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Glassy quantum nuclear pasta in neutron star crusts
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We conduct a comprehensive survey of the shape parameter space of the nuclear pasta phases in neu-
tron star crusts by conducting three-dimensional Hartree-Fock+BCS calculations. Spaghetti, waffles, lasagna,
bicontinuous phases and cylindrical holes occupy local minima in the resulting constant-pressure Gibbs energy
surfaces, implying multiple geometries coexist at a given depth. Notably, the bicontinuous phase, in which both
the neutron gas and nuclear matter extend continuously in all dimensions appears over a large depth range. Our
results support the idea that nuclear pasta is a glassy system. At a characteristic temperature, of order 108–109 K,
different phases may become frozen into domains whose sizes we estimate to be 1–50 times the lattice spacing
and over which the local density and electron fraction can vary. Above this temperature, very little long-range
order exists and matter is an amorphous solid. Electron scattering off domain boundaries may contribute to the
disorder resistivity of the pasta phases. Annealing of the domains may occur during cooling; repopulating of
local minima during crustal heating might lead to temperature-dependent transport properties in the deep crust
layers. We identify four regions distinguished by whether pasta is the true ground state, and whether the pasta
structure allows delocalization of protons. The whole pasta region can occupy up to 70% of the crust by mass
and 25% by thickness, and the layer in which protons are delocalized could occupy 45% of the crust mass and
15% of its thickness.
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I. INTRODUCTION

As one moves deeper into the solid neutron star crust, pass-
ing through the outer crust stabilized by degenerate electrons
and the inner crust stabilized by neutrons that have leaked
out of the neutron-rich nuclei forming the crystal lattice, the
nuclei occupy an increasing volume of the matter. Soft-matter
systems on Earth give clues about what to expect as the sepa-
ration between nuclei become comparable with their size [1].
When two fluid phases exist with one increasingly concen-
trated with respect to another, matter is self-organized into
a number of different geometries. For example, aggregates
of amphiphilic molecules called micelles arrange themselves
into spherical, cylindrical, and planar phases with increas-
ing concentration in water [2]. This phenomenon of self-
orgnization can be understood to arise from frustration: the
microscopic components of the system are subject to a com-
petition between interactions operating over similar length
scales. The total energy cannot be minimized with respect to
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all these microscopic interactions simultaneously. There is not
single potential well for the system to fall into; instead a rich
energy landscape of local minima separated by energy barriers
of varying heights emerges. Small changes in the initial condi-
tions of the system could lead to the microscopic constituents
arranging themselves in different ways. Such materials are
expected to have complex low-energy dynamics, giving rise to
correspondingly complex behaviors of thermal conductivities,
electrical resistivities and elastic properties.

Our system of interest comprises a Coulomb lattice of
nuclei immersed in a fluid of neutrons. The microscopic
interactions in play are the nuclear force and the Coulomb
interaction. Throughout most of the inner crust, the short
range nuclear interaction binds nuclei while the long rang
Coulomb interaction drives the formation and stability of
the lattice, determining the spacing between nuclei. As we
move deeper toward the crust-core transition, however, the
separation between nuclei becomes comparable with the
length scale of the nuclear interaction ∼10 fm and frustration
is expected to ensue.

Consequences of this convergence of length scales was
first studied by examining the compromise between surface
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and bulk Coulomb energies of the nuclei in a liquid drop
model and led to the conclusion that a sequence of exotic
nuclear geometries became preferable at ≈0.5ρcc where ρcc

is the crust core transition density [3–6]. Cylindrical, pla-
nar, cylindrical hole, and spherical hole configurations were
found to be energetically favored with increasing density;
the community has embraced a terminology based on the
resemblance of the shapes to different forms of pasta [7], with
the above sequence often referred to as spaghetti, lasagna,
antispaghetti (or bucatini [8]) and antignocchi (with spheri-
cal nuclei cast as gnocchi). Pasta phases also persist at high
temperature [9]. More recently, phases intermediate to this
canonical sequence have been explored, with perforated pla-
nar configurations appearing between cylindrical and planar
phases (nuclear waffles [10]), planar phases with helical con-
nectors between sheets (parking garage structures [11]) and
bicontinuous-P and gyroid phases mediating the transition
between between planar and cylindrical holes [12–14] (we are
awaiting the development of pasta forms that mimic many of
these phases). Many of these find counterparts in the world in
soft condensed matter [11,15]. The behavior of soft condensed
matter systems suggests we should expect complex, poten-
tially nonisotropic elastic and transport properties in nuclear
pasta.

The state-of-the-art simulating nuclear pasta over the past
two decades encompasses three dimensional quantum mean-
field simulations using relativistic and nonrelativistic energy
density functionals (EDFs) [14,16–28], and classical and
quantum molecular dynamics simulations which access larger
computational volumes but incorporate more schematic nu-
clear forces [10,11,29–46]. Microscopic quantum mean-field
calculations demonstrated the complexity of the energy land-
scape of nuclear pasta which was shown to be enhanced by
quantum shell effects [16]. This strongly suggests the pos-
sibility that pasta is highly disordered and amorphous with
multiple different nuclear shapes coexisting at a given depth
in the crust. Larger scale molecular dynamics simulations
reveal other sources of disorder: for example, from topological
defects in pasta [36], in which planar phases develop defects
in the form of bridges between adjacent sheets.

As the crust cools, microscopic domains of different pasta
phases may form at the same crust depth [38] which may
persist on long timescales before annealing [47]. Individual
domains could have highly anisotropic elastic and transport
properties [48–50], for example, arising because of the dif-
ference between electron scattering parallel to spaghetti and
lasagna structures and perpendicular to them. However, av-
eraging over domains may render them more isotropic at the
macroscopic level and reduce the resistive effect of pasta [48].
However, the existence of domains could give rise to another
source of resistivity: electron scattering off domain bound-
aries. Thermal fluctuations may destroy the long-range order
of pasta [47,51] and may set the length scale of domains; those
length scales will determine if the rate of electron scattering
rate off domain boundaries is important for the overall resis-
tivity of the crust.

Pasta could account for 50% of the crust by mass [52,53],
so there are observational consequences to the microscopic
organization of pasta. The increased resistivity of disordered

pasta could lead to potentially observable effects on the
cooling curves of x-ray binaries [54] and the evolution of
pulsar magnetic fields [55].

Given that there are many low lying minima separated by
energy barriers, perhaps the best terrestrial analog is a glass:
solids which, when heated, pass through an amorphous phase
before melting. One possible scenario is as follows: as the
neutron star cools below a characteristic temperature set by
the energy barriers between local minima (either early in its
life or after a period of accretion-induced crustal heating),
amorphous nuclear pasta undergoes a transition in which it
becomes frozen into coexisting domains of a certain length
scale. Annealing may then take place on a timescale that is
uncertain but could be long compared to, for example, the
cooling timescale of the crust. The energy spectrum of the
pasta phases, and the typical temperature and length scales in
play in this scenario, are the subject of this paper.

We aim to map out the energy surfaces of nuclear pasta at
a variety of densities by performing a large number of three-
dimensional Skyrme-Hartree-Fock+BCS (3DHF+BCS) sim-
ulations at zero temperature and at proton fractions around
β-equilibrium. Although our simulations are restricted to
smaller computational volumes than molecular dynamics sim-
ulations, we can access zero temperature and lower proton
fractions. Most calculations are performed at a given den-
sity; however, a given depth in the crust is defined by its
pressure. To examine coexisting domains, energy surfaces at
constant pressure must be calculated; the Gibbs free energy
is the relevant quantity to compare different phases. We will
interpolate between calculations over a range of densities to
find the configurations at a constant pressure and thus map
out the Gibbs energy surfaces.

We aim to answer the following questions:

(1) How many phases of pasta could coexist at a given
depth in the crust?

(2) How does the structure of the energy surfaces evolve
with depth?

(3) What is the characteristic temperature below which
pasta could be locked into microscopic domains?

(4) What are the characteristic length scales of the do-
mains?

In Sec. II we describe the numerical method. In Sec. III
we describe our results, starting with a detailed description of
our analysis of one particular layer, then displaying the rest
of our results layer-by-layer. In Sec. IV we analyze what our
results imply for the deep layers of the neutron star crust, and
in Sec. V we give out conclusions.

II. NUMERICAL METHOD

There are many detailed accounts of the Skyrme-Hartree-
Fock method [56], and we have outlined the method used
in our previous paper [20]. Here we highlight details of the
implementation that are important for this study.
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A. Skyrme Hartree-Fock

Approximating the ground-state many-body wave function
as a Slater determinant �, and minimizing the Skyrme energy
density functional ESkyrme[�] = 〈�|ĤSkyrme|�〉 with respect
to the single-particle wave functions obtains the Skyrme
Hartree-Fock equations. We write them with the inclusion of
a quadrupole constraining potential, explained below, as[

− ∇ h̄2

2m∗
q
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Here ti, xi, and α are parameters of the Skyrme interac-
tion (for which we use the NRAPR parametrization [57]),
ρ = ρp + ρn are the nucleon densities and τ = τp + τn are the
kinetic energy densities.

A key feature of our simulations is the quadrupole potential
term we have added to the single-particle Hamiltonian λcQ to
control the geometry of the nucleon density distribution so we
can systematically survey the shape space of the pasta config-
urations. The quadrupole operator has elements in coordinate
space

Qab = 3xaxb − r2δab, (3)

with {xa} = x, y, z.
Restricting ourselves to triaxial shapes, the quadrupole op-

erator becomes diagonal Qa = 3x2
a − r2. The strength of the

constraining force has components λc,a. This is an artificial
potential whose strength is reduced to zero as we approach
convergence, so that it does not give an artificial contribution
to the total energy [58].

B. The computational grid

We solve the Hartree-Fock equations in coordinate space.
The computational domain is taken to be a cube defined by
Cartesian coordinates xa with the origin at the centre of the
cell. Each coordinate runs over −la � xa � la, so that the
length of the cell in each direction is 2la. The space is dis-
cretized to form a grid of collocation points xa,i with even
spacings in each direction �xa, defined by

xa = (
i + 1

2

)
�xa, i = −Na,−Na + 1, ...Na − 1, (4)

where Na is the number of collocation points we use in direc-
tion a. In this work we use cubic cells so Nx = Ny = Nz = N .
To make a large set of calculations feasible, we take parity
in all three directions to be a good quantum number. It is thus
sufficient to calculate just one octant of the computational cell.
This means we limit ourselves to surveying triaxial shapes
only. This means that certain topologically distinct phases
(such as the gyroid) will be omitted,

φi,q(r + T) = φi,q(r), (5)

where T is the translation vector from the position r to the
equivalent positions in the adjacent cells. The boundary condi-
tions are enforced by representing the derivatives and solving
for the Coulomb potential in Fourier space. The Coulomb
solver is implemented using the FFTW software package [59].
Integrals on the grid are performed using the trapezoidal rule
which is exact for functions represented by Fourier series [60].

The restrictions we impose above on our computational
space are necessary for the large survey of densities, proton
fractions and nuclear shapes to be tractable. They impose
limitations noted below.

(i) We do not include the spin-orbit potential. This has the
added benefit of the wave functions being entirely real
functions and therefore reducing the computational
cost. Although the spin-orbit interaction is important
in determining the details of the energy spectrum in
finite nuclei, it has been shown to make a much smaller
contribution under crust conditions at high density,
especially for the unbound neutron gas [61]. The spin-
orbit interaction is thus not included in our simulations
at present.

(ii) Enforcing simple periodic boundary conditions rather
than the full Bloch boundary conditions makes the
simulations susceptible to spurious shell effects [26].
These arise in large part from the artificial dis-
cretization of the unbound neutrons’ single-particle
spectrum caused by restricting the calculations to a
finite volume. This makes comparing results at dif-
ferent cell sizes unreliable as in low proton fraction
matter the variation of the spurious contribution to the
shell energy is of similar magnitude to the physical
contribution, and consequently we cannot find the en-
ergetically preferred unit cell size. We will therefore
restrict ourselves to probing the shape of nuclear con-
figurations at constant cell sizes.
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C. Single-particle states

Our solution to the Hartree-Fock equations begins with
an initial guess for the wave functions. We have found that
starting the neutron wave functions as plane waves and the
proton wave functions as harmonic oscillator wave functions
leads to most efficient convergence; other combinations of
initial wave functions were tested, and it was verified that
they lead reliably to the same ground state configurations so
long as we impose the quadrupole constraint to control the
shape of the configuration. The number of possible single-
particle states we can represent on our grid is (N − 1)3, and
we evolve all of them; those that start out unoccupied often
evolve to be occupied in the converged final state.

We impose BCS pairing, so that single-particle states are
occupied according to the distribution function

w
pair
k,q = 1

2

⎛
⎝1 − εk,q − εF,q√

(εk,q − εF,q)2 + f 2
k,q�

2
q

⎞
⎠, (6)

where fk,q is a function that acts to cutoff coupling to contin-
uum states and confine the active pairing space to the vicinity
of the Fermi surface [62]. The pairing gap �q is taken to be a
constant, set as �q = 11.2 MeV/

√
A [63]. Other than the fact

that pairing is a physical feature of our system, it significantly
improves convergence of our iterations.

D. Iterative solution

We solve the HF equations iteratively, forming densities
and potentials from the current wave functions and solving
the HF equations to obtain new wave functions repeatedly
until the wave functions converge. We combine two different
algorithms to achieve the convergence to the ground state with
maximum efficiency.

We start off using the imaginary time step iteration [64],
an adaptation of the time-dependent HF iteration φ

(n+1)
i,q =

e−iĥ(n+1/2)
HF �t/h̄φ

(n)
i,q which evolves the wave functions by a time

interval �t . Here, ĥ(n+1/2)
HF is a numerical approximation to the

Hamiltonian at the half-time step (n + 1/2)�t . The imaginary
time step is obtained by replacing �t with −i�t and ĥ(n+1/2)

HF

with ĥ(n)
HF. Defining the parameter λ = �t/h̄, and expanding

the exponential in a power series, the (n + 1)th wave function
is formed from the nth by

φ
(n+1)
i,q = e−λĥ(n)

HFφ
(n)
i,q =

kcut∑
k=1

1

k!

( − λĥ(n)
HF

)k
φ

(n)
i,q , (7)

where λ controls the magnitude of the imaginary time step,
that is the size of the iterative step. We can adjust the number
of terms contained in the exponential expansion through kcut.

The imaginary time step iteration is very robust - even if we
start with a set of initial wave functions that are far from those
of the ground state solution, it will remain stable. It converges
quickly initially, but as one approaches convergence, it slows
down exponentially. Thus, when we get closer to the ground
state we switch to the damped gradient iteration [58,65]. Here,

the (n + 1)th wave function is formed from the nth by

φ
(n+1)
i,q = φ

(n)
i,q − x0D̂(e0)

(
ĥ(n)

HF − ε
(n)
i,q

)
φi,q, (8)

where the damping operator

D̂ =
[

1 + t̂x
e0

]−1[
1 + t̂y

e0

]−1[
1 + t̂z

e0

]−1

(9)

acts to damp out large kinetic energy components of the
wave functions with kinetic energies above e0 that slow down
convergence. Here t̂a are the one-dimensional kinetic energy
operators. The damped gradient iteration requires initial wave
functions that are relatively close to the actual ground state
wave functions; otherwise, it becomes unstable. It converges
roughly linearly and so is more efficient than the imaginary
time step at late times.

E. The quadrupole constraint

To systematically survey the spectrum of nuclear geome-
tries and their corresponding energies, we need control the
geometry of the ground state to which an iteration converges
without excluding any of known pasta geometries. To do this
we implement a quadrupole constraint. Given the reflection
symmetry, the next order deformation, consistent with our
boundary conditions, is hexadecapole. It is expected to give
energy variations at least an order of magnitude smaller than
that of the quadrupole deformation.

Taking the quadrupole operator to be diagonal, the
quadrupole moments of the nucleon density distribution are
the matrix elements

qa = 〈Q̂a〉 =
N∑

i=1

〈φi|Qa|φi〉. (10)

The three nonzero quadrupole moments must also fulfill
qx + qy + qz = 0, so just two of them are independent. The
nuclear shape can be parameterized in Cartesian or spherical
polar coordinates

R = R0(1 + αxξ
2 + αyη

2 + αzζ
2)

= R0[1 + α20Y20(θ, φ) + α2+2Y2+2(θ, φ)

+ α2−2Y2−2(θ, φ)], (11)

where qa = R0αa for {a} = x, y, z, R0 is the root-mean-square
nuclear radius, ξ = x/R0, η = y/R0 and ζ = z/R0. The spher-
ical polar moments are related to their Cartesian counterparts
via

α2±2 =
√

2π

15
(αx − αy) ≡ α2, (12)

α20 =
√

8π

90
(2αz − αx − αy) ≡ α0, (13)

where α0 is the relative stretch along the z axis of the nuclear
cluster with respect to the x and y axes and α2 is the relative
difference in length between the x and y axes. We can define
the parameters β, γ [66]:

α0 = β cos γ , α2 = 1√
2
β sin γ , (14)
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analogous to polar coordinates in (α0, α2) space: β represents
the magnitude of the deformation of the configuration, and γ

the direction of the deformation from prolate γ = 0o to oblate
γ = 60o.

We specify our desired quadrupole moments through the
polar coordinates α, β given in Eq. (14). These are then turned
into the moments qa through Eqs. (12) and (13), the require-
ment that αx + αy + αz = 0 and the definition qa = R0αa.

The force strength needs to be updated iteration by itera-
tion as it drives the quadrupole moments toward the desired
values [58]. Denoting the quadrupole moments we wish our
nuclear configuration to converge toward by qa,0, the pro-
cedure is as follows: An intermediate iteration is carried
out |φ̃(n)

i 〉 = OI[(ĥHF + x0λ
(n)
c · Q̂)|φ(n)

i 〉], where I represents
the operation of either the imaginary time step iteration or
the damped gradient iteration, and x0 is the same parameter
that controls the damped gradient iteration step. Intermediate
quantities |φ̃(n)

i 〉, ρ̃ (n), q̃(n)
a , q̃2 (n)

a are calculated. The com-
ponents of the constraining force strength are updated at each
step according to

λ(n+1)
c,a = λ(n)

c,a + c0
(
q̃(n)

a − q(n)
a

)
2x0

(
q2 (n)

a − (
q(n)

a
)2/

Nq
) + d0

, (15)

where Nq is the number of particles of species q. We define

δλc,a = c0
(
q(n)

a − qa,0
)

2x0
(
q2 (n)

a − (
q(n)

a
)2/

Nq
) + d0

. (16)

Finally, the (n + 1)th wave functions are formed as
|φ(n+1)

i 〉 = O[(|φ̃(n)
i 〉 − x0(λ(n+1)

c − λ(n)
c + δλc)Q̂)|φ̃(n)

i 〉] from
which we finally obtain the updated quantities. Here, c0 and
d0 are parameters adjusted for optimum convergence of the
constraint iteration. This procedure must be performed for
the three components of the quadrupole moment a ∈ {x, y, z}.
Note that as we converge to the ground state with the desired
quadrupole moments, the strength of the constraining force
tends to zero.

We apply the constraint only to the neutrons; test simu-
lations show that the proton density distribution follows the
neutron density distribution to a good degree of accuracy [67].
It is important to note that the constraint itself does not bias us;
as we shall see, the constraint phase space we explore admits
all triaxially symmetric pasta shapes, and by systematically
exploring that space we allow for the appearance of all possi-
ble shapes.

F. Numerical parameters and testing

The simulations were conducted with the following param-
eter values. The imaginary time step iteration had a step size
of λ = 5 × 10−4 and a cutoff in the exponential at 5th order.
The damped gradient iteration has a step size of x0 = 0.4 and
kinetic energy cutoff of 40 MeV. The quadrupole iteration has
parameters c0 = 0.03, d0 = 0.9.

Convergence is achieved when the sum of the vari-
ance over all the wave functions

∑
i wi,q[〈φi,q|h2

HF|φi,q〉 −
(〈φi,q|hHF|φi,q〉)2] drops below 1 keV2, which generally cor-
responds to convergence in the total energy of order 1 part
in 108 or better. It takes of order 1 000–10 000 iterations per

FIG. 1. The pure neutron matter EOS of the NRAPR Skyrme
parametrization used in this work (red dashed line) compared to the
region predicted by ab initio calculations of PNM [70–72]. Given
the importance of the PNM EOS to crust properties, it is important
to consider the consistency of the interaction used to model the crust
and our best theoretical knowledge of PNM.

run to achieve this convergence, corresponding to run times of
1–10 h.

The code was comprehensively tested and validated as
outlined in Ref. [20]. It was established that the optimal grid
spacing (the compromise between accuracy and computation
time) is 1.2–1.3 fm, which we use here. We established that
the periodic boundary conditions have a 1 part in 104 effect
on the total energy of the cell, and that the nuclear shapes we
obtain are not artifacts of the finite cell size (the same nuclear
shapes are obtained when we double the cell size in in each
direction).

G. Nuclear interaction used

The pressure, and hence stability, of the inner crust is
provided by the fluid of dripped neutrons in which the lat-
tice of nuclei and nuclear pasta is immersed. Ab initio pure
neutron matter (PNM) calculations are therefore an important
guide for neutron star EOSs [68,69]. In our investigation, it is
important to choose a nuclear model that predicts a pure neu-
tron matter EoS consistent with these calculations. We choose
the NRAPR parametrization of the Skyrme interaction [57],
which is fit to the APR neutron matter EOS. It gives a slope
of the symmetry energy of L = 60 MeV, which is of interme-
diate stiffness. Figure 1(a) shows the NRAPR EOS and the
band from recent ab initio calculations of the PNM matter
EOS [70–72]. The extent of the pasta phases is sensitive to the
EOS, particularly the symmetry energy parameters of nuclear
matter; a follow-up study will examine the dependence of our
results on the EOS. Preliminary results suggest the results are
qualitatively similar.

H. Choosing the cell size and proton fraction

It is currently computationally prohibitive to conduct a full
minimization over cell size. The presence of spurious shell
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FIG. 2. The red and blue dashed lines are the bounds of the
total nucleon number in the cell Acell and the average proton frac-
tion yp from a compressible liquid drop model using the NRAPR
interaction [57] and varying the surface energy parameters over a
reasonable range [73]. Vertical dotted lines indicate the transition
to cylindrical nuclear pasta, slabs, cylindrical holes and spherical
holes with increasing density. The transitions are accompanied by
discontinuities in the cell size. The blue diamonds are the values of
Acell we choose to perform our 3DHF calculations at. The red points
indicate the β-equilibrium proton fractions we at each density from
our 3DHF calculations, and the “error bars” through them indicate
the range of proton fractions we performed calculations at.

effects make such a minimization unreliable, and in future a
consistent minimization should be done using methods that
minimize spurious shell effects, such as the use of twist-
averaged boundary conditions [26].

Instead, we choose to conduct the calculations at cell sizes
and proton fractions guided by the compressible liquid-drop
model (CLDM) [73]. We have checked the proton fractions
corresponding to β equilibrium for both the 3DHF model and
CLDM, and they agree well. In Fig. 2 we show the predictions
of the proton fraction yp and total nucleon number in the
unit cell Acell from the CLDM varying the surface energy of
the CLDM over a wide range, together with total nucleon
numbers Acell and range of proton fractions we choose to
perform calculations at in this work. The total nucleon number
characterizes the cell size at a given baryon density nb, since
the computational volume we use is calculated as V = A/nb.
Our choice of Acell as a function of density follows the rough
trend predicted by the CLDM.

At each density, we perform calculations at two to three of
values of Acell to assess the Acell dependence of our results. We
find no qualitative dependence of our results on Acell, so will
present our results for a single representative cell size. We also
calculate a number of different proton fractions to make sure
we can locate β equilibrium within our quantum simulation:
the variations with yp will be explicitly presented. The range
of proton fractions covered are indicated by the bars on the
proton fraction points in Fig. 2.

III. RESULTS

We perform around 500 000 CPU h of 3DHF+BCS cal-
culations. To give a detailed example of our methods, we
will first present an analysis of the layer of pasta at a baryon
number density of around nb = 0.06 fm−3. We will then move
to lower and higher densities to examine the layers where
pasta first emerges and finally transitions to uniform matter,
before summarizing results across the whole pasta region.

A. A case study: nb ≈ 0.06 fm−3

We begin our investigation by calculating the minimum
energy configurations at a constant cell size corresponding to
a total nucleon number of Acell = 614, which is in the range
predicted by the CLDM calculations. We perform calculations
over a range of deformation parameters: the full range of γ

from prolate configurations γ = 0◦ to oblate configurations
γ = 60◦ with a step of �γ = 5◦, and for a range of magni-
tudes of deformation β that cover all unique local minima,
which at this density ranges up to β = 0.24. We use a step size
of �β = 0.03. We perform these calculations at a range of dif-
ferent values of the proton fraction to locate the β-equilibrium
value. The results are shown for the three values of yp around
β equilibrium: yp = 0.023, 0.026, and 0.029 (corresponding
to proton numbers of Z = 14, 16, and 18).

In Fig. 3 we show the resulting energy surfaces as a
function of deformation (β, γ ). The energy per baryon is
plotted versus the magnitude β and direction γ of the de-
formation. The most important feature is that there are
multiple local minima in all three energy surfaces, visible
as the darker blue regions. There are minima located in
broadly the same regions of deformation space for each
proton fraction: at small deformations in the intermediate
to oblate sense (β = 0.03–0.06, γ ≈ 30–60◦), at stronger
prolate deformations (β = 0.12–0.18, γ = 0–25◦) and high
deformations in the oblate direction (β = 0.15–0.21, γ =
50–60◦). The lowest energies occur for the proton fraction
of yp = 0.26. However, the energy separation of local min-
ima is small and there is no obviously pronounced ground
state. This initial calculation confirms a number of other
microscopic studies that have shown that matter deep in
the crust is frustrated, and might have an amorphous, het-
erogeneous structure characterized by many local energy
minima [16]. The next order deformation consistent with the
symmetry of the unit cell used, hexadecapole, is expected to
give energy variations an order of magnitude smaller than
those of the quadrupole deformation. However, we should be
aware that the particular pasta phase found at a given (β, γ )
point is unlikely to be unique: different pasta phases with
the same (β, γ ) but different higher order moments could
exist.

It is worth thinking about how matter with this structure
will behave as the crust of the neutron star cools. Different
local regions of a given layer inside the star will fall into
different local minima, and when the temperature falls below
some critical value associated with the energy barriers be-
tween minima they will be trapped in those minima for some
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FIG. 3. Energy-deformation surfaces at an average density of nb = 0.06 fm−3 for cells containing Acell = 614 nucleons and a proton fraction
of 0.023 (a), 0.026 (b), and 0.029 (c). Many local minima (dark blue troughs) appear in the landscapes; the pasta configurations appearing in
those minima can be seen in Fig. 5.

quantum tunneling timescale (which is likely to be related
to the very uncertain pycnonuclear fusion timescale of heavy
nuclei just above the pasta layers). On longer timescales, the
crust might be able to anneal and eventually all the pasta
at a given density could be converted into the ground state
configuration. Depending on the temperature scales set by the
energy barriers between local minima, crustal heating later
in the neutron star’s life might repopulate the local minima.
Thus, the pasta layers might plausibly transition between a
single pasta configuration and multiple coexisting pasta con-
figurations at different stages in the star’s life.

Here we explore the possibility that different phases corre-
sponding to the local minima coexist in microscopic domains,
at a given depth in the crust. Such domains would exist in
equilibrium at constant pressure; however, the calculations we
perform are at constant density rather than constant pressure.
To determine the local minima that will coexist, we need
to calculate the Gibbs free energy at constant pressure as a
function of β and γ .

To do this, we perform calculations of the energy surfaces
over a range of densities in the range nb = 0.058 fm−3–
0.062 fm−3. We pick a reference pressure, which we choose
to be that of the zero-deformation configuration (β, γ ) =
(0, 0◦), at nb = 0.06 fm−3: Pref = 0.291 MeV fm−3. We then
use interpolation to find the density at which the pressure
is equal to the reference pressure for all other deformation
values, and the energy at that density. We then calculate the
specific Gibbs free energy G = E + P/nb. The interpolations
assume there is no discontinuous change in energy with den-
sity at a particular point in deformation space, which would be
associated with a change of shape. This cannot be guaranteed,
but so long as the interpolation window is small and we use
a sufficiently large number of points in deformation space,
we can reasonably assume it will occur infrequently enough
that it will not affect the global features of the energy surface.
Such discontinuities would show up as artifacts in the energy
surfaces, and we see no such features.

In Figs. 4(a)–4(c) we show the Gibbs free-energy surfaces
at constant pressure in deformation space at the three values
of the proton fraction, and in Figs. 4(d)–4(f) we show the
corresponding density variations over each surface. In all three
cases, local minima appear at broadly the same locations as
we found in the internal energy surface at constant density

nb. The range of average baryon density is smaller than the
range over which we performed the interpolations, indicating
the interpolations are robust. Domains in different regions of
deformation space will have different average baryon densi-
ties, so if they coexist at a given density in the crust, there will
be fluctuations in density of order 10−3 fm−3, or �nb/nb ∼
1% of the total density. These fluctuations will have length
scales corresponding to the size of the domains, which we will
estimate shortly. The three regions where minima occur are
large oblate deformations (higher density), small intermediate
deformations (intermediate density), and intermediate prolate
deformations (lower density).

Local minima in the Gibbs energy surfaces are separated by
energy barriers. To more clearly see the relative height of the
barriers and the difference in energy between local minima,
we now plot the energy along one-dimensional paths across
the deformation landscapes. We choose plots that link local
minima by continuous deformation and require traversing the
smallest energy barriers possible. The top of Fig. 5 shows the
Gibbs energy surfaces from Fig. 4 with the paths marked.
The central plot on Fig. 5 shows the Gibbs energy along
those paths. To orient the reader, the directions marked by
the arrows on the surface plots show the direction moving left
to right in the main plot of the one-dimensional trajectories.
We also show selected values of the deformation coordinates
(β, γ ) along the one dimensional trajectories.

The plot of the energy along the trajectories shows that
indeed the Gibbs energy is on average lowest for the proton
fraction of yp = 0.026. However, two minima at a proton
fraction yp = 0.029 have smaller Gibbs energies than some
local minima at yp = 0.026. There may be a local variation
of average proton fraction (and hence electron density) from
domain to domain.

We have circled the six lowest local minima. All other
local minima can access these six local minima by continuous
deformation and adjusting their proton fraction through β

decay and electron capture without having to pass over an
energy barrier. For example, matter at the local minimum at
yp = 0.29, (β, γ ) ≈ (0.06, 60◦) can reach the minimum at
yp = 0.26, (β, γ ) ≈ (0.06, 60◦) through electron capture.

The pasta configurations corresponding to each of the 6
minima are revealed by plotting surfaces of constant neutron
density in our unit cell. These are shown in the six plots under
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FIG. 4. Gibbs energy-deformation surfaces (a)–(c) and average baryon density surfaces (d)–(f) at a constant pressure of 0.291 MeV fm−3

for cells containing Acell = 614 nucleons. Results are shown for proton fraction of 0.023 (a), d), 0.026 (b), (e), and 0.029 (c), (f). The local
minima differ in baryon density by of order 5%. The pasta configurations appearing in those minima can be seen in Fig. 5.

the one dimensional energy plot. The neutron density at which
to plot these surfaces is chosen to be the average neutron
density nb(1 − yp). The following pasta configurations are
found:

(i) yp = 0.026, (β, γ ) = (0.18, 60◦)—the nuclear waffle
phase (the “hole” of the waffle is centered on the edge
of each cell).

(ii) yp = 0.026, (β, γ ) = (0.15, 25◦)—the nuclear
spaghetti phase.

(iii) yp = 0.026, (β, γ ) = (0.18, 15◦)—another form of
nuclear waffle; large spherical nuclei with bridges
connecting to adjacent cells in two different direc-
tions. The nucleus is centered on the y boundary of
the computational volume.

(iv) yp = 0.026, (β, γ ) = (0.06, 15◦)—similar to the pre-
vious configuration, a deformed nucleus with bridges
to adjacent cells. The nucleus is now centered in the
computational volume.

(v) yp = 0.029, (β, γ ) = (0.18, 45◦)—the nuclear waffle
phase.

(vi) yp = 0.029, (β, γ ) = (0.18, 45◦)—nuclear waffle
phase (like the waffle configuration at yp = 0.026, the
“hole” of the waffle is centered on the edge of each
cell).

The detailed structure of the minima is dependent on the
nuclear interaction used and the total cell size. However, a
precise extraction of the relative energy differences of min-
ima and the barrier heights is not merited, as it is extremely
unlikely that those details will ever be accessible through
observational data. Hence, instead of using the exact values of
the energies of all six minima and the barriers between them,

we create a slightly simpler model based on these results.
The model is depicted schematically in Fig. 6. We first re-
duce the number of minima from six to four, representing the
four distinct configurations present. The two forms of nuclear
waffle are distinct enough that we include them as separate
configurations, though they may not give rise to any observ-
able differences). The yp = 0.026, (β, γ ) = (0.06, 15◦) and
(0.18, 15◦) minima are essentially the same, so we take the
lowest of those two minima and ignore the other one (which,
being the highest lying of the minima, will be least populated).
Also, we treat the two waffle phases at yp = 0.029 as a single
minimum. Although these are similar to the waffle phase at
yp = 0.026, the different proton fractions makes them physi-
cally distinct. Finally, we make the simplification that there is
just one single characteristic barrier height between phases,
Gbarrier, taken to be the average of all the barriers between
minima.

The four minima are represented schematically in Fig. 6.
Under each minima we plot the neutron surfaces again for
stacks of 4 × 4 unit cells of matter, to better see the structure
of matter at larger scales (but note that the computation is
done only in one unit cell). We have four distinct phases:
the ground state is the waffle phase consisting of large nu-
clei connected to adjacent cells in two directions. The next
lowest lying minimum is the spaghetti phase. Then the next
two are nuclear waffle phases—intermediate phases between
spaghetti and lasagna—at two different proton fractions.

To characterize the properties of these possibly amor-
phous phases of matter, we borrow a concept from the
study of terrestrial amorphous materials. An effective or
“fictive” temperature, Tf [74] is defined as the temperature
from which, if the material was instantaneously quenched to
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FIG. 5. The top row (a)–(c) shows the Gibbs free-energy surfaces from Fig. 4 at a constant pressure of 0.291 MeV fm−3 (densities around
0.06 fm−3) with red arrows indicating paths between local minima that pass over the smallest energy barriers. Underneath is the corresponding
one-dimensional plot of the Gibbs energy along those paths (d). Selected (β, γ ) coordinates are shown along the one-dimensional plots. 3D
surfaces at constant neutron density in the cell show the shape of the nuclear cluster in the cell at the local minima indicated. The other apparent
local minima can transition exothermically to one of the highlighted minima by β decay or electron capture.

zero temperature, or any other temperature T < Tf , its state
would be that of the material at a temperature Tf (no reconfig-
uration of its microscopic degrees of freedom would occur). In
our context, the fictive temperature is the temperature equiv-
alent to the energy barrier height between minima. As the
temperature falls below Tf , thermal fluctuations can no longer
rearrange matter, and so in the absence of quantum tunneling
between the barriers the matter is frozen into the state at Tf . Of
course, quantum tunneling will occur, but the timescales over
which that would occur and rearrange potentially large regions

of nuclear pasta are not well known (the closest timescales
from the literature would be pycnonuclear fusion timescales,
but as we shall see whole domains of nuclei need to be rear-
ranged for matter to substantially change its structure at the
mesoscopic level.

In this work, as illustration of the concept and derive
some order-of-magnitude implications, we choose the fictive
temperature to be the height of the highest energy barrier
relative to the lowest lying minimum, indicated as Tf in
Fig. 6.
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FIG. 6. Illustration of our schematic model for pasta domains in local Gibbs energy minima at densities around 0.06 fm−3 where
calculations present four physically distinct local minima. To visualize the phases better we have plotted a region of four by four unit cells, but
it is important to remember we only simulate one single unit cell. The proton fractions corresponding to the minima we found are shown above
each minima. The fictive temperature Tf is given by the height of the energy barriers, and the energy differences between he local minima are
indicated as �G The relative abundances of the phases at a temperature equal to the fictive temperature is shown below the visualizations of
the phases. In the simplified model we take a single barrier height to be the fictive temperature. This is determined as the average of the various
barriers in our calculation. These abundances will be frozen in as the temperature drops further unless processes such as quantum tunneling
anneal the matter.

The ratio of the abundance of the pasta in the ith minimum
to the jth minimum is given by

Ni(Tf )

Nj(Tf )
= e�Gij/kTf , (17)

where �Gij = Gi − Gj. Given that the occupation probability
for minimum i is given by pi = Ni/

∑
j Nj and

∑
i pi = 1,

then the occupation probability of a particular minimum j can
be written

pi(Tf ) = e�Gi0/kTf

1 + ∑
j �=0 e�Gj0/kTf

. (18)

Based on Eq. (18), the abundances of pasta in each
of the four phases in our simplified model in Fig. 6
are shown as the percentages under the visualizations of
the pasta.

Let us assume, to obtain a lower limit on the fictive tem-
perature below which the pasta becomes frozen-in to the local
minima, that the nucleons behave as free quasiparticles, Then
differences in the energy per particle between local minima
and the energy barriers that separate them set the temperature
scale required to transition from one pasta structure to another
through thermal fluctuations. Realistically, this temperature
scale will be modified upwards by a factor taking into account
the extent to which the nucleons in the pasta and free neutron

gas behave collectively during the rearrangement from one
phase to another. A more accurate picture might suppose that a
number of nucleons in the unit cell of order the proton number
act collectively in the transition between phases, since the
main driver of the shape formation is the electrostatic lattice
energy. This number may also be modified by the number
of unbound neutrons entrained by the cluster [75]. Typically,
this accounts for ∼10% of the nucleons and so our lower
limit could underestimate the fictive temperature by a factor
of ∼10. To account for this factor, we can multiply the tem-
perature by a factor Acollective which accounts for the number
of nucleons in the unit cell that act collectively, and then
kTf = AcollectiveGbarrier. Note that the number of nucleons per
unit cell that behave collectively upon shape rearrangement
does not affect the equilibrium distribution, since both the
energy difference between minima and the fictive temperature
scale by Acollective.

For pasta geometries continuous in one or more dimensions
like spaghetti and lasagna, the unit cell does not have a phys-
ical meaning in that direction, but, for example, a transition
between spaghetti and waffle phases requires the creation of
connecting arms perpendicular to the spaghetti axis which
are periodic according the unit cell size. Therefore, the unit
cell is still the relevant unit of matter when we think about
rearranging nuclear pasta.
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In our simplified model, the fictive temperature is taken
to be the average height of the barriers relative to the low-
est minimum along the one-dimensional trajectories at yp =
0.026 and yp = 0.029 in Fig. 5: kTf = 7.7 keV → Tf =
8.9 × 107 K (T8 = 0.89 where T8 = Tf/108 K). Minima 1 and
2 are separated by energies �G21 = 1.6 keV/particle, minima
1 and 3 by �G31 = 2.0 keV/particle and minima 1 and 4 by
�G31 = 2.4 keV/particle.

At temperatures below 8.9 × 107 K the composition of the
domains will be frozen with respect to thermal fluctuations
for a timescale that depends on the poorly known tunneling
timescale (but which could be short compared to the cool-
ing timescale). The relative abundance of the pasta phases
corresponding to the four minima is 0.30:0.25:0.23:0.22, re-
spectively (see Fig. 6). Thus, about 70% of the composition
of this layer is at a proton fraction 0.026 and 30% is at
a proton fraction 0.029. We can thus expect fluctuations in
average proton (and, correspondingly, electron) fraction at the
microscopic level at the level of around 10%. Also around
75% of matter is in wafflelike configurations, and 25% is in
the spaghetti configuration.

1. The size of domains

The scale on which the pasta phases are ordered can be
found by estimating the length L over which thermal fluc-
tuations disrupt the long-range order of spaghettilike and
lasagnalike configurations. Since the waffle phases are planar,
they can be approximated here as lasagna phases. We follow
the formalism laid out in Ref. [51]. Relative to the cell spacing
d = 2rc where rc is the cell radius, it is given as follows:

For the spaghettilike structures,(
L

d

)
spaghetti

≈
[

(B2d + 2C2d )(πλa)1/2

kBT

]1/2

, (19)

where

B2d = 1.5wC+L C2d ≈ 102.1(u−0.3)wC+L, (20)

K3 ≈ 0.0655wC+Lr2
c a ≈ 2rc. (21)

For 1D lasagnalike structures,(
L

d

)
lasagna

≈
[

4π (BK1)1/2

kBT ln
(

R
2rc

)
]1/2

, (22)

where

B1d = 6wC+L, K1 ≈ 2
15wC+L(1 + 2u − 2u2)r2

c , (23)

and R is the typical length of the structure, u the volume
fraction of the pasta. wC+L is the total electrostatic energy
density, including the all important lattice contribution which,
in addition to quantum shell effects, drives the stability of
the phases. The electrostatic energy density wC+L is extracted
from the simulation. The factors involving u change only by a
factor of at most 2 over a reasonable range of u (as they enter
as powers of 1/4), so for simplicity and since we are interested
only in a rough estimate of length scales, we take the average
of that range and fold it into the numerical prefactor.

At low temperatures <107K, this overestimates the or-
der, because quantum fluctuations become important, but our

lower limits on the fictive temperature are all significantly
above 107K.

The electrostatic energy per nucleon is WC+L = V wC+L/A
where V is the volume of the cell and Acell the number of
nucleons in the cell. V = r3

c , and using kTf = AcollectiveGbarrier

and evaluating the numerical factors,(
L

d

)
spaghetti

≈
(

rc − rN

rc

)(
Acell

Acollective

)1/2( WC+L

Gbarrier

)1/2

(24)
and (

L

d

)
lasagna

≈
(

L

d

)
spaghetti

1

[3.5 ln (R/rc)]1/2
. (25)

Varying R between scales of 1 m to 10−12m varies the
logarithmic factor between around 2 to 7, and

(L/d )spaghetti

(L/d )lasagna
≈ 7–25, (26)

i.e., the order of the spaghettitype phases will be an order of
magnitude larger than the order of the lasagnatype phases.

The configurations corresponding to the local minima in
Fig. 6 have WC+L = 13–19 keV, (rc − rN)/rc = 0.21 for
spaghetti, and 0.5 for lasagna (taking the RMS radius of
the cluster in our simulations). Assuming no collectivity,
Acell/Acollective = 614 and

(L/d )spaghetti ≈ 40. (27)

Assuming complete collectivity, Acell/Acollective = 1,

(L/d )spaghetti � 2, (28)

and matter is completely disordered.
From this, the domains containing the spaghetti phase have

a length scale of 40 lattice spacings, and the two waffle phases
which are similar to lasagna phases (with holes in), are or-
dered on the length scale L/d lasagna ∼ two lattice spacings
(and are therefore very disordered) at the fictive temperature.

The more nucleons behave collectively, the temperature at
which matter becomes frozen into local minima will increase,
and the scale on which the matter is ordered decreases. There-
fore, our estimates above give upper limits on the distance
scales over which pasta is ordered.

We can also conclude that fluctuations in the average
density and electron fraction, of order 5–10% occur on mi-
croscopic scales of no more than around 10 lattice spacings at
this depth.

In the next section, we now go through the crust from
the lowest to highest densities we performed calculations at,
spanning the pasta phases. We will present the Gibbs free-
energy surfaces calculated in the same way as presented in
this section, the resulting equilibrium fractions of the different
phases, and the upper limit to the length scale of their domains
derived from the fictive temperature.

B. The onset of pasta: nb ≈ 0.035 fm−3–0.045 fm−3

In Figs. 7–9, we show the Gibbs free-energy surfaces at
proton fractions of yp = 0.018, 0.022, and 0.026 in a cell
with 454 nucleons in total for calculations performed around
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(d)

FIG. 7. Top row: Gibbs free-energy surfaces at a pressure of 0.094 MeV fm−3 corresponding to a baryon density of ≈0.035 fm−3 at proton
fractions of 0.018 (a), 0.022 (b), and 0.026 (c), for cells containing Acell = 454 nucleons. Below is the Gibbs free-energy variation along
one dimensional paths passing through the energy minimum (d). Selected (β, γ ) coordinates are shown along the one-dimensional plots.
Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of constant neutron density corresponding to
the average neutron density in the cell. In all cases the minimum is a spherical nucleus.

nb = 0.035 fm−3, nb = 0.04 fm−3, and nb = 0.045 fm−3, re-
spectively. The Gibbs energy surfaces are calculated at
constant pressures of P = 0.094, 0.12, and 0.15 MeV fm−3,
respectively (corresponding to the pressure of the spherical
configuration at yp = 0.022 and a density of nb = 0.035 fm−3,
nb = 0.04 fm−3, and nb = 0.045 fm−3).

At P = 0.094 MeV fm−3, nb ≈ 0.035 fm−3, there is a
single global minimum at each proton fraction at (β, γ ) =
(0, 0◦) corresponding to a spherical nucleus. No other lo-
cal minima are present. We have not yet entered the pasta
phases.

At both P = 0.12 MeV fm−3, nb ≈ 0.04 fm−3 and P =
0.15 MeV fm−3, nb ≈ 0.045 fm−3, more structure starts to ap-
pear in the energy surface. Some of these structures are local
minima corresponding to the first appearance of the nuclear
pasta configuration. The variation in Gibbs free energy along
trajectories in the energy surface at P = 0.12 MeV fm−3 and
0.15 MeV fm−3 are shown in Figs. 8 and 9.

At P = 0.12 MeV fm−3 the fictive temperature is kTf =
73 keV → T8 = 8.5 (where T8 = T/108K), and we see the
minimum is still a spherical nuclear phase. A local min-
ima 41 keV above the global minimum corresponding to
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40%

23% 20%

17%

(d)

FIG. 8. Top row: Gibbs free-energy surfaces at a pressure of 0.120 MeV fm−3, corresponding to a baryon density of ≈0.04 fm−3, at proton
fractions of 0.018 (a), 0.022 (b), and 0.026 (c), for cells containing Acell = 454 nucleons. Below is the Gibbs free-energy variation along
one dimensional paths passing through the energy minimum (d). Selected (β, γ ) coordinates are shown along the one-dimensional plots.
Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of constant neutron density corresponding to
the average neutron density in the cell. The minimum energy nuclear shape is roughly spherical, but deformed nuclear and cylindrical nuclear
shapes appear as local minima. The relative abundances of the phases at a temperature equal to the fictive temperature is shown next to the
visualizations of the phases.

a spaghetti phase appears at yp = 0.022. Two local min-
ima corresponding to elongated isolated nuclei in a 2D
lattice, analogous to the smectic-B phases of liquid crys-
tals, appear at yp = 0.022 and yp = 0.026, at heights 50 and
64 keV above the global minimum. Using these numbers,
the relative abundances of the spherical:spaghetti:deformed
nucleus(yp = 0.022): deformed nucleus(yp = 0.026) phases
are 0.40:0.23:0.20:0.17.

At P = 0.15 MeV fm−3 the fictive temperature is kTf

= 34 keV → T8 = 4.0, we see the same three phases,
with the elongated nuclear phase appearing 21 keV and
the spaghetti phase 25 keV above the global minimum
of spherical nuclei. Note the fictive temperature and en-
ergy separation of minima is decreasing with density.
The ratios of spherical nuclei:elongated nuclei:spaghetti are
0.50:0.27:0.24.
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50% 24%27%

(d)

FIG. 9. Top row: Gibbs free-energy surfaces at a pressure of 0.150 MeV fm−3, corresponding to a baryon density of ≈0.045 fm−3, at
proton fractions of 0.018 (a), 0.022 (b), and 0.026 (c), for cells containing Acell = 454 nucleons. Below is the Gibbs free-energy variation
along one dimensional paths passing through the energy minimum (d). Selected (β, γ ) coordinates are shown along the one-dimensional plots.
Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of constant neutron density corresponding to
the average neutron density in the cell. The minimum energy nuclear shape is roughly spherical, but deformed nuclear and cylindrical nuclear
shapes appear as local minima. The relative abundances of the phases at a temperature equal to the fictive temperature is shown below the
visualizations of the phases.

In Fig. 10 we show a representative set of baryon density
surfaces, for calculations performed around nb = 0.045 fm−3.
The fluctuations in baryon density between local minima are
small at these depths, of order 1% of the average density.

The lattice energy of the spaghetti phases from the
quantum calculations is 18 keV per nucleon and 13
keV per nucleon for pressures of P = 0.12 MeV fm−3 and
0.15 MeV fm−3, respectively, and the corresponding length

scale of the spaghetti domains is ≈7 times the lattice spacing
in both cases (≈150 fm). In the case of P = 0.12 MeV fm−3

10% of the composition is at a proton fraction of 0.026, so
fluctuations in average proton fraction occur of order 20% on
length scales of ∼150 fm.

This region in which pasta first appears as local minima
above a ground state is the first of four distinct pasta regimes
we will encounter, and ranges from nb ≈ 0.04 fm−3 up to
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FIG. 10. Average baryon density surfaces (bottom) at a constant pressure of 0.15 MeV fm−3, corresponding to a baryon density of
≈0.045 fm−3, for cells containing Acell = 454 nucleons. Results are shown for proton fraction of 0.018 (a), 0.022 (b), and 0.026 (c). The
local minima differ in baron density by of order 5%.

nb ≈ 0.05 fm−3. It is characterized by spherical nuclei being
the absolute ground state, but spaghetti phases and highly
deformed nuclei appearing as closely separated local minima,
accounting for about over half of the material in the crust at
the fictive temperature. Spaghetti phases constitute ≈25% of
the material at these densities at the fictive temperatures of
4–8 × 108K. If annealing takes place over sufficiently long
timescales, then in this regime all matter will eventually be
converted to spherical nuclei.

C. Pasta is established, but spherical nuclei still exist:
nb ≈ 0.05 fm−3 and 0.054 fm−3

In Fig. 11 we show the Gibbs free-energy surfaces at proton
fractions of yp = 0.021, 0.023, and 0.025 at a constant pres-
sure P = 0.184 MeV fm−3 (densities around nb = 0.05 fm−3)
in a cell containing 956 nucleons. In Fig. 12 we show the
Gibbs free-energy surfaces at proton fractions of yp = 0.022,
0.024, and 0.026 at a constant pressure P = 0.234 MeV fm−3

(densities around nb = 0.054 fm−3) in a cell containing 1166
nucleons. In both cases, one can see that the energy surfaces
are becoming much richer in structure, with numerous local
minima. In each case we identify three minima accessible to
all others by continuous deformation and adjustment of proton
fraction without increasing energy.

We see that at both densities isolated nuclei are still
present, but they are no longer always the absolute minimum.
At P = 0.184 MeV fm−3 the absolute minimum is the nuclear
‘waffle’ phase, with a corrugated spaghetti phase also appear-
ing as a local minimum. The minima occur at two different
proton fractions, pointing to possible fluctuations in average
proton fraction of order 10%. At P = 0.234 MeV fm−3 the
isolated nuclear phase is—just—the absolute minimum, al-
most equal in energy to the spaghetti phase. Again, a waffle
phase appears as a local minimum.

At P = 0.184 MeV fm−3 the fictive temperature
kTf is 21 keV → T8 = 2.4, and �G21 = 14 keV and
�G31 = 26 keV. The relative abundances at Tf are
waffle:spherical:spaghetti are 0.55:0.29:0.16.

At P = 0.234 MeV fm−3 the fictive temperature kTf is
11 keV → T8 = 1.3 and �G21 = 4 keV and �G31 = 6 keV.
The ratios of minima 1(spherical):2(spaghetti):3(waffle) are
0.44:0.31:0.25.

The lattice energy of the spaghetti and waffle phases from
the quantum calculations are 23 keV per nucleon and 17
keV per nucleon, respectively, for P = 0.184 MeV fm−3 and
24 keV per nucleon and 20 keV per nucleon, respectively, for
P = 0.234 MeV fm−3.

Waffles are really a form of lasagna with a density mod-
ulation along its surface, and we can estimate its long-range
order as that of lasagna. It is of order two to three lattice spac-
ings for P = 0.184 MeV fm−3 and P = 0.234 MeV fm−3—
indicating these phases are almost completely disordered.
The corresponding length scale of the spaghetti domains
from is 19 and 25 times the lattice spacing (500–600 fm)
for P = 0.184 MeV fm−3 and P = 0.234 MeV fm−3, respec-
tively. Fluctuations of proton fraction of order 10% occur on
these length scales.

In this regime of pasta, the pasta shapes have for the
most part become the ground state, but spherical nuclei still
appear as local minima (and can occasionally appear as the
global minimum). If annealing takes place, on sufficiently
long timescales, then all matter in this regime will be con-
verted to pasta. The fictive temperature has dropped to a
1–3 × 108 K. At each density in this regime, isolated nuclei,
spaghetti and waffles coexist at the fictive temperature.

D. Exclusively pasta but protons are still localized
to the pasta structures

In the density region between around 0.055 fm−3 to
0.065 fm−3, isolated nuclei cease to be local minima at
all, so we have entered the regime of pure pasta. We have
already detailed a representative set of configurations at
0.06 fm−3. Waffles and spaghetti are the coexisting phases in
this density window. Protons are still localized in at least one
dimension.

E. Protons are delocalized

In Figs. 13–15, we show the Gibbs free-energy surfaces
at pressures of P = 0.30 MeV fm−3, 0.32 MeV fm−3, and
0.34 MeV fm−3 corresponding to densities around nb =
0.066 fm−3, 0.07 fm−3, and nb = 0.076 fm−3. The cells con-
tain 784, 532, and 532 nucleons, respectively.
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FIG. 11. Top row: Gibbs free-energy surfaces at a pressure of 0.184 MeV fm−3, corresponding to a baryon density of ≈0.05 fm−3, at
proton fractions of 0.021 (a), 0.023 (b), and 0.025 (c), for cells containing Acell = 956 nucleons. Below is the Gibbs free-energy variation along
one-dimensional paths passing through the energy minimum (d). Selected (β, γ ) coordinates are shown along the one-dimensional plots.
Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of constant neutron density corresponding to
the average neutron density in the cell. The minimum energy nuclear shape is a nuclear “waffle,” with an isolated nuclear phase and spaghetti
phase as local minima at a different proton fraction. The relative abundances of the phases at a temperature equal to the fictive temperature is
shown below the visualizations of the phases.

At P = 0.30 MeV fm−3, nb = 0.066 fm−3, we perform
calculations at proton fractions of yp = 0.022, 0.025, and
0.028. The minimum energy configuration is the bicontinuous
cubic-P (BCP) phase—essentially a nucleus joined in all three
directions to adjacent nuclei, allowing the protons to be en-
tirely delocalized. Both cluster and external neutron fluid form
two interlaced, continuous domains through space. Lasagna

and spaghetti phases make up the two remaining unique local
minima. At P = 0.32 MeV fm−3 and P = 0.34 MeV fm−3,
(nb = 0.07 fm−3 and nb = 0.076 fm−3) we perform calcula-
tions at proton fractions of yp = 0.030, 0.034, 0.038, and 0.42.
At the lower of those two densities, the absolute minimum
corresponds to the lasagna phase, with waffle and BCP phases
making up the remaining unique local minima. At the higher
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FIG. 12. Top row: Gibbs free-energy surfaces at a pressure of 0.234 MeV fm−3, corresponding to a baryon density of ≈0.054 fm−3, at
proton fractions of 0.022 (a), 0.024 (b), and 0.026 (c), for cells containing Acell = 1166 nucleons. Below is the Gibbs free-energy variation
along one dimensional paths passing through the energy minimum (d). Selected (β, γ ) coordinates are shown along the one-dimensional plots.
Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of constant neutron density corresponding to
the average neutron density in the cell. The minimum energy nuclear shape is roughly spherical, followed by cylindrical and waffle shapes.
The relative abundances of the phases at a temperature equal to the fictive temperature is shown below the visualizations of the phases.

density, all minima correspond to variations of the BCP phases
at two different proton fractions yp = 0.034, 0.038. Therefore,
the three main phases that coexist in this range of densities are
spaghetti, waffles, lasagna, and the BCP phase.

At P = 0.30 MeV fm−3, nb = 0.066 fm−3, the fictive tem-
perature kTf is 7.4 keV → T8 = 0.85, and �G21 = 1 keV
and �G31 = 5 keV. The ratios of BCP:lasagna:spaghetti are
0.42:0.37:0.21. The lattice energy of the lasagna phase from

the quantum calculations is 7 keV per nucleon and for the
spaghetti phase it is 11 keV per nucleon. For the spaghetti
phases, our estimated domain sizes at the fictive temperature
is 22 lattice spacings, and for the lasagna is about three lattice
spacings.

At P = 0.32 MeV fm−3, nb = 0.07 fm−3, the fictive tem-
perature kTf is 14 keV → T8 = 1.7, and �G21 = 10 keV
and �G31 = 10 keV. The ratios of lasagna:waffle:BCP are
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FIG. 13. Top row: Gibbs free-energy surfaces at a pressure of 0.30 MeV fm−3, corresponding to a baryon density of ≈0.066 fm−3, at
proton fractions of 0.022 (a), 0.025 (b), and 0.028 (c), for cells containing Acell = 784 nucleons. Below is the Gibbs free-energy variation
along one dimensional paths passing through the energy minimum (d). Selected (β, γ ) coordinates are shown along the one-dimensional plots.
Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of constant neutron density corresponding to
the average neutron density in the cell. The minimum energy nuclear configuration is the bicontinuous cubic-P phase, followed by planar and
cylindrical geometries. The relative abundances of the phases at a temperature equal to the fictive temperature is shown below the visualizations
of the phases.

0.49:0.26:0.25. The lattice energy of both lasagna and waffle
phases is 6 keV per nucleon, and their estimated domain size
is approximately one lattice spacing.

At P = 0.34 MeV fm−3, nb = 0.076 fm−3 the fictive tem-
perature kTf is 16 keV → T8 = 2.0, and �G21 = 0.3 keV
and �G31 = 3 keV. The ratios of the abundances of all
three BCP phases are 0.36:0.35:0.29. The BCP phase is sta-
bilized with respect to thermodynamic fluctuations of the

type explored in this paper, so in this density region it is
possible that the order of matter is much longer than den-
sity regions where the BCP phase is not the only nuclear
geometry.

In Fig. 16 we show the baryon density surfaces at a pres-
sure of P = 0.34 MeV fm−3. Variations from local minimum
to local minimum are around 5% that of the average baryon
density.
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FIG. 14. Top row: Gibbs free-energy surfaces at a pressure of 0.32 MeV fm−3, corresponding to a baryon density of ≈0.07 fm−3, at
proton fractions of 0.03 (a), 0.034 (b), and 0.038 (c), for cells containing Acell = 532 nucleons. Below is the Gibbs free-energy variation
along one dimensional paths passing through the energy minimum. Selected (β, γ ) coordinates are shown along the one-dimensional plots.
Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of constant neutron density corresponding to
the average neutron density in the cell. The minimum energy nuclear configuration is planar, followed by waffle and bicontinuous cubic-P
phases. The relative abundances of the phases at a temperature equal to the fictive temperature is shown below the visualizations of the phases.

Moving up in density, in Figs. 17 and 18, we
show the Gibbs free-energy surfaces at pressures of P =
0.45 MeV fm−3 and 0.53 MeV fm−3 corresponding to densi-
ties around nb = 0.082 fm−3 and 0.088 fm−3. In each case the
cells contain 332 nucleons, and we calculate energy surfaces
at proton fractions of yp = 0.24, 0.3, and 0.36. We see that as
we get close to the crust-core transition, the energy surfaces
are becoming simpler in their structure. In both cases, two
minima appear.

At P = 0.45 MeV fm−3, the two minima are at a pro-
ton fraction of 0.03. The higher-lying one is a spaghettilike
configuration; the absolute minimum is a more complex con-
figuration, consisting of cylindrical holes (antispaghetti) and
spaghetti. To reveal the structure requires plotting the two
isosurfaces at low and high density, as shown in Fig. 17;
the low density isosurface (about half the average neutron
density) is shown on the left and reveals the cylindrical
hole; on the right, at high density (about three-quarters the
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FIG. 15. Top row: Gibbs free-energy surfaces at a pressure of 0.34 MeV fm−3, corresponding to a baryon density of ≈0.076 fm−3, at
proton fractions of 0.034 (a), 0.038 (b), and 0.042 (c), for cells containing Acell = 532 nucleons. Below is the Gibbs free-energy variation
along one dimensional paths passing through the energy minimum (d). Selected (β, γ ) coordinates are shown along the one-dimensional plots.
Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of constant neutron density corresponding to
the average neutron density in the cell. All three minima are variations of the bicontinuous cubic-P phase, albeit at different proton fractions.
The relative abundances of the phases at a temperature equal to the fictive temperature is shown below the visualizations of the phases.

average neutron density in the cell) the spaghetti structure
is revealed. In the bulk, protons as well as neutrons are
delocalized.

At P = 0.53 MeV fm−3, the absolute minimum
is at a proton fraction of 0.036 and corresponds to
a lasagna structure. A local minimum appears at a
proton fraction of 0.3 and corresponds to the same
spaghetti-antispaghetti configuration seen at the previous
density.

At P = 0.45 MeV fm−3, the fictive temperature kTf is
16 keV → T8 = 1.9, and �G21 = 3.5 keV. The ratios of
spaghetti hole:spaghetti are 0.55:0.45. The lattice energy of
the spaghetti phase is 3.7 keV per nucleon, and their estimated
domain size is approximately four lattice spacings. The lattice
energy of the spaghetti hole is 2.9 keV per nucleon, with a
domain size similar order.

At P = 53 MeV fm−3, the fictive temperature kTf is
4.6 keV → T8 = 0.53, and �G21 = 2 keV. The ratios of
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FIG. 16. Average baryon density surfaces (bottom) at a constant pressure of 0.524 MeV fm−3, corresponding to a baryon density of
≈0.076 fm−3, for cells containing Acell = 532 nucleons. Results are shown for proton fraction of 0.034 (a), 0.038 (b), and 0.042 (c). The
local minima differ in baron density by of order 5%.

lasagna:spaghetti hole are 0.6:0.4. The lattice energy of the
lasagna phase is 1.8 keV per nucleon, and the lattice energy
of the spaghetti hole is 1.6 keV per nucleon. The estimated
domain size is approximately two lattice spacings for the
lasagna and significantly less than 1 lattice spacing for the
spaghetti hole.

The spaghetti phases, the first pasta to appear as one de-
scends through the crust, can persist to relatively deep layers,
making them the most robust of the pasta phases.

IV. SUMMARY AND DISCUSSION

In Fig. 19 we show a visual summary of the pasta phases
found to coexist at increasing depth in the crust. Laterally,
they are arranged with the minimum energy configuration
on the left. To give a visualization of how the phases ap-
pear over longer length scales than a single cell, we have
stacked four cells in each direction, but it is important to
remember we only ever calculate one unit cell. We have not
included every single density and configuration detailed in
the previous section, but instead we selected those that best
represent that region of density. Horizontal lines demarcate
the four distinct regions we have identified, which we label
P1–P4 in what follows. With increasing density, (P1) the
region where pasta first appears as a local minimum, but iso-
lated nuclei occupy the absolute minimum (P2) pasta phases
have become consistently the absolute minimum but isolated
nuclei still occupy local minima, (P3) all local minima corre-
spond to pasta phases, while the protons are localized to the
clusters in at least one dimension, (P4) all local minima corre-
spond to pasta phases and protons are delocalized in all three
dimensions.

One can trace the appearance and fate of one’s fa-
vorite pasta shape with density. Isolated nuclei persist up
to around 0.06 fm−3 but are demoted to local minimum
at around 0.05 fm−3. Isolated nuclei themselves may have
exotic properties at high densities, with highly deformed nu-
clei aligning like liquid crystals. Spaghetti appears at low
densities ≈0.04 fm−3 as a local minimum and is the most
robust pasta shape, making appearances right up to densities
of ≈0.088 fm−3. It is most likely to be the absolute mini-
mum at densities 0.05–0.06 fm−3, appearing at local minima
at most densities thereafter. Next, nuclear waffles appear as

a local minimum 0.05–0.06 fm−3 and persist over a wide
density region up to close to 0.08 fm−3. In our calculations,
they appear as the global minimum at densities around 0.06
fm−3. Nuclear waffles are a lasagna like phase—essentially
lasagna modulated by density fluctuations along the plane of
the shape. Lasagna appear at around 0.066 fm−3 and persist
to the highest densities as local minima. Interestingly, lasagna
never appear as the minimum energy configuration in our
calculations; at the same density region they appear, so does
the bicontinuous cubic-P phase, which appears to be energet-
ically more stable and is the absolute minimum in the region
0.07–0.08 fm−3, until being usurped by the phase that contains
cylindrical holes. As discussed, the cylindrical hole phase we
discover is actually a phases consisting of alternating cylin-
drical under—and over—densities, with neutrons and protons
delocalized in the bulk. This is the absolute minimum up to
the highest density we consider.

The exact phases that appear at each density are driven
by the proton fraction and modulated by shell effects. To
evolve through the pasta phases, one can either increase
the density or the proton fraction, since protons promote
clustering.

In Fig. 20 we plot the pressure [Fig. 20(a)] and chemical
potential [Fig. 20(b)] at which we perform each of our calcu-
lations as a function of the densities of each local minimum as
blue diamonds. We compare this with the pressure and neutron
chemical potential as calculated with the compressible liquid
drop model (CLDM) using the surface parameters that give
closest agreement to 3DHF results (as described in Ref. [53]).
First, we note that spurious shell effects caused by the dis-
cretization of the neutron energy spectrum and corresponding
change in the density of states means we do not expect the
pressure and neutron chemical potential to match exactly the
CLDM results. Also, due to real shell effects, the equilibrium
proton fraction differs from the CLDM result, and the pressure
and neutron chemical potential depends on the proton fraction.
Having said that, for most densities the pressures and neutron
chemical potentials obtained in the 3DHF calculations well
match the CLDM result, with the major differences being at
intermediate densities.

The pressure can be translated approximately into a mass
coordinate for the crust y, which is also approximately the
column depth in the crust - the fraction of the mass of the
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FIG. 17. Top row: Gibbs free-energy surfaces at a pressure of 0.45 MeV fm−3, corresponding to a baryon density of ≈0.082 fm−3, at
proton fractions of 0.024 (a), 0.030 (b), and 0.036 (c), for cells containing Acell = 332 nucleons. Below is the Gibbs free-energy variation
along one dimensional paths passing through the energy minimum (d). Selected (β, γ ) coordinates are shown along the one-dimensional plots.
Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of constant neutron density corresponding
to the average neutron density in the cell. The first minimum is a combination of both a cylindrical high density and low density region
(spaghetti and antispaghetti), whereas the second minimum is cylindrical. The relative abundances of the phases at a temperature equal to the
fictive temperature is shown below the visualizations of the phases. In the simplified model we take a single barrier height to be the fictive
temperature. These abundances will be frozen in as the temperature drops further unless quantum tunneling processes anneal the matter.

crust above a given layer at a given pressure. It is given by

y[P(ρ)] ≡ M� − M(P)

M�

≈ P(ρ)

Pcc
. (29)

Similarly, the neutron chemical potential at a particular
density approximately determines the depth of the layer, and

we define the radial coordinate

r[μ(ρ)] ≡ R� − R(μ)

R�

≈ μ(ρ) + μ0

μcc + μ0
, (30)

where the subscript “cc” denotes the quantity at the crust-core
transition, M�, R� is the stellar radius and mass, and M(P)
and R(μ) the radius and mass out to the layer of the star
characterized by the pressure P and chemical potential μ,
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FIG. 18. Top row: Gibbs free-energy surfaces at a pressure of 0.53 MeV fm−3, corresponding to a baryon density of ≈0.088 fm−3, at
proton fractions of 0.024 (a), 0.030 (b), and 0.036 (c), for cells containing Acell = 332 nucleons. Below is the Gibbs free-energy variation
along one dimensional paths passing through the energy minimum (d). Selected (β, γ ) coordinates are shown along the one-dimensional plots.
Visualizations of the minimum energy nuclear shapes are shown, obtained by plotting a surface of constant neutron density corresponding to
the average neutron density in the cell. The first minimum is planar, and the second minimum is a combination of both a cylindrical high density
and low density region (spaghetti and antispaghetti). The relative abundances of the phases at a temperature equal to the fictive temperature is
shown below the visualizations of the phases.

respectively, and μ0 the chemical potential at the surface of
the star ≈9 MeV.

Our 3DHF calculations suggest that the crust-core tran-
sition density is ≈0.09 fm−3. The CLDM results presented
in Fig. 20 also give a transition density of 0.09 fm−3. The
CLDM crust-core transition pressure Pcc and chemical po-
tential μcc are 0.54 MeV fm−3 and 13.6 MeV, respectively.
The mass and radial coordinates y and m we display from

now on are obtained from the CLDM results. The mass and
radius coordinates are a better measure of location in the crust,
since density is not directly related to the depth in the crust
(different EOSs will give different densities at a given depth or
mass coordinate in the crust). In what follows, we plot various
quantities versus y.

The plot of pressure versus density illustrates the size
of the local average density fluctuations (the variation over
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FIG. 19. Overview of all nuclear geometries that emerge from our calculations. To visualize the phases better we have plotted a region of
four unit cells squared, but it is important to remember we only calculate one single unit cell. The colors are just for clarity of visualization and
have no physical meaning. The left column gives the approximate baryon densities the configurations to the right cover. The minimum energy
configurations are the leftmost pictures in each row, with the energy of the minimum increasing rightwards. We display only a representative
selection of configurations. Horizontal lines divide the graphic into the four distinct regions of pasta: from low to high density, the region where
pasta first appears as a local minimum at higher energy than the isolated nuclear phase; the region where pasta shapes become the absolute
minimum, but isolated nuclei remain as higher energy local minima; the region where only pasta shapes exist; and the region where only pasta
shapes exist, and protons have become delocalized in all dimensions.
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(a) (b)

FIG. 20. (a) The pressure of matter in the crust as calculated by the compressible liquid drop model (dashed line), and the pressure of
each of the configurations examined in our 3DHF calculations (blue diamonds). (b) The chemical potential from the CLDM and our 3DHF
calculations. Vertical dotted lines divide the four regions of pasta P1-P4 as described in the text. The mass coordinate y calculated from the
CLDM pressure is given in the right vertical scale in panel (a), and the radial coordinate r calculated from the CLDM chemical potential is
given in the right vertical scale in panel (b).

the scale of the domain sizes). At P = 0.33 MeV fm−3,
for example, the density of the coexisting phases have
a spread of 0.003 fm−3, about 5% of the average den-
sity. Typically the density fluctuations are between 2%
and 5%.

In Fig. 20, the dotted vertical lines delineate the 4 distinct
regions of pasta we identify: (P1) (pasta is a local minimum,
spherical nuclei the ground state) accounts for about 10% of
the crustal mass and 5% of the thickness, and spans a region
between ≈20% and 30% of the way into the crust by mass
and ≈70% and 75% by depth; (P2) (pasta is the ground state,
spherical nuclei are local minima) accounts for about 15% of
the crustal mass and 5% the crustal thickness, and spans a
region between ≈30% and 45% of the way into the crust by
mass and ≈75% and 80% by depth; (P3) (all local minima
are pasta, protons are localized) accounts for about 5% of the
crustal mass and thickness, and spans a region between ≈45%
and 50% of the way into the crust by mass and ≈80% and
85% by depth; and (P4) (all local minima are pasta, protons
are delocalized) accounts for about 50% of the crustal mass
and 15% the crustal thickness, and spans a region between
≈55% and 100% of the way into the crust by mass and ≈83%
and 100% by depth.

In Fig. 21, we plot the fictive temperature as a function of
column depth y. The lower red points show the temperatures
assuming the nucleons behave independently, and the upper
blue diamonds assume that of order the proton number in the
unit cell behave collectively when matter is rearranged from
one pasta shape to another. There are a two main contribu-
tors to the energy barriers: the lattice energy caused by the
Coulomb repulsion of the protons in adjacent pasta structures,
and the shell energy. Rearranging the pasta configuration re-
quires a rearrangement of nucleons in the vicinity of the Fermi
surface of order the proton number.

The fictive temperature is calculated based on the average
barrier heights between local minima in our calculations; the
bars on each points indicate the range of barrier heights at
each depth.

The lower limit to the barrier heights given by the red
points start around 109 K and drop to ∼108 K throughout
most of the pasta region, dropping down below 108 K at in
the final 20% of the crust by mass. The estimates assuming
a realistic number of nucleons behaving collectively are an
order of magnitude higher.

When the crust temperature drops below this tempera-
ture, the coexisting pasta domains are frozen in with respect
to thermal fluctuations, at their equilibrium abundances and
characteristic lengths at the fictive temperature. Quantum tun-
neling could then anneal the crust on a timescale that is yet
to be determined, the end result being a single phase of pasta
at each depth. Future heating could then repopulate the local

FIG. 21. The fictive temperature Tf as a function of mass coordi-
nate in the crust y (the fraction of the mass of the crust above a given
point) assuming that the relevant degrees of freedom are individual
nucleons (red points), or a collection of nucleons of order the proton
number ypAcell (blue diamonds). The bars span the range of of barrier
heights from our calculations. Vertical dotted lines divide the four
regions of pasta P1–P4 as described in the text.
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FIG. 22. The long-range order of the pasta phases �L calculated at the fictive temperature, assuming individual nucleons are the relevant
degrees of freedom, as a function of mass parameter. We give the length scale in absolute terms (a) and in units of cell size (b). The horizontal
dashed lines indicate the point where the order drops below 10 fm—approximately the characteristic width of nuclear clusters (a)—and below
one cell size (b). Spaghettilike configurations are shown as red pints, and lasagnalike configurations are shown by blue diamonds. At high y the
Lasagna order becomes much less than the cell size, too low to appear on the plots; at that point the formalism used to calculate the disorder
breaks down. Below the dashed lines, matter is completely disordered. These are upper limits on the long-range order: if we assume that
clusters of nucleons are the relevant degrees of freedom, then the fictive temperature increases (see Fig. 21) and the long-range order drops.
Vertical dotted lines divide the four regions of pasta P1–P4 as described in the text.

minima. It is interesting to note that direct Urca and neutrino-
antineutrino pair emission processes in pasta phases become
competitive with modified Urca processes in bulk matter at
temperatures below 109 K [76], and so may quickly drive the
temperature of the pasta phases below the fictive temperature
and into the frozen/annealing phase.

The length scales of the domains at the fictive temperature
are plotted in Fig. 22. Here we take the low end of the bound
on the fictive temperature from the red points in Fig. 21:
this gives an upper limit to the domain sizes at the time the
domains freeze. We plot the size of the domains as a function
of mass coordinate in absolute terms [Fig. 22(a)] and in units
of lattice spacings d [Fig. 22(b)]. Dashed horizontal lines
indicate where the order falls below 10 fm [Fig. 22(a)]—a
typical width of pasta structures—and below one lattice spac-
ing [Fig. 22(b)]. These lines indicate the scale below which
the phases become completely disordered—essentially liquid.
The temperature at which the order corresponds to these lines
is the melting temperature of the glassy pasta. Spaghettilike
configurations are shown as red points and lasagnalike con-
figurations as blue diamonds. Spaghetti phases generally have
long-range order of at most between 100 and 1000 fm (10–50
lattice spacings), with the longest range order occurring in
regions P2 and P3. Lasagnalike phases are an order of magni-
tude less ordered, peaking at 80 fm (≈3 lattice spacings) and
dipping down to below the melting point in the deepest layers.

Given these are upper limits, we can conclude that the pasta
phases are highly disordered at the fictive temperature, which
supports the hypothesis that they have very high thermal and
electrical resistivity. Additionally, given the domains are only
ordered over a short range, electron scattering from domain
boundaries could contribute significantly to the thermal and
electrical resistivity of the deep layers of the crust.

As the temperature drops below the fictive temperature,
the domains are frozen and cannot immediately grow in
size, being bounded by adjacent domains. If annealing oc-
curs, then the domains containing lower energy phases will

gradually grow as they convert surrounding higher energy
phases.

If the crust gets heated above the fictive temperature, then
thermal fluctuations can once again repopulate the local min-
ima. The base of the crust is expected to be heated up to
temperatures of order 108 K during accretion, enough to enter
the regime where different phases could be repopulated and
coexist. If a stage is reached where an entire layer has been
completely annealed, then increases in temperature even be-
low the fictive temperature will decrease the long-range order.
In either case, the thermal conductivity could be temperature
dependent, something that might be explored in crust cooling
simulations.

One of the crucial quantities in determining the stability
of phases is the lattice Coulomb energy per particle WCL/A,
which we plot in Fig. 23 as a function of column density y
for all local minima. The lattice energy rises to a peak at a
mass fraction of around 0.4 (a density of around 0.06 fm−3),
corresponding to the region where isolated nuclei have van-
ished from the energy landscape, and the energy surfaces have
their most structure. From then on, the lattice energy decreases
roughly exponentially up to the crust-core transition. It should
vanish completely at the crust-core transition, but density fluc-
tuations due to the spurious shell effects mean that it remains
finite in our calculations.

V. CONCLUSIONS

We have conducted a large set of quantum calculations
of nuclear pasta using the three-dimensional Hartree-Fock
method with the NRAPR Skyrme interaction and BCS pair-
ing. A quadrupole constraining potential allowed us to control
the shape of the nuclear deformation, and therefore systemat-
ically probe the energy landscape of nuclear pasta. Although
the constraint determines the shape we get, by ranging over
the whole parameter space of the quadrupole deformation, we
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FIG. 23. The lattice energy per nucleon in the unit cell for mini-
mum energy configurations as a function of mass coordinate y. The
lattice energy drives the stability of the phases; it peaks at around
y = 0.4 (a baryon density of ≈0.06 fm−3), where isolated nuclei dis-
appear from the minima in the energy landscape, and then decreases
roughly exponentially with density thereafter.

were able to reproduce and compare all pasta shapes in an
unbiased way.

We selected 11 different density regimes to perform cal-
culations at, ranging from 0.035 fm−3 to 0.088 fm−3. At
each density we selected a single cell size, chosen based
on the range of cell sizes predicted by calculations us-
ing the compressible liquid drop model (CLDM). In each
density regime we performed calculations at five different,
closely spaced densities and used the results to interpolate
the energy at a given reference pressure, chosen to be the
pressure for a zero-deformation configuration at the cen-
tral density in the range. We thus calculated the Gibbs free
energy, and were able to compare configurations in equilib-
rium at constant pressure (and therefore at the same depth
in the crust). In each density regime we also performed
calculations over a range of proton fractions to locate the
β-equilibrium proton fraction. In total, the results we show
are obtained from approximately 30,000 calculations and
300,000 CPU hours.

We show that the energy landscape consists of multiple
local minima corresponding to different nuclear geometries
with very similar energies, separated by barriers of 1-100
keV which generally decrease with depth. These findings are
consistent with earlier, more limited explorations of the en-
ergy landscape of nuclear pasta [16]. The various minima at a
given depth can be at different proton fractions and densities.
Therefore, at a given depth in the star, multiple nuclear pasta
shapes may coexist, and there may be local variations of the
average electron fraction and baryon density of order 10% and
1–5%, respectively.

The following nuclear geometries were found: spher-
ical and deformed nuclei appear up to nb = 0.06 fm−3

as either the minimum energy configuration (up to nb ≈
0.05 fm−3) or a local minimum. Spaghetti appears over

the range 0.04–0.088 fm−3, the waffle phase (perforated
planes) appear over the range 0.05–0.08 fm−3, lasagna over
0.065–0.088 fm−3, the bicontinuous cubic-P (BCP) phase
over the range 0.066–0.08 fm−3 and cylindrical holes ap-
pear at 0.08–0.088 fm−3. The BCP phase consists of both
continuous neutron matter and nuclear matter interlaced;
the protons are therefore delocalized in all directions. The
cylindrical holes coexist with spaghetti phases, with pro-
tons delocalized in the bulk. At each depth in the crust
we identify the phases that coexist and estimate their rel-
ative abundances. Spaghetti appears over the widest range
of densities.

Four distinct regions can be identified, which we denote
P1–P4: (P1) roughly spherical nuclei are the minimum en-
ergy configuration, but pasta appears as local minima; (P2)
pasta phases become the minimum energy configuration, but
spherical nuclei still occupy some local minima; (P3) all lo-
cal minima correspond to pasta configurations, and protons
are localized in at least one dimension; and (P4) all local
minima correspond to pasta configurations, and the appear-
ance of the BCP phase indicates protons are delocalized in
all dimensions. We find the BCP phase is particularly stable
and the delocalized proton region accounts for at least half
of the pasta layers by mass and 15% by depth. The regions
P2–P4—where pasta is the ground state—occupy about 70%
of the whole crust by mass and 25% by depth. In total,
P1–P4 accounts for almost 80% of the mass of the crust
and 30% of its thickness. When protons become delocalized
they are free to carry currents and maybe form a type-II
superconductor [77].

The nature of the energy landscape suggests the pasta
phases are glassy: they undergo a transition to an amorphous
solid at a certain temperature below their melting tempera-
ture. We take the barrier heights between local minima to
set the temperature scale - the so-called fictive temperature,
to borrow a term from condensed matter physics, above
which matter is an amorphous solid. As matter cools be-
low the fictive temperature, we posit that it becomes frozen
into domains with a length scale set by stability against
thermal fluctuations at the fictive temperature. These length
scales are of order 10 times the cell size at lower depths,
falling to below the cell size at higher depths, depend-
ing on whether the nuclear geometry is spaghettilike or
lasagnalike. If the length scale is below the cell size, then
the matter remains a liquid (no long-range order at all)
until the temperature cools significantly below the fictive
temperature.

Once matter is frozen into domains, it is possible annealing
will begin to homogenize the matter at a given depth, with do-
mains corresponding to the marginally energetically preferred
configuration expanding their volume, converting the other
phases. The conversion process could be similar to pycnonu-
clear fusion [78,79], whose timescale uncertainty is many
orders of magnitude (see, for example, Table 2 in Ref. [80]).
Additionally, domains many times the size of a single unit
cell will need to be converted. An analysis of the uncertainty
this leads to on the annealing timescale would be an important
future study to undertake. Annealing would release heat in
the deep layers of the crust of order 1–50 keV/nucleon—the
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typical energy differences between local minima and the
ground state.

Although we perform a very large number of calculations,
we still do not sample widely the unit cell size at any given
depth, and although it is reasonable to expect that our results
do not qualitatively depend on cell size, it is likely that some
phases we do not see (notably bubble) are missed due to
this restriction. Phases that never appear as the minimum en-
ergy configuration in our calculations—like spaghetti—likely
would in a larger set of calculations. In a recent set of calcu-
lations using the same method at fixed proton fractions, and
generally larger cell sizes, a similar set of pasta geometries
were found [8]. Our results should be taken as an illuminating
snapshot of the pasta landscape. As noted in the methods
section, we have tested that the same pasta phases are obtained
when we double the length of the cell in a single direction, and
calculations in cells of eight times the volume and more are
ongoing, in part to test the cell size dependence of the pasta
shapes further.

The phases of pasta present depend on the proton frac-
tion, which in turn depends on the symmetry energy at
pasta densities. An examination of the dependence of our

results on the EOS—particularly, the extent of the four dis-
tinct regions of pasta—will be presented in an upcoming
work.

As we explore the nuclear pasta phases in more detail, their
structure at both micro- and mesoscales becomes richer and
more complex, presenting a serious challenge to modeling the
material and transport properties near the crust-core boundary.
However, the fact they likely occupy a large mass fraction
and thickness of the crust, and that they mediate the transition
from solid crust to liquid core, means they remain an essential
ingredient in the modeling of many macroscopic, observable
neutron star phenomena.
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