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Neutrino energy reconstruction from semi-inclusive samples
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We study neutrino-nucleus charged-current reactions on finite nuclei for the situation in which an outgoing
muon and a proton are detected in coincidence; i.e., we focus on semi-inclusive cross sections. We limit our
attention to one-body current interactions (quasielastic scattering) and assess the impact of different nuclear
effects in the determination of the neutrino energy. We identify the regions in phase space where the neutrino
energy can be reconstructed relatively well and study whether the cross section in those regions is significant.
Our results indicate that it is possible to filter more than 50% of all events according to the muon and proton
kinematics, so that for the DUNE and T2K fluxes the neutrino energy can be determined with uncertainties of
less than 1% and 3%, respectively. Furthermore, we find that the reconstructed neutrino energy does not depend
strongly on how one treats the final-state interactions and is not much affected by the description of the initial
state. On the other hand, the estimations of the uncertainty on the neutrino energy show important sensitivity to
the modeling of the initial state.
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I. INTRODUCTION

The T2K and MINERvA experiments and those based on
Liquid Argon Time Projection Chamber (LArTPC) detectors
have shown their capabilities to measure the final-state lepton
(μ± or e±) and to identify one or more charged particles in co-
incidence [1–5]. Future experiments, such as DUNE [6], will
incorporate an enhanced tracking capability for hadrons in the
final state. Also, it is worth mentioning the SK-Gd project [7],
that improves the detection and identification capabilities of
neutrons by adding Gd salts to the Super Kamiokande wa-
ter tank. Compared to inclusive experiments, where only the
final lepton is detected, the additional information about the
hadrons in the final state, namely, semi-inclusive scattering,
will improve the reconstruction of the incoming neutrino
energy.

In Refs. [8–11] explorations of the possibilities arising
from the extended knowledge of the final state, specifically
focusing on events where there is simultaneous detection of
the lepton and a nucleon, were presented. In Ref. [10], it was
proposed to study the average neutrino energy corresponding

to a given semi-inclusive event

〈E〉 =
∫

dE E φ(E ) d6σ (E )
d�l dkl d�N d pN∫

dEφ(E ) d6σ (E )
d�l dkl d�N d pN

, (1)

where d6σ (E )
d�l dkl d�N d pN

is the sixfold differential cross section for
a fixed neutrino energy E and fixed muon and final nucleon
kinematics. φ(E ) is a given flux distribution, normalized as∫

dEφ(E ) = 1. Furthermore, the standard deviation for the
average neutrino energy can be obtained from the first and
second statistical moments

�E =
√

〈E2〉 − 〈E〉2, (2)

where

〈E2〉 =
∫

dE E2 φ(E ) d6σ (E )
d�l dkl d�N d pN∫

dEφ(E ) d6σ (E )
d�l dkl d�N d pN

. (3)

Thus, provided that expressions for the flux and cross sec-
tion are known, and given that the 4-momenta of the lepton
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and proton in the final state are both measured, the average
neutrino energy will be defined up to 〈E〉 ± �E . From now
on, we will refer to the average energy [Eq. (1)] as recon-
structed energy, since it is an estimator of the most likely
neutrino energy associated with that event. Notice that in
the kinematical regions where the mere detection of the final
lepton and nucleon determines the incoming neutrino energy
with good accuracy, any adequate neutrino energy estimator
will provide results very similar to the average energy derived
from Eq. (1).

The impact of different assumptions for the nuclear mod-
els involved on the neutrino energies and uncertainties were
studied in Ref. [10]. To summarize the conclusions in said
reference, we note the following:

(1) The reconstructed neutrino energy 〈E〉 depends only
moderately on the nuclear model introduced in Eq. (1).

(2) The corresponding uncertainty of the reconstructed en-
ergy does depend on the nuclear model, but it may be
relatively low for a large fraction of the events.

The basis for these observations is the fact that the neutrino
energy gets essentially blurred by the missing energy of the
nuclear system, that is, the energy required to knock out the
observed nucleon, while the nuclear recoil is generally very
small. In light nuclei, such as 12C or 16O, for many events
the main contribution will come from the nucleons in the p
shell(s), for which the missing energy is a rather well-known
quantity.

In this paper, we extend the previous analysis presented in
Ref. [10] by examining the whole phase space and scrutinize
in detail the potential for model-independent neutrino-energy
determinations. We consider semi-inclusive reactions involv-
ing an incident neutrino followed by detection of a charged
lepton and a nucleon in the final state together with no
produced pions; that is, we focus on events of the type
CC1μ1p0π , having chosen in the present work to emphasize
muons and protons in the final state. As discussed later, this
selection of events does not mean that one and only one
nucleon is assumed to be present in the final state, only that
at least one is present. Indeed, depending on the kinematics
chosen, there must be other nucleons beyond the one actually
detected. The study presented in Ref. [10] is extended here
to include various models that treat the issue of hadronic
final-state interactions. We discuss a typical situation, that
is, we make specific choices for the measured 4-momenta,
in order to orient the reader to the basic characteristics of
semi-inclusive reactions before going on to analyze a broad
region of the full phase space.

We first introduce the semi-inclusive kinematics and cross
section in general terms (Sec. II), and then particularize for the
quasielastic (QE) interaction (Sec. II A). In Sec. III, the semi-
inclusive cross section is studied for a fixed set of kinematics.
Full phase space results are shown in Sec. IV. In Secs. IV A
and IV B, we assess the effect of final-state interactions and
the description of the initial state on the neutrino energy de-
termination. In Sec. IV C, we show the regions of phase space
where the neutrino energy is reconstructed with the lowest
error. Finally, we draw our conclusions in Sec. V.

II. KINEMATICS AND CROSS SECTION

For the discussion that follows, we will assume that the
final-state lepton (here a muon is assumed) with 4-momentum
(El , kl ) and a nucleon (here a proton is assumed) with 4-
momentum (EN , pN ) are detected in coincidence. No other
particles are assumed to be detected, although, depending on
the specific kinematics assumed, they must be present (see
below). We work in the laboratory frame where the target
nucleus is at rest, the incoming neutrino momentum is along
ẑ, and the lepton kinematical variables are contained in the
x̂-ẑ plane. The angle between the incident neutrino and the
outgoing lepton is θl , while in the chosen coordinate system
the polar and azimuthal angles that specify the direction of the
outgoing nucleon are θN and φN , respectively. The magnitude
of the nucleon’s 3-momentum is given by pN = |pN |. Apart
from the detected nucleon, the hadronic final state contains
an undetected hadronic system having missing 4-momentum
(EB, pB), namely, a total energy of EB and a missing 3-
momentum pB ≡ pm. If one denotes by q the 3-momentum
transferred from the leptons to the hadronic system, one has

pm = q − pN . (4)

The undetected hadronic system has invariant mass MB (M0
B

at threshold with MB � M0
B) and total energy

EB = TB + MB =
√

(MB)2 + pm
2, (5)

which defines the kinetic energy of the unobserved final-state
system, TB. From Eq. (5) one has

EB = E − El − TN + (
M0

A − mN
)
, (6)

where M0
A is the target ground-state mass and TN = EN − mN

is the kinetic energy of the detected nucleon. This leads to an
expression for the so-called missing energy,

Em = (
MB − M0

B

) + Es = E − El − TN − TB, (7)

where Es = M0
B + mN − M0

A is the separation energy and the
(typically very small) recoil kinetic energy difference has been
neglected. Clearly, if one knew the missing-energy Em then
the incident neutrino energy E would also be known. The
magnitude of this missing momentum pm is given by

pm = [
k2 + kl

2 + p2
N − 2kkl cos θl − 2kpN cos θN

+ 2kl pN (cos θl cos θN + sin θl sin θN cos φN )
] 1

2 . (8)

Depending on the specific kinematics, i.e., the value of
the missing energy, the residual system may be the daughter
nucleus in its ground state (this defines the threshold for the
semi-inclusive reaction to become possible), or it may be in a
discrete excited state (these are states in the residual nucleus
that lie below the threshold where a second nucleon can be
ejected), and, while they de-excite by γ decay, that process
is slow on the nuclear timescale and thus these states may be
treated effectively as stationary states. Then, at a well-defined
threshold, a second nucleon must be emitted (this is not op-
tional: there are no nuclear states involving one nucleon and a
residual bound nucleus above this point); and so on with more
particles in the final state in addition to the one special nucleon
that is assumed to be detected. At even larger missing energy
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(roughly 140 MeV), pion production becomes possible (still
with the lepton and one nucleon assumed to be detected) and
beyond where more particles may be present in the undetected
part of the final-state system.

We consider neutrino energy distributions from DUNE
and T2K fluxes. The flux-averaged semi-inclusive cross sec-
tion for this process is given by〈

d6σ

dkl d�l d pN d�N

〉
=

∫
dEφ(E )

d6σ (E )

dkl d�l d pN d�N
. (9)

With the neutrino energy and missing energy related through
energy-momentum conservation, it is convenient to change
the integration variable from E to Em, thereby writing the ex-
pression for the semi-inclusive cross section in a more familiar
way, found for instance in inclusive and exclusive electron
scattering. The semi-inclusive cross section is then given by〈

d6σ

dkl d�l d pN d�N

〉
=

∫
dEm φ(E )F k2

l p2
N M∗

B

(2π )5EB frec
	μνHμν,

(10)

with

frec =
∣∣∣∣1 − E − k̂ν · (pN + kl )

EB

∣∣∣∣ (11)

being the nuclear recoil factor, where k̂ν is a unit vector along
the neutrino beam line. F is given by

F =
(

GF√
2

)2

cos2 θc, (12)

where GF is the Fermi constant and θc is the Cabibbo mixing
angle. The charged-current lepton tensor is

	μν = 2

EEl

(
Ki,μKf ,ν + Ki,νKf ,μ−gμνKiKf −ihεμναβKα

i Kβ

f

)
,

(13)

with h = +1 for antineutrinos and −1 for neutrinos. The
terms Ki and Kf represent the four-momenta of the initial
and final leptons involved in the process. Up to this point the
discussion is general; i.e., it does not depend on the nuclear
model or the reaction channel. All the complexity regarding
the hadronic part of the interaction is in the hadron tensor Hμν ,
which is discussed in Sec. II A.

Equation (6) tells us that the neutrino energy can be re-
constructed very well from a semi-inclusive sample of events
when it is dominated by a narrow and well-known missing-
energy region. This should be the case for QE scattering,
where the neutrino scatters elastically from a bound nucleon
such that the missing energy is of the order of the binding
energy of the nucleon. In the following, we focus on the QE
reaction and we describe the content of the different nuclear
models employed in this work.

A. Nuclear models for quasielastic scattering

We focus on neutrino-induced charge-current QE scatter-
ing, with one boson exchanged between lepton and one-body
hadron currents, within the impulse approximation. Thus, we

do not consider meson-exchange currents (MEC) nor the pro-
cesses where real pions may be produced in the final state. In
this work, we restrict our attention to 16O, although analyses
along these lines can easily be performed for other nuclei [12].

We will describe the initial state as a set of relativistic
mean-field (RMF) wave functions that correspond to differ-
ent shells labeled by the relativistic quantum number κ . The
hadron tensor for a given shell is

Hμν
κ = ρκ (Em)

∑
mj ,sN

[
Jμ
κ,mj ,sN

(Q, PN )
]∗

Jν
κ,mj ,sN

(Q, PN ),

where Q = Ki − Kf , ρκ (Em) is the missing-energy density,
Jμ
κ,mj ,sN

is the hadron current in momentum space defined as

Jμ
κ,mj ,sN

(PN , Q) =
∫

dp�
sN (pN , q + p) Oμ(Q) �

mj
κ (p), (14)

mj is the third component of the total angular momentum
j of the bound nucleon, and sN is the spin projection of
the final nucleon. � functions are relativistic independent-
particle wave functions describing the bound and scattered
nucleon and Oμ is the usual boson-nucleon-nucleon operator,
for which we use its CC2 form (see Refs. [13–15] for details).

In the framework of a pure shell model, one simply has
ρκ (Em) = δ(Em − Eκ

m), where Eκ
m is the energy eigenvalue for

a given shell. This missing-energy distribution of the shell
model, however, is only a first approximation to the one in real
nuclei, that for the valence shells has been measured in quite a
number of electron scattering experiments. Generally speak-
ing, effects beyond mean field, such as short- and long-range
correlations, modify the actual missing-energy distribution
predicted by the shell model.

In this work, as already done in Ref. [10], we also take
as a reference the spectral function formalism. The spectral
function incorporates the probability of finding the nucleon in
the initial state with certain energy and momentum. It includes
the depletion of the occupation of the shell-model states and
the appearance of nucleons at deeper (namely, higher) missing
energy, in both cases due to correlations, both long and short
ranged. For the purpose of this work, we will consider the
Rome spectral function [16,17] as a fair representation of
the missing energy and missing-momentum distribution of
the nucleons in the target nuclei, as measured in electron
scattering experiments. Other spectral function calculations
are available in the literature [18,19]; however, since all of
these have been constrained to some extent to reproduce the
(e, e′ p) electron scattering cross sections, their results will not
differ much from the ones here.

The spectral function is easy to incorporate in a fully fac-
torized, plane-wave calculation (as in Refs. [10,20]), with the
exclusive 6-differential cross section given by

d6σ

dkl d�l d pN d�N
= KS(Em, pm)σνN . (15)

K is a function containing kinematic factors, S(Em, pm) is the
initial-state spectral function, and σνN is the charged-current
elastic neutrino-nucleon cross section for an off-shell nucleon
with initial momentum pm (see Refs. [10,17,20] for details).
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FIG. 1. (a) The Rome spectral function (integrated over pm)
as a function of the missing energy. Our parametrization of the
background is represented by the dashed line. (b) Momentum distri-
butions from the Rome spectral function and from our representation.

In this work, however, we use a representation of the spec-
tral function amenable to our relativistic distorted-wave and
unfactorized calculations that is sufficient to achieve the goals
of this work. Thus, we divide the missing-energy phase space
into several regions. In the lowest-energy region, below the
two-nucleon threshold, we will have the p-shell states, with an
energy dependence not given by δ functions but rather by the
energy distribution seen in the spectral function [Fig. 1(a)].
We identify each shell with a different region of missing-
energy following the analysis presented in Ref. [10]. The high
Em and pm part of the spectral function due to correlations
is accounted for by introducing an s wave [21,22], broad in
momentum space (narrow in r space, approximately 0.85 fm),
that is fitted to reproduce the momentum distribution of the
spectral function in this region. The momentum distribution
obtained in this representation, compared to the one of the
Rome spectral function, is shown in Fig. 1(b). The specific
regions and occupation numbers are summarized in Table I.
Above the two-nucleon knockout threshold, the independent-
particle shells and the background coexist. To account for it,
we have parameterized the missing-energy profile of the back-
ground in the region 25 < Em < 100 MeV [dashed blue line in
Fig. 1(a)]. In the region Em > 100 MeV, we assume that there
is only background, which is well described by an exponential

TABLE I. Correspondence between missing-energy regions and
shells in oxygen. In the last column are the occupation numbers.

Em (MeV) Shells 16O

0–16.5 p1/2 1.51
16.5–25 p3/2 3.47
25–100 s1/2 + backg. 2.22

s1/2 1.62
backg. 0.60

100–300 backg. 0.80

fall-off. The explicit expressions for these functions are given
in the Appendix.

The representation of the initial state we use in our model-
ing essentially contains the same (albeit somewhat simplified)
missing-energy and momentum structure of the Rome spec-
tral function. Indeed, despite the fact that our calculations
are unfactorized (due to the relativistic effects [23,24] and
eventually FSI (final-state interactions) [14]), our cross sec-
tion results, when FSI are neglected, are within few percent of
the ones obtained with the fully factorized calculation based
on the spectral function approach of the Rome model (see,
e.g., Fig. 2), showing that ingredients preventing factorization
and negative-energy components have a small effect on the

FIG. 2. Single-differential cross sections for the DUNE (a) and
T2K (b) fluxes with the models discussed in the text.
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cross sections computed here [25]. This means that our results
are representative of what MC (Monte Carlo) event generator
based on the spectral function+factorized calculations, even
considering FSI, would produce.

To summarize, in our rationale (impulse approximation)
the spectral function is a reasonably realistic representation of
the initial state (energy and momentum) of the nucleon which
will contribute, for the reaction at hand, to a final state in
which we will see at least one knocked-out nucleon. We want
to emphasize that in this way, we incorporate the experimen-
tal constraints provided by electron scattering experiments
on missing-energy and momentum distribution in the initial
nucleon, certainly much better than within any Fermi gas
approach or a pure shell model.

In the following, we discuss the description of the final
state that we incorporate in our calculations. In a way, the final
state is to a large extent determined by the experimental signal
that is to be described: Is there only a proton and no other
hadrons in the final state? Or, at the other extreme, does the
experimental signal contain every event for which at least one
proton is seen? Generally, the actual experimental situation
will be a combination of these two extreme, simplified, cases.
We will look for some representation of these situations, in
order to study the effects of the different definitions of the final
state on the reliability of the determination of the neutrino
energy.

(1) Real relativistic optical potential (rROP) or energy-
dependent relativistic mean-field (ED-RMF). In this
case, the final-state nucleon is a solution of the Dirac
equation with a real potential, and the absence of an
imaginary part in the potential means that no flux is
lost. We will use both the rROP and the ED-RMF,
the difference between them being in the relativistic
mean-field potential seen by the final nucleon [26]. In
the rROP case, we use the real part of the energy-
dependent A-independent oxygen (EDAI-O) optical
potential [27], while the ED-RMF is the RMF poten-
tial (the same as for the bound state) but multiplied
by a phenomenological function that weakens the
potential for increasing nucleon momenta [28]. The
nucleon wave functions within the ED-RMF model
are eigenstates of the same Hamiltonian, and there-
fore, orthogonality between initial and final state is
satisfied; i.e., Pauli blocking is consistently incorpo-
rated. This orthogonality is not as good in the rROP
model; therefore, one should be cautious when the mo-
mentum of the nucleon is smaller than approximately
pN < 300 MeV. For pN larger than around 400 MeV,
the overlap between the initial and final states is neg-
ligible and hence, orthogonality is not an issue. These
approaches, in the pure shell-model case, have been
shown to successfully describe inclusive scattering
data for both neutrinos and electrons [26,28]. In the
case of semi-inclusive scattering, as considered here,
these models would provide an estimate of the situa-
tion in which the hadronic final-state signature consists
of at least one proton. There may be other nucleons
that arise from correlations in the initial state or other

hadrons, such as nucleons or pions, produced during
the interaction of the knocked-out nucleon(s) with the
residual system. The scenarios with two or more nu-
cleons in the final configurations necessarily arise from
kinematics in which the missing energy, Em, is above
the two-nucleon knockout threshold.

(2) Elastic-only channel in the FSI, represented by a com-
plex relativistic optical potential (ROP). The whole
ROP which is fitted to reproduce elastic proton-
nucleus scattering, and that contains real and imag-
inary parts, is employed in this case. Hence, this
calculation allows us to estimate the probability that
the (primary) nucleon knocked out during the inter-
action with the boson propagates through the residual
system with elastic scattering only. This primary nu-
cleon does not knock out other nucleons or create new
hadrons in its way out, nor does it lose energy in
any way apart from elastic recoils. The angle of the
nucleon can change, though.

This situation can be considered equivalent to
running the cascade models retaining only elastic in-
teractions. However, the calculation presented here is
of course a fully quantum mechanical one. The loss
of flux implied by the imaginary part of the poten-
tial would lead to a strong underestimation of the
inclusive cross section, in which the outgoing nu-
cleon remains undetected. Thus, the ROP estimation
would be more in line with an experimental signature
of having one proton detected and no other hadron.
Additional hadrons, however, could appear due to cor-
relations in the initial state and subsequent FSI of the
secondary nucleon. The “one proton and one only” sig-
nature might be enforced in the calculation by keeping
the missing-energy below the two-nucleon emission
threshold, for the initial state, and the elastic (full
optical potential) condition in the final state.

These ingredients, but with the pure shell model,
have been widely applied to analyze exclusive (e, e′ p)
data on different target nuclei [13,14,29] for which
there is certainty that there is only one proton in the fi-
nal state. The theoretical prediction is scaled to the data
by the spectroscopic factor and the agreement with
data is outstanding. As in this work we use the spectral
function representation, the scale factor is already in-
cluded in the theory. Were we to use these ingredients
to analyze the exclusive data, we would find very good
agreement for the p1/2 shell. For the p3/2 shell, one
has to consider that with the binning of the spectral
function used here, the small states located at missing
energies around the main p3/2 state are all summed
up. When all these states are taken into account, the
agreement is good, at least for low-to-moderate values
of Em.

(3) Relativistic plane-wave impulse approximation (RP-
WIA): The final nucleon is described by a relativistic
plane wave, so final-state interactions and Pauli block-
ing effects are neglected. Although RPWIA is an
oversimplified description of the process that is not
suitable for some experimental situations, it is a very
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common first-order theoretical estimate that can help
in improving our understanding of the dynamical prop-
erties involved in semi-inclusive processes. We include
it here as a reference.

(4) In addition to the previous models, and as a further
reference, we present here our calculations in the fac-
torized spectral function approach (SFA) described by
Eq. (15). The SFA is completely or partially imple-
mented in some of the Monte Carlo event generators
used in neutrino experiments [30,31] and thus it is
useful for reference.

In Fig. 2, we compare the predictions of the models de-
scribed above for the single-differential cross sections as a
function of the final nucleon momentum for the DUNE and
T2K fluxes. As expected, our representation of the spec-
tral function calculation in RPWIA and the factorized SFA
results are essentially identical and yield the largest cross
sections, due to the absence of Pauli blocking and of the
distortion, that shifts the strength to regions kinematically
suppressed [28,32]. The ratios of the peak values of the rROP
results to those of the RPWIA in the two panels in the fig-
ure are 0.84 [Fig. 2(a)] and 0.82 [Fig. 2(b)]. The rROP and
ED-RMF results are very similar both in shape and mag-
nitude. The ROP result has a very similar shape to that of
the rROP, albeit smaller in magnitude as a consequence of
the restriction to elastic-only propagation for the knocked-out
proton: The ratios at the peaks are 0.71 [Fig. 2(a)] and 0.75
[Fig. 2(b)]. These results are consistent with those found in
previous studies, e.g., Ref. [15].

The main idea in this work is to compare the accuracy
in the energy determination performed based on cross sec-
tions and kinematics (missing-energy and momentum) given
by these models, which either correspond approximately to
possible experimental samples or signatures or to common
ingredients of MC event generators. We will first do so for
a fixed final-state kinematics (Sec. III) and then extend the
analysis to the full phase space (Sec. IV).

III. SELECTED EVENTS AND TRAJECTORIES

To get a deeper understanding of the procedures used to re-
construct the neutrino energy and the definition of its error, we
analyze in detail the semi-inclusive cross section for a fixed
set of kinematics. After this discussion, which should help
in understanding the basic characteristics of semi-inclusive
reactions of the type considered in the present study as well
as those involving electron scattering, specifically, (e, e′ p)
reactions, in the following section we present an analysis that
extends over the full phase space.

From Eqs. (7) and (8), it is clear that for fixed values of the
observable parameters the values of Em and pm are determined
for each value of E . Thus, for fixed values of the observables,
the integral over E in Eq. (9) follows a curve or trajectory in
the pm-Em plane. In Fig. 3, trajectories are shown for selected
kinematics for the detected particles, namely, El = 3800 MeV,
θl = 7 deg, TN = 140 MeV, φN = 180 deg. This represents a
“typical” situation and clearly many others could have been
chosen to illustrate the basic behavior to be expected. What

FIG. 3. The Em − pm trajectories are shown for selected “typi-
cal” kinematics: El = 3800 MeV, θl = 7 deg, TN = 140 MeV, φN =
180 deg. Each line corresponds to a different value of the proton
scattering angle θN (in degrees). Here, we plot the Rome spectral
function as a background to allow one to easily identify the different
regions of the spectral function that are crossed by the trajectories.

is varied here is the polar angle for the detected proton, θN .
As stated above, as one goes along a given trajectory the
neutrino energy E varies. It starts at the lower boundary which
defines the threshold for the semi-inclusive reaction to occur
and grows as the missing energy increases. The semi-inclusive
cross section thereby produced for a particular neutrino flux is
then obtained as a line integral along the specific trajectory.
In effect, each event where a muon and proton are detected in
coincidence corresponds to a specific trajectory. Only were
one to have a monoenergetic neutrino beam would a point
in the Em-pm plane be selected; however, with broad-band
beams a weighted line integral is required. That said, one
still sees a striking pattern to the behavior one should ex-
pect when performing such line integrals. The strength in the
Rome spectral function, which should provide a good starting
point for the characteristics to be expected in semi-inclusive
reactions, is extremely localized. One sees the largest concen-
tration of strength where the p shells are located (at around
Em = 20 MeV) with less where the broad s shell is lo-
cated (at around Em = 50 MeV); at still larger values
of Em (and pm) the Rome group spectral function does
have some strength, although it is spread over a wide re-
gion in the Em-pm plane and is too small to be seen in
this representation. Furthermore, we note that pion pro-
duction cannot occur until one reaches Em ∼ mπ and that
it is not appreciable until Em ∼ m� − mN ∼ 300 MeV.
Of course, in the present work we are considering only events
that have no pions.

We do have some knowledge about this generic behavior
of the distribution of strength from inclusive electron scat-
tering, (e, e′). Inclusive scattering corresponds to performing
integrals over specific regions in the Em-pm plane [33–35].
A very similar pattern is expected in that case and what is
found for 16O is that somewhat over 50% of the inclusive
cross section stems from the p shells, about 25% comes from
the s-shell region and the rest comes from a broad region
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FIG. 4. The sixfold differential cross section computed with the DUNE flux and the SFA model is shown as a function of
the missing energy Em on linear (a) and semilog (b) scales. Muon and proton variables are fixed to El = 3800 MeV, θl = 7
deg, TN = 140 MeV, φN = 180 deg, as in Fig. 3.

at higher missing-energy. This is borne out in semi-inclusive
(e, e′ p) electron scattering studies, although only a few data
exist in that case. Thus, we expect this general picture to
be the case for CCν reactions. Indeed, in the semi-inclusive
case that forms the focus of the present work, we expect that
the line integrals discussed above are at their largest when the
trajectories cross the peaks in the p-shell region together with
somewhat reduced strength coming from the s-shell region
and a negligible amount arising from the higher Em region.
Given that this is the case, we can then also expect that the
optical model based approach discussed above is a reasonable
one, whereas were the high-Em region to be important this
would not be obvious.

In passing we note that while other choices of two variables
to replace Em and pm can of course be made, the generic
behavior seen here strongly suggests that the present choice
is a good one and that other choices may not reflect the highly
localized nature of the nuclear response.

Let us next see what the various models yield for the
weighted cross sections. In Fig. 4, we represent the integrand
of Eq. (9) along the trajectories shown in Fig. 3, i.e., the
sixfold differential cross section for fixed muon and proton
kinematics as a function of the missing energy. By varying
the angle θN , the cross section changes its magnitude and its
shape but, in general, we observe a profile that resembles the
ρ(Em) function used in our model [Fig. 1(a)], namely, two
prominent peaks corresponding to the p shells, a wide belly
for the s shell, and a background that extends up to high
missing energies. Clearly, as expected, the p-shell strength
is largest, the s-shell strength is smaller, and the high-Em

strength is completely negligible, being down by several or-
ders of magnitude. By examining these results in the light
of the trajectories shown in Fig. 3 we see that the general
behavior we expect to occur is borne out. For example, the
trajectories for θN = 60 and 80 deg both pass through the
p-shell region near its peak. However, one trajectory intersects
the s-shell region more than the other one does and this results
in relatively different amounts from the s shell compared with
the p shell. Or, if one has events that correspond to large values
of θN with the chosen kinematics introduced above, then the
cross sections are very small, as they should be, since neither

the p- nor s-shell regions are crossed. Thus, we are interested
in events that fulfill two conditions:

(1) The neutrino energy needs to be reconstructed rather
well. For this to happen, most of the strength should
be concentrated in a small Em region.

(2) The cross section is large and, hence, the probability
of finding events around such kinematics is high.

Given the structure of the spectral function, it seems very
likely that for events in which the p shells dominate these
requirements will be fulfilled. Another reason that makes the
“p-shell dominated events” particularly interesting is that in
16O the p shells are below the two-nucleon emission thresh-
old. Hence, this is the part of the spectral function that can
be determined experimentally from exclusive (e, e′ p) experi-
ments and, therefore, is well constrained.

By looking at Fig. 3, the trajectories of greatest interest
are those in the region around 80 < θN < 100 deg; however,
for larger θN the size of the cross section starts to decrease
rapidly. To quantify and better assess these results, for each
of the curves shown in Fig. 3, we present in Table II the

TABLE II. The kinematics chosen here are the following: El =
3800 MeV, θl = 7 deg, TN = 140 MeV, and φN = 180 deg and dif-
ferent θN (first column). We show the mean neutrino energy 〈E〉, its
relative 1σ error �E/〈E〉, the cross section (c.s.), and the weight of
the p shells [r, defined in Eq. (16)]. We have used the DUNE flux
and the SFA model.

θN 〈E〉 �E/〈E〉 c.s. p-shell
(deg) (MeV) (%) (10−42 cm2/MeV2) weight (r)

40 3976 0.80 0.036 0.60
50 3970 0.53 0.30 0.65
60 3974 0.51 0.65 0.48
70 3980 0.51 0.56 0.29
80 3965 0.44 0.68 0.76
90 3964 0.56 0.24 0.86
100 3981 1.2 0.026 0.66
110 4043 1.6 0.0038 0.11
120 4061 1.5 0.0014 0.0025
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FIG. 5. 2D histogram with the number of events in bins of the relative error (%) and p-shell weight. The DUNE and T2K fluxes were
employed in panels (a) and (b), respectively. The calculations correspond to the rROP model, but similar results are found with the other
approaches. Brighter areas correspond to bins with more events.

values of 〈E〉, �E/〈E〉, the cross section (integrated over Em),
and the weight of the p-shell region (0 < Em < 25 MeV).1

For the particular kinematics studied here, the error in the
reconstructed energy is small in all cases. Also, one does not
see a simple correlation between p-shell dominance and small
error. For example, for θN = 40 deg the error is larger than for
θN = 60 deg, while the weight of the p shells is smaller in the
latter case. However, we should not draw general conclusions
from the study of just one particular choice of kinematics.
Thus, in the next section we address these and other ques-
tions in a more systematic way by analyzing the whole phase
space.

IV. FULL PHASE-SPACE RESULTS

In this section, we extend the previous analysis (restricted
to very particular kinematics) to the whole phase space,
using the DUNE and T2K neutrino fluxes, peaked around
E ≈ 2.5 GeV and E ≈ 0.6 GeV, respectively. Also, we study
the dependence of the outcomes upon the different models
described in Sec. IV. With that purpose in mind, we pop-
ulate the whole phase space with a few millions of events
distributed following the sixfold differential semi-inclusive
cross section [Eq. (9)] given by each of the models mentioned
above, and for each event we compute the average neutrino
energy (〈E〉) and its error (�E ) according to Eqs. (1) and (2).

We stress that the analysis presented here does not take
into account non-QE interactions that can contribute to the
one muon–one proton sample. Furthermore, it does not ac-
count for detector efficiency and resolution. For these reasons,

1We compute the weight of the p shells with respect to the full cross
section as

r =
∫ 25

0 dEm φ(E ) d6σ (E )
d�l dkl d�N d pN∫ 300

0 dEm φ(E ) d6σ (E )
d�l dkl d�N d pN

, (16)

with Em in MeV.

the error in the reconstructed neutrino energy reported here
should be understood as a lowest intrinsic bound. Also, the re-
constructed energy will likely change when non-QE processes
are explicitly considered in the cross section.

It is important to realize that the uncertainty in the neu-
trino energy for these semi-inclusive experiments is basically
given by the relevant range of missing energy. We can see
that for QE processes (only nuclear excitations and no pions
produced), from about Em > 200 MeV the cross section has
fallen by several orders of magnitude, and hence the neutrino
energy is effectively restricted to a limited region of Em. Thus,
in absolute terms, DUNE and T2K events have similar errors
in the neutrino energy, while in relative terms, the errors for
the DUNE events are smaller, owing to the larger neutrino
energies in the DUNE flux. This is clearly shown in Fig. 5
that presents a 2D histogram with the number of events in
bins of �E

<E>
and p-shell weight (r). We see that the bulk of

the events (intense yellow-orange regions) concentrates in a
small region corresponding to 0.6 < r < 0.9 and �E

<E>
< 1%

(1 < �E < 3%) for the DUNE (T2K) flux. This means that
for most of these small-error events, it is likely that the de-
tected proton was ejected from a p shell.

As noted earlier, if one neglects the nuclear recoil, the miss-
ing energy is trivially defined from the reconstructed neutrino.
Accordingly, we define the reconstructed missing energy as

〈Em〉 = 〈E〉 − El − TN . (17)

In Fig. 6, we show the single-differential cross section as
a function of 〈Em〉 for the five models and the DUNE and
T2K neutrino fluxes. All models show similar shapes and
significant differences in the size of the cross section, in line
with the results discussed in Fig. 2. It is interesting that for all
cases one observes a clear dominance of the 〈Em〉 < 40 MeV
region, corresponding to the p-shell region.

In Fig. 7(a), we show the cumulative distributions as a
function of the relative error in the reconstructed neutrino
energy. We observe that around 50% of the events have an
error lower than 1% for the DUNE flux (thicker lines). For
the T2K flux (thinner lines), the relative errors are somewhat
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FIG. 6. Single-differential cross section as a function of the reconstructed missing-energy defined in Eq. (17), for the DUNE (a) and T2K
(b) fluxes.

larger and for around 47% of the events �E
〈E〉 < 3%. Although

for all models we see a similar trend, it seems that the elastic-
only ROP estimation has a slightly better capability for good
reconstruction of the neutrino energy. In this case, we find
that around 60% (51%) of the events have a neutrino energy
uncertainty below 1% (3%) for the DUNE (T2K) flux. This is
somewhat expected, as this calculation corresponds to a signal
very much enriched in just one proton events. The trade-off is,
of course, that fewer events will qualify in the first place.

It is also interesting to look at these cumulative distribu-
tions as a function of the absolute errors. These are presented
in Fig. 7(b). For the two fluxes, the majority of the expected
events (around 80%) has an error between 15 and 40 MeV,
consistent with a majority of events coming from the p-shells.

To end this section, we comment that the estimations we
made here from our theoretical prescription not only allow
one to predict how many events there may be in an experiment
leading to a given uncertainty, but they also allow one to
identify where in the phase space these events lie, as we show
in Sec. IV C. But first, we will study the dependence of these
predictions on the ingredients of the models.

A. Dependence of the reconstructed energy and its
error on the final-state interactions

To study how the reconstructed neutrino energy 〈E〉 de-
pends on the model, we compute for each event (that is, for

each set of muon and proton kinematics) a systematic error
that quantifies the deviation of the predictions between a given
model and a reference one. We choose the rROP model as
reference, although the conclusions are independent of this
choice. Thus, for each event we compute

�EFSI,i = 1
2 |〈E〉rROP − 〈E〉i|, (18)

where the index i refers to RPWIA, ROP, ED-RMF, or fac-
torized SFA. Notice that in this section, all the results share
the same description of the initial state, except for the case of
SFA, for which it is just slightly different due to factorization,
the absence of negative-energy components, and the represen-
tation of the spectral function used in our calculation. Hence,
by comparing the results of these models we are actually
evaluating the impact of FSI (and Pauli blocking effects) on
the quality of the neutrino energy reconstruction; this is the
reason for the index FSI in the previous equation.

The cumulative distributions as a function of �EFSI are
shown in Fig. 8. These results clearly show that the FSI
uncertainty, evaluated via Eq. (18), is very small. �EED-RMF

and �EFSI,ROP are, as expected, very small since the cross
section shapes in these models are similar to the reference one,
rROP. The largest �EFSI is found for the SFA model. This is
due to the differences in the initial state, the factorization as-
sumption, and the lack of FSI and Pauli blocking. In any case,
for nearly 98% (90%) of the events, the FSI error remains

FIG. 7. (a) Cumulative distributions as a function of the relative error (in percentage) in the reconstructed neutrino energy [error given by
Eq. (2)]. The thinner (thicker) lines are the results for the DUNE (T2K) flux. (b) As for panel (a), except that the cumulative distributions are
represented as a function of the absolute errors (in MeV).
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FIG. 8. (a) Cumulative distributions as a function of the error in the reconstructed neutrino energy due to the description of FSI [error given
by Eq. (18)]. The thinner (thicker) lines are the results for the DUNE (T2K) flux. (b) As for panel (a), except that the cumulative distributions
are represented as a function of the absolute errors (in MeV).

below 1% for the DUNE (T2K) fluxes. This important result
tells us that given a flux and missing-energy distribution,
for such semi-inclusive samples, the reconstructed neutrino
energy would show a relatively small dependence on FSI.
This does not mean, however, that the treatment of FSI is
unimportant, as the difference in the magnitude of the cross
section between different models is very large.

B. Dependence of the reconstructed energy and its
error on the initial state

In what follows, we study the uncertainty in the neutrino
energy linked to the particular description of the initial state.
As said before, we could consider the spectral function to
provide a fair description of the situation in which the neutrino
knocks out a proton, yielding a final state in which there is
at least a proton. The experimental sample, however, may
depart from this definition to some degree. To better under-
stand how the experimental situation affects the region of the
spectral function that needs to be taken into account, let us
consider a particular scenario of QE scattering with a high
missing energy, e.g., 100 MeV. In this case, the residual sys-
tem has an excitation energy far larger than a bound nucleus
and thus necessarily additional nucleons will be ejected. If
these nucleons are detected and removed from the experimen-
tal signal definition, this region of missing energy does not
contribute fully. On the other hand, these additional nucleons
may be undetectable or counted as part of the experimen-
tal signal, in which case this region of missing energy does
contribute.

To study more in detail the impact that the description
of the initial state may have in the reconstructed neutrino
energy and its error, we compare the results of the rROP and
our representation of the spectral function, chosen again as
our reference model, with several calculations for which we
have built different versions of the spectral functions. These
versions correspond to variations of the reference spectral
function obtained by artificially varying the occupation of the
shells and of the background, while keeping the total strength
constant (eight neutrons in the target nucleus). Each of these
models should be more suitable for describing a specific ex-
perimental selection of the final state. In particular, we have

used the ρ(Em) functions shown in Fig. 9 and summarized in
what follows:

SF1: The occupation number of the p shells is increased
from its original value of 4.98 neutrons (Table I) to
6.92; consequently, the deeper Em regions decrease
their relative weight. This would correspond to an
experimental sample enriched in events with one and
only one proton, as opposed to the at least one proton
signature.

SF2: The occupation number of the p-shells is decreased
to 2.30 neutrons and, consequently, the deeper Em

regions increase their relative weight. This is effec-
tively the opposite to the previous situation.

Since the p shells are well constrained experimentally, it
seems reasonable to keep them as they are (Table I). Thus,
we produce two more variations, SF3 and SF4, where we
change the occupation numbers of the high missing-energy
background and the s-shell in the following way, representing
extreme opposite limiting cases:

SF3: We set the s shell to zero and increase the back-
ground to keep the total number of nucleons.

FIG. 9. Different missing-energy profiles employed to analyze
the impact of the description of the initial state in the reconstructed
neutrino energy and its error.
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FIG. 10. (a) Single-differential cross section as a function of the reconstructed missing energy for the DUNE flux, computed with the rROP
model and the different missing-energy profiles shown in Fig. 9. The black solid line correspond to the reference case, i.e., the rROP model
with the Rome missing-energy profile. (b) The same as panel (a), except using a semilogarithmic scale. The results in panels (c) and (d) are
for the T2K flux.

SF4: We set the background to zero and increase the s
shell to keep the total number of nucleons.

In Fig. 10, we show the single-differential cross section as
a function of 〈Em〉—defined in Eq. (17)—for the different
missing-energy profiles of Fig. 9. For the SF1 we observe a
sharp and high peak at around 20 MeV, which is due to the
increase of the occupation number of the p shell. The effect
of decreasing the occupation number of the p shells (SF2)
is to shift the distribution to the right, as expected since the
relative weight of the deeper Em region is higher. For the SF3
model, the distribution is narrower than in the reference case
in the region Em < 40 MeV, while its magnitude increases
from about Em > 40 MeV. For the SF4 model, the distribution
is just slightly wider than in the reference case in the region
Em < 40 MeV, and practically zero above that. Similar results
are found for the DUNE and T2K fluxes.

The cumulative distributions of events with a given neu-
trino energy uncertainty for these spectral functions are shown
in Fig. 11. Here we show the cumulative distributions as a
function of the intrinsic error given by Eq. (2) (upper panels)
and the model error (lower panels). The latter represents half
of the distance to the reference case, i.e.,

�Emodel,i = 1
2 |〈E〉rROP − 〈E〉SFi|, (19)

where the index i = 1, 2, 3 or 4. As was the case for the
final-state variation, looking at the upper panels, we conclude
that despite the extreme differences among the ingredients of
the initial state, they all lead to very similar values for the
reconstructed neutrino energy, viz., at the few percent level.

That is, were we using our standard model to reconstruct the
energy of every event, those values of energy will differ very
little if the actual experimental behavior was given by the SF1
to SF4 variations in the spectral function.

On the other hand, from the lower panels we conclude
that the estimate for the uncertainty in the neutrino energy
might be more dependent on the shape of the spectral function
assumed. The most remarkable cases occurs for the model
with an increased occupation of the p shells (SF1) and the one
without background (SF4), they exhibit the least uncertainty
in the reconstructed energy, as expected. This figure can help
us estimate the reduction in the neutrino energy uncertainty
that an experimental sample enriched in the just one proton
signal may achieve.

C. Best kinematics for energy reconstruction

Once we have described the uncertainties in the recon-
structed energy associated with the description of the initial
and final nucleon states, we identify the phase-space regions
where the neutrino energy can best be reconstructed. In the
left panels in Figs. 12 and 13, we show the double-differential
cross section as a function of the final lepton energy and polar
angle. In the right-hand panels, for the same combination of
variables, we show the average relative error �E/〈E〉 per bin,
with �E the intrinsic error given by Eq. (2). For example, if
we were to select events in which the relative error is lower
than 1%, Fig. 12(b) tells us that it would be very likely to
find those events in the darkest region that corresponds to
the bins in which the average �E/〈E〉 is lower than 1%. On
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FIG. 11. (a) Cumulative distributions as a function of the relative error (in percentage) in the reconstructed neutrino energy [error given
by Eq. (2)]. (b) As for panel (a), except here the cumulative distributions are represented as a function of the absolute errors (in MeV).
(c) Cumulative distributions as a function of the error in the reconstructed neutrino energy due to the description of initial state [error given
by Eq. (19)]. (d) As for panel (c), except here the cumulative distributions are represented as a function of the absolute errors (in MeV). In all
panels, the thinner (thicker) lines are the results for the DUNE (T2K) flux.
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FIG. 12. [(a), (c)] Double-differential cross section dσ/(dEl dθl )[10−42 cm2/(MeV rad)] as a function of El and θl . [(b), (d)] Average �E
per bin in percentage. The darkest region corresponds to bins with �E < 1%, while whitest are either bins with �E > 10% or with no events.
The upper (lower) panels are the results for the DUNE (T2K) flux. We have used the rROP model for all calculations, although similar results
are found with the other models.
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FIG. 13. As for Fig. 12, except here we represent the double-differential cross section dσ/(dθN dφN )(10−42 cm2/rad2) as a function of θN

and φN .

the contrary, it will be very unlikely to find an event with
�E/〈E〉 < 1% for θl > π/4. The top (bottom) panels corre-
spond to the DUNE (T2K) flux. The results were performed
with the rROP model, although a similar behavior is found
with the other models.

In Fig. 13, we show the results versus the polar and
azimuthal angles that define the kinematics of the ejected
(and measured) nucleon. As observed, for both DUNE (upper
panels) and TK2 (bottom panels) fluxes, but particularly for
DUNE, most of the strength concentrates in a small region
at around φN = 180 deg and θN = 45 deg. It is important to
point out that this is also the region where one expects to find
events whose neutrino energy can best be reconstructed.

We study events in the pN -El plane in Fig. 14. For both
fluxes, the strength spreads over a wide region in pN that
goes from 150 up to 1000 MeV. In terms of El the strength
is located in the regions 500 < El < 5000 MeV and 100 <

El < 1000 for DUNE and T2K, respectively. The results in
Figs. 14(b) and 14(d) suggest that pN does not play a decisive
role when it comes to choosing small-error events. In spite of
that, one should be careful when pN is lower than approxi-
mately 300 MeV (or equivalently in the small energy transfer
region) because in that region nuclear effects like Pauli block-
ing, distortion and long-range correlations [28,32,36] play a
more relevant role, and therefore, models based on plane-wave
impulse approximation should be used with care.

Finally, in Fig. 15 we show the results in the pN -θN plane.
The location of the strength (left panels) and of small-error
regions (right panels) is consistent with that observed in the
previous figures. It is clear again that the nucleon polar angle
θN plays a more relevant role than pN when it comes to
selecting small-error events.

It is important to recall here that, even though these re-
gions of “good events” have been identified with the reference
model, events filtered based upon these findings, but generated
from any of the other variations of FSI or initial state ingredi-
ents, will still be of relatively low uncertainty.

V. CONCLUSIONS

In this work we have analyzed in detail the case of charged-
current muon neutrino interactions with oxygen for the T2K
and DUNE neutrino fluxes. Our interest has been focused on
the neutrino energy reconstruction process and is based on an
idea suggested in Ref. [10]. In said reference, it was observed
that the cross sections from models retaining the shell-model-
like features gave similar results with sharply peaked cross
sections for the limited number of kinematics that were exam-
ined and that the average value of the initial neutrino energy
and its standard deviation suggested that this might provide
a means to extract the neutrino energy spectrum with well-
defined error using semi-inclusive neutrino cross-section data.
The present work provides a full phase-space analysis of this
idea, i.e., extended to cover all possible kinematics, and using
various models of the single-nucleon knockout process.

We have shown that a successful reconstruction (at the
few percent level) of the neutrino energy can be obtained
from samples consisting in the muon and at least one proton
detected. This is mainly due to the large contribution from
the p shells to the cross section. We show that this outcome
is largely unaffected by the treatment of hadronic final-state
interactions. Hence, provided a realistic distribution of miss-
ing energy and momentum in the initial state is available, the
neutrino energy can be reconstructed quite well.

025502-13



R. GONZÁLEZ-JIMÉNEZ et al. PHYSICAL REVIEW C 105, 025502 (2022)

(a)
data u 1:2:6

 0  1000  2000  3000  4000  5000  6000  7000
El (MeV)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

p N
 (

M
eV

)

 0
 0.002
 0.004
 0.006
 0.008
 0.01
 0.012
 0.014
 0.016
 0.018
 0.02 (b)

 0  1000  2000  3000  4000  5000  6000  7000
El (MeV)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

p N
 (

M
eV

)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

(c)
data u 1:2:6

 0  500  1000  1500  2000  2500  3000
El (MeV)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

p N
 (

M
eV

)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16 (d)

 0  500  1000  1500  2000  2500  3000
El (MeV)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

p N
 (

M
eV

)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

FIG. 14. As for Fig. 12, except here we represent the double-differential cross section dσ/(dEl d pN )[10−42 cm2/MeV2] as a function of
El and pN .

The practicality of using only the p-shell region to deter-
mine the neutrino energy and its standard deviation depends
on whether a sufficient number of events of this type occurs
to allow reasonably small statistical errors. Otherwise, it is
necessary to consider events which lead to more complicated
final states. For example, final states that involve on-shell pion

production require that the missing energy be larger by at least
one pion mass.

Our study allows one to estimate not only the error for
each given muon and proton kinematics, but also how the
uncertainty in the neutrino energy will evolve with cuts in
the experimental sample, in the kinematics or in the number
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FIG. 15. As for Fig. 12, except here we represent the double-differential cross section dσ/(d pN dθN )[10−42 cm2/(MeV rad)] as a function
of θN and pN .
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of hadrons in the final state. These results for the error in
the reconstructed energy should be understood as a lower
bound, since additional contributions not included in this
analysis, e.g., from the efficiency and resolution of the de-
tectors and from nonquasielastic contributions to the sample,
potentially can play a significant role. For example, while
real pion production is excluded here and to some extent
can be vetoed experimentally (remember we are considering
only CC1μ1p0π events), pions do play a role as virtual par-
ticles. They enter as particles exchanged between nucleons,
both one- and two-pion exchange perhaps via an effective
scalar meson; however, these effects are already included
through the use of the effective interactions we employ. Pi-
ons can also enter as parts of two-body currents as has
been studied for inclusive scattering [35,37–42]. These con-
tributions are yet to be fully implemented for semi-inclusive
reactions.

We expect that the findings of this study will not dif-
fer very much from the ones based on a factorized spectral
function approach plus a cascade model for the propagation
of the hadrons in the nuclear medium. Since our calcu-
lations are based on models that describe the scattering
process within a fully relativistic and quantum mechani-
cal framework, incorporating Pauli blocking and binding
energies in a realistic way, we believe that these results
should be of great interest for the whole neutrino interaction
community.

In this work we have restricted our attention to the case of
oxygen, taking into account DUNE and T2K neutrino fluxes.
A next step will be to extend the present study to some
other nuclear systems. In particular, we will explore the cases
of carbon and argon. The former, although more similar to
oxygen, is of great interest for T2K and HyperKamiokande
experiments. A detailed analysis in the region of low values of
the kinematical variables and its comparison with the present
oxygen results will be very valuable. The analysis of the
significantly more complex case of argon will be of crucial
interest for the DUNE Collaboration.

We believe that this work provides a promising start-
ing point for determining the usefulness of semi-inclusive
charged-current neutrino scattering in extracting the neutrino
spectrum. Further progress requires further knowledge of
events at higher missing energies and momenta. This can be
obtained from analysis of existing electron scattering data
with well-defined electron energies, such as that obtained
from CLAS [43] at Jefferson Laboratory for carbon and
iron. Existing event generators can also be used to explore
cross sections in these regions, although the classical nature
of the cascade models causes concern for theorists since
the quantum mechanical coupling for final states required
by unitarity is not included in such calculations. More con-
fidence could be placed in the results of event generator
obtained by careful tuning to measured electron scatter-
ing cross sections. This may motivate obtaining additional
electron scattering data on nuclei involved in the neutrino
detectors.

Finally, we want to stress that the approach presented here,
of course, is not the final solution for obtaining the neutrino
spectra, but the beginning of a process.
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APPENDIX: BACKGROUND MISSING-ENERGY PROFILE

The missing-energy profile of the background component
of the spectral function shown in Fig. 1(a) is parameterized as
follows:

F (Em) = a exp(−b Em), (A1)

if Em > 100 MeV, and

F (Em) = a exp(−100 b)

exp[−(Em − c)/w] + 1
, (A2)

if 25 < Em < 100 MeV. The parameters are a =
0.03113 MeV−1 and b = 0.0112371 MeV−1 for the
exponential, and c = 40 MeV and w = 5 MeV for the
Fermi function. The function is normalized so that it gives
the proper occupation numbers shown in Table I, i.e.,∫ 100

25 dEmF (Em) = 0.6 and
∫ 300

100 dEmF (Em) = 0.8, with Em

in MeV.
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