
PHYSICAL REVIEW C 105, 034304 (2022)

Uncertainty analysis for the nuclear liquid drop model and implications
for the symmetry energy coefficients
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Background: Despite its age, the nuclear liquid drop (LD) model, plus the microscopic corrections, still plays
an important role in nuclear mass studies. Especially, the LD model readily correlate the finite nucleus and the
nuclear matter through the symmetry energy term.
Purpose: To systematically analyze the model uncertainty of the LD mass formula and check the corresponding
symmetry energy coefficients.
Method: The Monte Carlo bootstrap approach, based on the nonparametric sampling, is applied to determine
the statistical uncertainties of the parameter set in two popular LD formulas. The dependence between these
parameters is also quantified via the correlation coefficients.
Results: The least required proportion of the experimental mass data is fixed for the fitting process of the LD
formula. After the statistical deviation is determined for each parameter in the LD formula, the model uncertainty
is evaluated as illustrated for one heavy isotopic chain. The Pearson coefficients between each two parameters
involved in the LD mass formula are tabulated and figured plus the detailed discussions on the surface and
volume symmetry energy coefficients.
Conclusion: The uncertainties of the fitted parameters and the LD model itself are smooth, leading to a relatively
stable extrapolation. It is necessary to include the Wigner energy term in the LD model when yielding the
reasonable symmetry energy coefficients.

DOI: 10.1103/PhysRevC.105.034304

I. INTRODUCTION

Mass is a fundamental entity of all matter. In atomic
nuclei, mass appears in the form of the binding energy of
the nuclear constituents. This is of particular physical im-
portance as it strongly depends on the nuclear force for
which a general expression is still unknown [1]. The nuclear
mass is also crucial for unraveling the rapid neutron-capture
process or the r-process regulating the formation and evolu-
tion of heavy elements in universe [2]. However, the present
experimental facilities aimed at the nuclear mass are still
not accessible to these short-lived nuclei in the r-process
path [3]. As a result, the theoretical mass evaluations are
urgently required especially towards the high-precision ex-
trapolation. Up to now, the well-known global mass models
are generally constructed based on the macroscopic- (mac-)
microscopic (mic) approach (such as the finite range droplet
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model [4,5] and the Weizsäcker-Skyrme formula [6,7]),
Hartree-Fock-Bogoliubov method [8,9], the Dulflo-Zuker
(DZ) shell-model scheme [10], and the nuclear density-
functional theory [11,12]. On the other hand, the local tool,
rooted in the Garvey-Kelson relationship [13,14], the n-p
residual interaction [15] and so on, is exploited to evaluate
and predict the nuclear binding energy in an effective way.
Among these current mass formulas, the traditional nuclear
liquid drop (LD) model deserves special attention due to its
tremendous success in understanding the systematics of the
binding energy per nucleon and the nuclear fission process at
the early stage of nuclear physics. The consensus is that the
simple LD formula is inspired from two essential properties
of the atomic nucleus, namely, its incompressibility and the
saturation of nuclear force between nucleons. Meanwhile,
the liquid drop part governs the general trend of the nuclear
binding energy variation in the aforementioned mac-mic and
DZ models. When the mass number in the LD formula ap-
proaches the infinity, the residual part is the symmetry energy,
which is supposed to be connected with the same term in the
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equation of state (EOS) of nuclear matter. This has been
curved as a generic relation between the symmetry energy
coefficient of finite nuclei and that of nuclear matter [16].
After the introduction of more structural ingredients, the LD
formula has been further improved to obtain more accurate
binding energy values [17] or the mass difference (such as
α-decay energies) [18] as well.

When the uncertainty analysis was placed on the nuclear
mass fits, the liquid drop formula was taken as a pioneering
laboratory to study the model errors within the regression
method plus the possible extension to microscopic correc-
tions [19–21]. Recently, the machine learning strategy has
been introduced into the modern mass formulas, to improve
their accuracies and predictive abilities especially towards the
unmeasured region of nuclear chart [11,22–27]. In the mean-
time, the model uncertainty can be estimated simultaneously
during these procedures, such as the Bayesian inference plus
the Monte Carlo Markov chain-sampling [11,24–26]. Besides,
the nonparametric resampling method can be another choice
in the statistics practice [28–30], which has been implemented
in nuclear physics via the bootstrap procedure [31–33]. It
is, therefore, interesting to apply the Monte Carlo bootstrap
method into the uncertainty analysis of nuclear mass evalu-
ations. As is well known, the overfitting problem may exist
due to the complexity of model mass formulas, which can
hamper the reliability of theoretical extrapolations. To some-
what avoid this issue for nuclear mass, the (least) required
amount of involved samples in the LD fitting will be care-
fully explored to be helpful in the parameter determining
of other mass models. Through the repetitive and random
sampling, the bootstrap can help us to discuss the correlation
between model parameters, which is beneficial to understand
the physics of each term when there are usually many pa-
rameters in both semimic and microscopic mass formulas. A
noteworthy point is that one can then obtain the huge groups
of volume and surface symmetry energy coefficients (SEC)
plus their ratios in the LD formula, leading to a error analysis
on the SEC of equation of state in nuclear matter derived
from the above-mentioned relationship about the symmetry
energy [16]. In the next section, two selected LD formulas
are given following by the brief introduction of the bootstrap
method. The detailed results on the model uncertainty and
other quantities are then presented and discussed in Sec. III,
and a short summary is given in Sec. IV.

II. LIQUID DROP MODEL AND STATISTICAL METHOD

There are two types of liquid drop models used here,
namely, a slightly modified version of Bethe and Weizsäcker
(BW) formula [34] and an extended expression taken from
Ref. [17]. The former BW binding energy is composed of vol-
ume, surface, Coulomb, symmetry, and pairing terms, given
as [35,36]

B = avA + asA
2/3 + aC

Z2

A1/3
+ asym

(N − Z )2

A

+ assym
(N − Z )2

A4/3
+ ap

δ(N, Z )√
A

, (1)

where δ(N, Z ) = [(−1)Z + (−1)N ]/2, and the surface term
(assym) make the symmetry energy adjusted to the finite nuclei
so that the (asym + assym/A1/3) is usually called the symmetry
energy coefficient asym(A) of finite nuclei. The latter one is
sensitively related to the symmetry energy of asymmetric
nuclear matter, which will be paid special attention in this
study. After introducing some extra ingredients, the BW mass
formula can be modified as

B = avA + asA
2/3 + aC
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A

+ aRA1/3 + ash1P + ash2P2, (2)

where the subscripts xC, W, R, sh1, and sh2 denote the ex-
change Coulomb, Wigner, curvature terms, and empirical
shell corrections, respectively. The Casten factor P is defined
as [37]

P = vnvp

vn + vp
, (3)

where vn and vp mean the number of valence nucleons derived
from the subtraction between the proton (neutron) numbers
and the nearest magic numbers. For convenience, Eqs. (1)
and (2) are separately denotes as “LD1” and “LD2” in the
following. On the basis of the two above LD formulas, the
uncertainty analysis is implemented through the bootstrap
statistical method as follows [31–33]:

(1) The experimental binding energy data from the atomic
mass evaluation table [38] with the error bar below
100 keV are selected as the learning set, namely, {Bk}
with the total number of N = 2184. The subscript k
symbolizes one specific nucleus in this total set. These
measured data are considered as the accurate values
due to their high precision. In the traditional bootstrap
procedure, N samples are picked up from the learning
set {Bk} with the permission of the replacement (one
key factor in this kind of statistic analysis). Differently,
the present number of picked samples is M, smaller
than N , i.e., M < N . For each sampling with M, one
will get the standard deviation σ̂ between evaluated
binding energies and the experimental data after the
fitting process. The σ̂ value can be plotted versus M or
the ratio r of M to the total number N .

(2) The above plotting or analysis is to be repeated more
than 1000 times to fix the M or r value, above which
the standard deviation would be steady and stable.
Within this fixed sampling ratio, the bootstrap strategy
is then employed for two LD mass formulas. For the
ith sampling, one can obtain an binding energy array
{Bi

k′ }, and the parameter set of LD formula is deter-
mined by matching these chosen experimental values.
The subscript k′ is same as the above k but for the fixed
M samples. This process will be repeated again and
again to get T = 104 groups of parameters for each
LD mass formula.
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(3) With these obtained parameters sets, the uncertainty
evaluation plus the correlation analysis between dif-
ferent terms can be proceeded. For these nuclei with
measured mass data, the systematical error is esti-
mated as

σ̂ 2
sys,k = (B̄k,cal − Bk,exp)2, (4)

where B̄k,cal is the mean value of the calculated results
for the kth nucleus, i.e., B̄k,cal = 1

T

∑T
i=1 Bi

k,cal. In the
meantime, the statistical uncertainty is assessed by the
unbiased square deviation of the computed binding
energies themselves,

σ̂ 2
stat,k = 1

T − 1

T∑
i=1

(
Bi

k,cal − B̄k,cal
)2

. (5)

When extrapolating to the unknown mass region, this
statistical error can be used to evaluate the model un-
certainty itself. In addition, one can also figure out the
uncertainty of the coefficient asym(A) in the LD mass
formula of finite nuclei from the obtained T groups
of parameters. This is instrumental for governing the
symmetry energy in the equation of state of asymmet-
ric nuclear matter [16,39].

III. NUMERICAL RESULTS AND DETAILED
DISCUSSIONS

As above mentioned, the special attention is paid to an
interesting question: How many learning samples do we, at
least, need to derive a mass formula so that the latter can be
able to reasonably produce the binding energies of all known
nuclei? Although this procedure is performed here only for the
LD model, the conclusion could be valuable for other mass
formulas, and it can be easily reperformed there. Meanwhile,
this kind of discussion on the required fitting data is expected
to be meaningful for not only somewhat overcome the over-
fitting problem, but also reducing the massive computation
cost when it comes to the complicated- (mac-) microscopic
calculations. For each sampling, one picks up M binding en-
ergies of nuclei from the total learning set and then determines
the parameters of the LD formula by fitting these selected
samples. With this parameter set, we calculate the standard
deviation among calculated binding energies, experimental
values for the selected samples, the total measured nuclei,
and the residual ones. All these three kinds of σ̂ are plotted
versus the ratio of the selected M nuclei to the total data for
many times (over 1000 times), two of which are arbitrarily
chosen and presented in Fig. 1 for the cases LD1 and LD2,
respectively.

From Fig. 1, one can easily get one point that the deviation
value of the total learning nuclei generally hold as a constant
beyond one specific ratio (about 30%). This implies that this
ratio of fitting samples is big enough for regulating the mass
formulas or, at least, the LD ones. On the other hand, the σ̂

values of selected and residual samples vary around the total
deviation as accompanied by the random pattern. This can be
easily understood from the fact that there are different micro-
scopic influences, such as the shell and pairing corrections,

FIG. 1. Standard deviation between the calculated binding en-
ergies and the experimental values versus the sampling ratio with
respect to the total experimental data, for (a) LD1 and (b) LD2,
respectively. Note that the black, red, and blue lines are, respectively,
for the selected samples, residual nuclei, and total measured nuclei.

beyond the LD benchmark in different regions of nuclear
chart. Given the random sampling, the occurrence of the struc-
tural influence is also arbitrary, resulting in the oscillation of
the corresponding σ̂ value. However, these special deviations
away from the LD baseline, such as the closed-shell nuclei,
are covered in the mean-value process for the total nuclei.
Hence, with the increasing of the ratio of the samples, the σ̂

line of selected samples approaches that of total nuclei. On
the other hand, the situation of the residual nuclei is kind
of in the opposite direction in view of the fixed total nuclei,
leading to the reverse phase pattern there as compared to the
selected samples. Of course, note that the amplitude of these
oscillations of the black and red lines in Fig. 1 is limited in
contrast with the total σ̂ value, implying the robustness of the
LD-type formula. In general, the total deviation changes very
smoothly despite the relatively large value itself, indicating
that the basic features of nuclear masses have been grasped in
the LD framework.

As mentioned in the above section, the bootstrap proce-
dure is then implemented within the fixed sampling ratio,
namely 30%. Once the T groups of parameters are obtained,
one can, subsequently, get two important messages, i.e., the
uncertainty of parameters and the correlation between them.
This can be not only beneficial for understanding the physics
behind the mass formulas plus the reduction of parameters,
but also bring us the uncertainty evaluation of the model and
its prediction. In addition, the parameter pattern of LD1 is
supposed to be covered by the LD2 case, which is indeed the
realistic situation when we proceeded the uncertainty analysis
on the two types of LD formulas. Hence, the following results
and discussions are mainly based on the LD2 formula for
simplicity without hampering the following conclusion.

Table I presents the chosen range of involved coefficients
in the LD2 mass formula in which the statistical devia-
tion (uncertainty) of each parameter is calculated as σi =√

1
T −1

∑T
j=1(a j

i − āi )2, where the mean value of ai equals to
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TABLE I. Detailed results of the parameter set (scale in MeV) in
the LD2 formula, including the mean value, the statistical deviation,
the maximum, and the minimum values plus the relative uncertainty.

āi σi max min |σi/āi| (%)

aV −16.5158 0.1108 −16.1034 −16.9181 0.67
aS 26.2087 0.7107 28.7784 23.3157 2.71
aC 0.7664 0.0046 0.7834 0.7478 0.60
asym 32.0407 0.5036 34.0229 30.1952 1.57
axC −1.9588 0.1262 −1.5329 −2.4656 6.44
aW 55.7071 5.3123 79.1552 35.2188 9.54
assym −59.3384 2.6639 −49.4875 −69.1303 4.49
ap −10.7484 0.7250 −8.2585 −13.8036 6.75
aR −14.1299 1.2957 −9.1116 −19.2447 9.17
ash1 1.8538 0.0852 2.1932 1.5254 4.60
ash2 −0.1356 0.0087 −0.1028 −0.1682 6.42

∑T
j=1 a j

i . The relative uncertainty σi/āi is also listed in the last
column to further show the varying scale of each coefficient.
It is obvious that the volume and Coulomb terms are the most
stable, whereas the Wigner and curvature parameters change
relatively dramatically. Indeed, it is commonly accepted that
the volume part of the binding energy should be proportional
to the mass number A due to the short-range nature of nuclear
force [17,34]. Meanwhile, the nucleus is addressed as a uni-
formly charged sphere plus the well-known electromagnetic
interaction, resulting in the relatively clear Coulomb energy.
In contrast, despite the recognition of Wigner term, its spe-
cific expression still appears to be diverse [6,40]. The physics
resource is not explicit for the introduction of curvature term
either. In addition, the surface and symmetry energies are be-
lieved to be indispensable whereas the choices of other terms
are actually not definitive. For example, the empirical shell
correction comes from the valence nucleon scheme, which
is sensitively dependent on the shell position, whereas the
evolution of shell closure is supposed to occur in neutron-rich
nuclei.

Given the above uncertainties of the coefficients, the cor-
responding error bars, especially towards the border region of
nuclear chart, should be quite valuable in the point of view
of the model prediction. This statistical deviation somewhat
determines to what extent can we trust the mass formula.
The detailed results of the isotopic chain of uranium, the
heaviest natural element (up to now), are presented in Fig. 2
to illustrate the former point. As additional information, other
evaluations generally behave in a similar way. From this
figure, one can see that the theoretical results are in reason-
able agreement with the available experimental data. When it
comes to the neutron-rich region, there is a clear convergent
tendency for the binding energy, correlating to the saturation
properties of nuclear force. For a better insight into the model
uncertainty, this quantity is shown in the embedded figure.
As can be seen, the statistical error will increase with the
increasing of mass (neutron) number. Specifically, the uncer-
tainty value is about 4.5 MeV in the vicinity of the predicted
neutron dripline, which is compatible to the standard deviation
of the LD itself as shown in Fig. 1. It may be concluded that

FIG. 2. Comparison of the calculated binding energies from LD2
with the available experimental ones for the uranium isotopes where
the statistical error of each nucleus is separately demonstrated in
large scale to guide the eye.

the liquid drop mass formula can, at least, offer a relatively
robust extrapolating trend excluding the systematic error. As
noted previously, another merit of the present nonparametric
sampling is the direct correlation analysis of parameters in-
volved in the theoretical model. Owing to the accumulation
of T groups of parameters from the above resampling proce-
dure, each coefficient is plotted versus all the other ones in
Fig. 3 in which one can easily pick up the parameters with a
strong linear relationship. In detail, this group of pictures are
mapped into the matrix of the Pearson correlation coefficients
between each two parameters from the LD2 formula as shown
in Table II. As expected, the three dominant terms, namely,
the volume, surface, and Coulomb energies, are correlated
closely with each other [17,34]. Provided the volume and
surface terms, the liquid drop mass formula can be assumed
as an expansion in powers of A−1/3, naturally generating the
curvature part in terms of aRA1/3 [17]. These three terms are
indeed related clearly with each other as indicated by their
correlation coefficients. The shell correction is based on the
valence correlation scheme up to the second order, resulting
in the obvious correlation between them.

Last but not least, let us pay special attention to the sym-
metry energy and the Wigner energy for masses of finite
nuclei. The symmetry energy is not only supposed to be
crucial for compensating the discrepancies between different
mass formulas towards the dripline of nuclear chart [36,41],
but also play a key role in constraining the EOS in nuclear
matter [16,35,39,42–44]. In this sense, it is of physical interest
to see what will happen with regarding to the behavior of
symmetry energy in nuclear mass after the proceeding of
the present statistical analysis. The symmetry energy coeffi-
cient is here adopted as asym = (asym + assym/A1/3) in which
the two parameters are found to correlate greatly with the
Wigner term coefficient as can be seen from both Fig. 3
and Table II. One can, therefore, conjecture that the in-
troduction of the Wigner energy is necessary to correctly
extract the symmetry energy coefficient from the nuclear mass
data. According to the seniority shell model or the Wigner
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FIG. 3. Sketch of correlation between each other in all the obtained parameters of LD2 through the large-scale samplings. Note that the
plotting is made on the order of occurrence of each term in Eq. (2).

supermultiplet theory [17,45], the isospin dependence of the
nuclear ground-state energies would actually behave in the
T (T + 1) or T (T + 4) form with T = |N − Z|/2. Hence,
there should be a linear T -dependent term, referred as the
Wigner term [46,47], besides the conventional symmetry en-
ergy (N − Z )2/A. On the other hand, the coefficient of Wigner
energy is in strong correlation with those of symmetry energy
as shown in Table II. One can then speculate that the loss of
the Wigner energy would be compensated in the symmetry
energy coefficient during the fitting process. To put forward
this, the two parameters asym and assym are also extracted
based on the LD1 formula (without the Wigner term) via
the bootstrap method. Besides this, the same procedure is
performed again after these nuclei around the shell closure

are cleared out to avoid the shell effect as much as possible. In
detail, if the difference between the proton (neutron) number
of a nucleus and the nearest magic number is less than four,
this nucleus is excluded in the sampling procedure. Within
the present SEC form asym(A), the asym = 26.55 ± 0.23 and
assym = −18.87 ± 1.23 MeV is determined for the LD1 case
via the aforementioned analysis on 10 000 times of samplings,
whereas these two parameter vary quite limitedly with the
exclusion of near-shell nuclei, namely, asym = 26.65 ± 0.23
and assym = −19.12 ± 1.27 MeV. As expected, the shell ef-
fect on the extraction of symmetry energy coefficient appears
to be limited, which is consistent with conclusion from the
systematics of double β-decay energies in Ref. [48]. Mean-
while, the extracted value of asym is not consistent with the

TABLE II. Pearson correlation coefficients between each two parameters involved in the LD2 mass formula, corresponding to Fig. 3. Those
correlation coefficients, above 0.9, are denoted as bold, implying the strong linear relationship between the corresponding energy terms. Only
the half of this symmetric matrix is shown for simplicity without hampering the presentation.

aV aS aC asym axC aW assym ap aR ash1 ash2

aV −0.949 −0.842 −0.783 −0.041 −0.584 0.669 0.033 0.968 −0.214 0.202
aS 0.933 0.679 −0.259 0.454 −0.619 −0.038 −0.980 0.228 −0.198
aC 0.447 −0.472 0.195 −0.388 −0.036 −0.851 0.277 −0.226
asym 0.331 0.903 −0.967 −0.009 −0.775 0.262 −0.291
axC 0.482 −0.210 0.014 0.097 −0.128 0.061
aW −0.912 −0.014 −0.597 0.193 −0.203
assym 0.009 0.713 −0.277 0.292
ap 0.041 −0.043 0.047
aR 0.229 0.208
ash1 −0.951
ash2
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FIG. 4. Correlation between the original symmetry energy coef-
ficient asym and the surface correction one assym for the LD1 and LD2
cases, respectively.

commonly reported one, such as 30–32 MeV [41]. In contrast,
the optimal asym = 32.04 ± 0.50 and assym = −59.34 ± 2.66
MeV is determined for the LD2 case, which seems to be more
reasonable. Based on the above discussion and other careful
comparisons [6,49], the Wigner energy is indeed responsible
for such a kind of symmetry energy pattern. Note that the
shell correction, as mentioned in Ref. [48], is important for the
reasonable extraction of the coefficient of the Wigner energy
due to the comparable magnitude between them. To get an
insightful view, the original symmetry energy coefficient asym

is plotted versus the surface correction term assym in Fig. 4 as
well for the LD1 and LD2, respectively. They are obviously
in a linear relation with the ratio κssym/sym = 1.85 ± 0.06. In
a comparative study on the extraction of asym(A) [36], there
is a crossover point at A = 260 via various mass formulas
or local mass relations. The corresponding symmetry energy
coefficient is asym(260) = 22.90 ± 0.15 MeV, which is very
close to the present value in the LD2 extraction, namely,
asym(260) = 22.74 ± 0.16 MeV. Encouraged by these, it is
hoped that the present volume and surface symmetry energy
coefficients plus their ratio can be valuable when constraining
the symmetry energy coefficient in the nuclear EOS [50,51].

IV. SUMMARY

To summarize, two popular types of liquid drop mass for-
mulas are employed here to make systematical analysis on the
model uncertainty via the nonparametric bootstrap strategy.
Through repetitive samplings, the least required proportion
of the total experimental binding energies in the fitting of
mass formula is carefully investigated to not only reducing
the computation cost, but also overcome the overfitting prob-
lem to some extent. Within this fixed ratio (about 30% of
the total data) in the resamplings, the uncertainties of model
parameters are then obtained by the present statistical method,
leading to the evaluation on the extrapolation ability of the LD
formula. This is exemplified by the uranium isotopic chain in
which the model uncertainty is found to be generally compa-
rable to the original standard deviation towards the dripline
of nuclear chart. In other words, the LD mass formula can
provide a relatively robust extrapolation above the systematic
error in view of the model uncertainty itself. Owing to the
large number of samplings, the correlation analysis is eas-
ily performed for the coefficient of each term in the mass
formula. Besides the expected situation, the correlation be-
tween the coefficients of the symmetry and Wigner energies
is placed special attention, reconfirming the necessity of the
introduction of the Wigner term especially in the reason-
able extraction of the symmetry energy coefficient. Within
the present asym = (asym + assym/A1/3), the optimal asym =
32.04 ± 0.59 and assym = −59.35 ± 3.09 MeV is suggested
plus their ratio κssym/sym = 1.85 ± 0.06, which is expected to
be useful for constraining the symmetry energy of nuclear
equation of state.
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