10 0) to be the most dominant configuration even within a
limited model space, and in addition recognizes large con-
figurations in N = 2 and N = 4 from the pattern of Eq. (5)
[Fig. 6(a)]. In contrast, the limited Nmax = 4 SA-NCSM cal-
culations, as expected, fail to account for such collective
correlations. The reason is that, within an Nmax model space,
the no-core shell model minimizes the ground-state energy
and to achieve this, introduces spurious (less deformed) con-
figurations that favor lower energies at the given model space
cutoff. The network, however, builds on the collective correla-
tions and clearly reveals some of them even in relatively small
model spaces. In larger model spaces, the network suggests
a slightly smaller contribution of the predominant shape as
other shapes become slightly more important [Fig. 6(b)]. The
network results point to physics that is similar to neighboring
nuclei and clearly omitted in no-core shell-model calculations
in limited model spaces. This information is critical for the
construction of a selected SA-NCSM model space for 24Si,
which, as a next step, will be used as input to large-scale
SA-NCSM calculations for first ab initio predictions of var-
ious observables, such as energy spectrum, radii, and reaction
rates, for low-lying states in 24Si that currently cannot be
measured directly.

For an example of predicting an even heavier nuclei, we
study the challenging 28Mg (Fig. 7), which has been suggested
to lie in the so-called island of inversion largely affected by the
higher p f shell [22]. In this case, the network is also capable
of detecting the significant configurations, and even reproduce
the probability amplitudes to a good degree. In particular,
for Nmax = 6, the most dominant configuration is predicted
by the network, but with larger probability as compared to
the SA-NCSM calculations, while another important con-
figuration, 0(8 2) S = 0, is drastically underestimated (with
probability amplitude of only 0.084%). The second dominant
shape 0(7 4) S = 1, when combined across proton and neu-
tron spins, is also in a reasonable agreement. We note that
here, as is the case with the results of Fig. 6(a), for compara-
tively small Nmax values [Fig. 7(a)], the network that is trained
on collective features predicts a more pronounced collective
pattern compared to the SA-NCSM results, whereas the latter
reveals a larger shape mixing as a result of the ground-state
energy minimization in the finite model space. It is interesting
that the network recognizes the most dominant S = 0 mode,
and especially the most dominant S = 1 modes which are
often suppressed within the light nuclei in the training set.
The dominant configurations for N = 2 and N = 4 are also
found to be well reproduced, but here again some slightly
less significant modes are neglected entirely according to the
network output. The network is then applied to the larger
Nmax = 12 model space [Fig. 7(b)], where the results reveal a
very similar pattern as the one predicted for Nmax = 6, with a
slightly smaller (6 6) S = 0 contribution. Hence, the network
suggests a predominance of a triaxial shape in 28Mg, the same
one detected at the smaller model space, and some admixture
with an oblate shape.

We expect that including more isotopes in the training set
with different numbers of protons and neutrons would further

FIG. 7. Probability amplitudes of dominant configurations pre-
dicted for the 28Mg ground state by the network (“ML”) trained
on 4,8He, 6Li, 8Be, 10,12,14C, and 16O and compared to available
SA-NCSM calculations. (a) Nmax = 6 model space; (b) Nmax = 12
model space, with configurations with probability amplitudes that are
� 1%. The configurations are labeled by N (λμ)S and, for each N ,
listed left to right with decreasing deformation.

improve the network accuracy for both 24Si and 28Mg, since
a large part of the current training set consists of nuclei with
equal numbers of protons and neutrons.

C. Shape evolution in Mg isotopes

As an important outcome, we utilize the neural network to
study shape evolution in Mg isotopes, from the proton-rich
20Mg to the 40,42Mg near the neutron drip line. Since these
are open-shell nuclei in the intermediate- and medium-mass
region, these systems pose a challenge to ab initio theory. We
consider even-mass nuclei only, since all of the training data
is for even-mass nuclei. For each isotope, the (λ μ) quantum
numbers of the basis states can be directly linked to the
deformation β and triaxiality γ shape parameters [31,32]
(Fig. 8). All of the isotopes favor prolate shapes except 28Mg,
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FIG. 8. Probability distribution (specified by the area of the cir-
cles) across the deformation β and triaxiality γ shape parameters for
various isotopes of Mg, for Nmax = 12 and h̄� = 15 MeV, trained on
4,8He, 6Li, 8Be, 10,12,14C, and 16O. The total spin that contributes most
to each configuration is also shown for S = 0 (blue) and nonzero S
(red).

which is triaxial, and 30Mg, which is oblate. For example,
the 26Mg deformation distribution predicted by the network
closely resembles the E2 transition density previously calcu-
lated in the constrained Hartree-Fock-Bogoliubov plus local
quasiparticle random-phase approximation method [33]. In
all cases, there is a predominant shape, which has the ex-
pected (λ0 μ0) deformation and intrinsic spin S = 0, followed
by another shape with (λ0 + 1 μ0 − 2) S = 1. In general, a
large ratio of the probability amplitudes for the secondary
shape relative to the dominant shape indicates a strong in-
terplay of the two shapes, pointing to a shape coexistence
in the low-lying energy spectrum. It is interesting that the
network suggests multiple cases where the shape coexistence
becomes pronounced, namely the neutron-rich 28Mg, 30Mg,
36Mg, 40Mg, and 42Mg. This may be a result of reduced
spin-orbit interaction toward the drip line. In addition to these
two shapes, there are other S = 0 configurations that appear
important, however, they follow the pattern of Eq. (5) and are
associated with vibrations of the dominant shape rather than
the existence of a new equilibrium shape (cf. Ref. [1]).

D. Neural network results for the actinide
and lanthanide region

Using the neural network, it is even possible to make
predictions for extremely heavy nuclei, as shown in Fig. 9
for 166,168Er and 236U. For such nuclei, full ab initio calcu-
lations are definitely not feasible. Yet, the network is able
to suggest a very similar pattern in these nuclei as the one
observed in light and medium-mass nuclei. There is only a
small difference, namely vibrations of the nuclear shape along
the x and y axes are comparable to those in the z direction
at N = 2. Nonetheless, the network clearly recognizes a set
of dominant configurations that resembles the one suggested
by earlier studies with schematic interactions [34–36]. For
166Er, Ref. [34] suggests the choice of (λ0 μ0) = (78 0) with
all spins assumed to be zero, which has reproduced E2 exper-
imental data. For 168Er and 236U, we use the leading 0(λ0 μ0)
configurations as done for the lighter nuclei presented above,
namely 0(30 8) for 168Er and 0(86 18) for 236U. We note that
a different (λ0 μ0) is suggested in Ref. [36] based on the use
of pseudo-SU(3). Comparing the networks predictions with
the results of these earlier papers, we find that the network re-
produces the dominant configurations and the overall pattern,
while future studies of B(E2) strengths based on the neural
network results will provide insight on the interplay of vibra-
tions in the z, x, and y directions in these nuclei. While the
earlier models [34,35] assume symmetries, the network results
are especially important to provide information on the degree
of symmetry breaking. If more than one dominant shape is
suggested by the networks, these shapes can be then studied
by models with schematic interactions that admit symmetry-
breaking terms as done, e.g., in Ref. [37]. As mentioned, the
network is trained on nuclei that are very light compared to the
Er and U isotopes, so we expect that adding significantly more
data from much heavier nuclei, e.g., SA-NCSM calculations
around mass A = 50, will improve the network predictions
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FIG. 9. Largest probability amplitudes (� 1%) across basis con-
figurations predicted by the network for (a) 166Er in Nmax = 12,
(b) 168Er in Nmax = 12, and (c) 236U in Nmax = 12, and for h̄� = 15
MeV. Network trained on 4,8He, 6Li, 8Be, 10,12,14C, and 16O.

at this scale, since increasing the volume and diversity of
training data is indeed beneficial.

IV. CONCLUSION

In this study, we demonstrate that a neural network pro-
vides an efficient mechanism—statistical in its nature—to
describe dominant features of nuclei, from light to heavy
mass, by using first-principles input. In particular, we showed
that the network was able to train on data from a single nucleus
to make accurate predictions of dominant configurations for
larger Nmax model spaces, as in the case of 4He. Training
on multiple s- and p-shell nuclei allowed the network to ac-
curately predict the dominant configurations for the sd-shell
nucleus of 20Ne. This validates the network and suggests that
the network is not limited to predicting extremely similar
nuclei.

In addition, the network results reasonably agreed with
existing ab initio SA-NCSM calculations for 28Mg, and we
found that the network was especially suitable for identifying
the non-negligible configurations, which, in turn, could be
used to inform the selection of model spaces for large-scale
SA-NCSM calculations of various observables, including en-
ergies, radii, and electromagnetic moments and transitions.
We further showed, for the illustrative example of 24Si, that
the network was capable of detecting the important collective
correlations even in smaller model spaces where shell-model
calculations fail to account for those.

As a notable outcome, the neural network was capable
of detecting a common feature of nuclear dynamics, namely
vibrations of equilibrium shapes, thereby applicable across the
nuclear chart. This is important, since the network is not used
to extrapolate to regions of different physics compared to the
training data set.

The neural network was utilized to study the interest-
ing phenomenon of shape coexistence and even to reach
heavy nuclei. In particular, the network results for different
Mg isotopes were used to study the deformation distribution
within each isotope, suggesting an interplay of two shapes as
recognized in the neutron-rich 28,30Mg, 36Mg, and 40,42Mg.
Furthermore, the nature of the network allowed us to apply
the approach to extreme cases that may never be accessible by
ab initio modeling, such as 166,168Er and 236U. Remarkably,
this was accomplished with training on s- and p-shell nuclei
only. While adding sd-shell nuclei to the training set will help
the network achieve more accurate predictions, the lighter
nuclei appear sufficient for the network to detect the patterns
that can be used for these significantly heavier nuclei cases.
We note that the network results remain to be tested against
other observables, such as E2 transitions.

We emphasize two important features of the network.
We found that substantially increasing the volume of the
training data set led to better predictive capability, which
suggests that, as more SA-NCSM calculations are performed
and added to the training set, the training data will become
richer and hence, will increase the network predictive power.
Another feature of the neural network is that the minimization
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procedure depends on a seed for a random number generator
used to update base weights and biases. Hence, the loss func-
tion can reach a local minimum, preventing the network from
finding the best fit to the patterns presented. Within a given
run, there is an innate variability of how the weights and biases
are chosen. Hence, the results could be different even with two
networks trained on the same data. To resolve this, we create
multiple networks that are trained on the same data subset, and
select the one with the lowest loss. This network is then used
to continue training with the complete data set. Alternatively,
multiple iterations may be performed, with the goal to reach
the global minimum. Such a procedure will result in improved
predictions and is part of ongoing work.

In short, we construct a novel machine learning ap-
proach that, coupled with large-scale ab initio SA-NCSM
calculations, provides further insight into atomic nuclei,
and is capable of detecting orderly patterns amid a vast

data of large-scale calculations. This approach is ideal for
studies and predictions of dominant shapes across the nuclear
chart.
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