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ϒ and ηb nuclear bound-state energies are calculated for various nuclei, neglecting any possible effects of the
widths. Essential input for the calculations, namely, the medium-modified B and B∗ meson masses, as well as
the density distributions in nuclei, are calculated within the quark-meson coupling (QMC) model. The attractive
potentials for the ϒ and ηb mesons in nuclei are calculated from the mass shifts of these mesons in nuclear matter
in the local density approximation. These potentials originate from the in-medium enhanced BB and BB∗ loops
in their respective self-energy. After an extensive analysis we conclude that our results suggest that the ϒ and ηb

mesons should form bound states with all the nuclei considered.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the accepted theory
of the strong interactions at the fundamental level. However,
a quantitative understanding of the strong force and strongly
interacting matter from the underlying theory is still limited.
The study of the interactions between heavy quarkonia and
atomic nuclei is an important tool to gain an understanding
of the strongly-interacting-matter properties in vacuum and
extreme conditions of temperature and density based on QCD.

Since heavy quarkonium and nucleons do not share light
(u, d) quarks [the Okubo-Zweig-Iizuka (OZI) rule suppresses
the interactions mediated by the exchange of mesons made of
only light quarks], heavy quarkonium interacts with nucleon
primarily via gluons and therefore the production of heavy
quarkonium in a nuclear medium can be of great relevance to
explore the role played by gluons. If such states are indeed
found experimentally to be bound to nuclei, it is therefore
important to search for other sources of attraction which could
lead to the binding of heavy quarkonium to nuclei. The bind-
ing of heavy quarkonium to nuclei may give evidence that the
masses of these heavy mesons decrease in a nuclear medium.

Since the early work of Brodsky [1] that charmonium states
may be bound to nuclei, a large amount of research, looking
for alternatives to the light-meson exchange mechanism, has
accumulated over the years to investigate the possible exis-
tence of such exotic states [2–24]. In addition to these, lattice
QCD simulations for charmonium-nucleon interaction in free
space were performed in the last decade [25–29]. Further-
more, more recently, studies for the binding of charmonia with
nuclear matter and finite nuclei, as well as light mesons and
baryons, were performed in lattice QCD simulations [30,31],
albeit with unphysically heavy pion masses.

*Corresponding author: jesus.cobos@fisica.uson.mx

On the experimental side, the 12 GeV upgrade at the Jef-
ferson Lab has made it possible to produce low-momentum
heavy-quarkonia in an atomic nucleus. Recently [32], a pho-
ton beam was used to produce a J/� meson near-threshold,
which was identified by the decay into an electron-positron
pair. Furthermore, with the construction of the FAIR facility
in Germany, heavy and heavy-light mesons will be produced
copiously by the annihilation of antiprotons on nuclei [33].
Experimental studies on ηc production in heavy-ion collisions
at the LHC were performed in Refs. [34–38]. However, nearly
no experiments have yet been aimed to produce the ηc at
lower energies and its binding to nuclei, perhaps hinting at
the difficulty to produce and detect such states. In the case of
bottomonium, studies were made for ϒ photoproduction at the
Electron-Ion Collider [39,40], ϒ production in pPb collisions
[41], and ϒ(nl ) (excited state) decay into B(∗)B̄(∗) [42]. With
studies like these on heavy quarkonium and future planned
ones, we will improve our understanding of the strong force
and strongly interacting matter.

Returning to the phenomenological studies, the interac-
tions frequently considered between the heavy quarkonium
and the nuclear medium are the so-called QCD van der Waals
(multigluon exchange) interactions [6,18–24]. One might
think that this must be the case, since heavy quarkonium has
no light quarks, whereas the nuclear medium is composed of
light quarks, and thus the exchange of mesons composed of
light quarks do not occur at the lowest order.

However, another possible mechanism, which we consider
in this paper, for the heavy quarkonium to interact with the
nuclear medium is through the excitation of the intermediate-
state hadrons which do contain light quarks (B and B∗ in this
work). There is a great amount of evidence that the properties
of hadrons change in medium [7,8,43,44] and this must be
taken into account when addressing, for example, charmo-
nium in nuclei. For instance, Refs. [7,8] have shown that the
effect of the nuclear mean fields on the intermediate DD state
is crucial when considering the J/� interactions with atomic
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FIG. 1. BB meson loop contribution to the ϒ self-energy.

nuclei. The modifications driven by the strong nuclear mean
fields on the D mesons’ light-quark component enhanced the
self-energy such that it provides attraction to the J/�. Fur-
thermore, only recently the in-medium properties of ηc meson
were renewed theoretically [45] using this mechanism.

In a recent paper [46], we estimated the mass shifts
of the ϒ and ηb mesons by considering the excitations of
intermediate-state hadrons with light quarks in their self-
energy. The estimates were made using an SU(5) effective
Lagrangian density which contains both the ϒ and ηb mesons
with one universal coupling constant, and an anomalous cou-
pling that respects SU(5) symmetry in the coupling constant.
After expansion of the SU(5) effective Lagrangian with mini-
mal substitutions, we obtained the interaction Lagrangians for
calculating the BB and B∗B∗ meson loops contributions to the
ϒ and ηb self-energies. As an example we show in Fig. 1 the
BB meson loop contribution for the ϒ self-energy.

For the study of the heavy quarkonium (ϒ and ηb) in-
teraction with the nuclear medium through the excitation of
the intermediate-state hadrons we need to have knowledge of
the in-medium properties of the B and B∗ mesons, in par-
ticular their medium-modified masses. For this we used the
quark-meson coupling (QMC) model [47], which has been
successfully applied for various studies in nuclear matter and
nuclei [5,7,48–55].

In Ref. [46] we did a study of the BB, BB∗, and B∗B∗ meson
loop contributions to the ϒ self-energy in nuclear matter ne-
glecting for the moment any possible imaginary part. After a
detailed analysis, our predictions for the ϒ and ηb mass shifts
were given by including only the lowest-order BB meson loop
contribution for the ϒ , and only the BB∗ meson loop contribu-
tion for the ηb, where the in-medium masses of the B and B∗
mesons were calculated by the QMC model. We note that the
in-medium B∗ meson mass was calculated for the first time
in Ref. [46]. In this work, we apply the mechanism described
above by first extending our results in nuclear matter to finite
nuclei and then considering the interactions between the ϒ

and ηb mesons and a wide mass range of atomic nuclei.
This article is organized as follows. In Sec. II we summa-

rize the computational procedure used and discuss our results
for the mass shifts of the ϒ and ηb mesons in nuclear matter.
These results indicate that nuclear medium provides attraction
to these mesons and therefore in Sec. III we consider the
nuclear bound states for the ϒ and ηb mesons when these

mesons are produced nearly at rest inside a nucleus. Finally,
in Sec. IV we give a summary and conclusions.

II. MASS SHIFTS IN NUCLEAR MATTER

In this section we summarize the results obtained for the
mass shifts of the ϒ and ηb mesons in nuclear matter. The
details of this analysis can be found in Ref. [46].

A. ϒ mass shift

The ϒ mass shift in nuclear matter originates from the
modifications of the BB, BB∗, and B∗B∗ meson loops contri-
butions to the ϒ self-energy, relative to those in free space;
see, for example, Fig. 1. The self-energy is calculated using
effective SU(5)-flavor symmetric Lagrangians at the hadronic
level [46,56] for the interaction vertices ϒBB, ϒB∗B∗, and
ϒBB∗, neglecting any possible imaginary part. In Ref. [46]
we made an extensive analysis of these contributions to the ϒ

self-energy and found that, for example, the B∗B∗ loop gives
an unexpectedly large contribution. For this reason, and to
be consistent with the ηb case studied below, we decided to
be conservative and consider only the BB loop contribution
to the ϒ self-energy, leaving for the future a full study. The
interaction Lagrangian for the ϒBB vertex is given by

LϒBB = igϒBBϒμ[B∂μB − (∂μB)B], (1)

where the following convention is adopted for the isospin
doublets of the B mesons:

B =
(

B+

B0

)
, B = (B− B0).

The coupling constant gϒBB for the vertex ϒBB is calcu-
lated from the experimental data for �(ϒ → e+e−) using the
vector-meson dominance model. This gives gϒBB = 13.2; see
Refs. [46,56] and references therein for details. A similar
approach was taken in Refs. [7,57] to determine the coupling
constant gJ/�DD = 7.64 for the vertex J/�DD.

Including only the BB loop, Eq. (1), the ϒ self-energy �ϒ

is given by

�ϒ (k2) = −g2
ϒBB

3π2

∫ ∞

0
dqq2 I (q2) (2)

for an ϒ at rest, where

I (q2) = 1

ωB

(
q2

ωB − m2
ϒ/4

)
, (3)

and ωB = (q2 + m2
B)1/2. The integral in Eq. (2) is divergent

and therefore needs to be regularized. To do this, we introduce
into the integrand of Eq. (2) a phenomenological vertex form
factor

uB(q2) =
(


2
B + m2

ϒ


2
B + 4ω2

B(q2)

)2

, (4)

with cutoff parameter 
B [7–10,58–62] for each ϒBB vertex.
In a later section we discuss the non-negligible role played
by this form factor and the cutoff parameter 
B. For the
moment, we point out that form factors are necessary to take
into account the finite size of the mesons participating in the
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FIG. 2. B and B∗ meson effective Lorentz-scalar masses in sym-
metric nuclear matter versus baryon density.

vertices, while the cutoff 
B, which is an unknown input to
our calculation, may be associated with energies needed to
probe the internal structure of the mesons; see Ref. [46] for
a more extensive discussion. Thus, in order to reasonably in-
clude these effects and to quantify the sensitivity of our results
to its value, we vary 
B over the interval 2000–6000 MeV.

The ϒ mass shift in nuclear matter �mϒ is computed from
the difference between its in-medium mass m∗

ϒ and its value
in vacuum, mϒ , namely,

�mϒ = m∗
ϒ − mϒ, (5)

where these masses are computed self-consistently from

m2
ϒ = (m0

ϒ )2 + �ϒ (k2 = m2
ϒ ), (6)

where m0
ϒ is the bare ϒ mass and the ϒ self-energy �ϒ (k2)

is given in Eq. (2). The 
B-dependent ϒ bare mass, m0
ϒ , is

fixed such that we reproduce the physical ϒ mass, namely
mϒ = 9640 MeV.

The in-medium ϒ mass is obtained by solving Eq. (6) with
the self-energy calculated with the medium-modified B mass,
which was calculated in Ref. [46], together with that for the
B∗ meson, using the quark-meson coupling model (QMC)
as a function of the nuclear matter density ρB. The results
obtained in this way are presented in Fig. 2 and show that
the QMC model gives a similar downward mass shift for the
B and B∗ in symmetric nuclear matter. For example, at the
saturation density ρ0 = 0.15 fm−3, the mass shifts for the B
and B∗ mesons are, respectively, (m∗

B − mB) = −61 MeV and
(m∗

B∗ − mB∗ ) = −61 MeV, where the difference in their mass
shift values appears in the next digit. The values for the masses
in vacuum for the B and B∗ mesons used are mB = 5279 MeV
and mB∗ = 5325 MeV, respectively.

The nuclear density dependence of the ϒ mass is driven
by the intermediate BB state interactions with the nuclear
medium, where the effective scalar- and vector-meson mean
fields couple to the light u and d quarks in the bottom mesons.
In Fig. 3 we show the results for the ϒ mass shift as a function
of the nuclear matter density ρB, for five values of the cutoff
parameter 
B. As can be seen from Figs. 2 and 3, a decreasing
B meson mass in-medium induces a negative mass shift for
the ϒ . This happens because a decrease of the B meson mass
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FIG. 3. ϒ mass shift in nuclear matter as a function of the nuclear
matter density ρB.

enhances the BB meson loop contribution in nuclear matter
relative to that in vacuum. Expectedly, the mass shift of the
ϒ is dependent on the value of the cutoff mass 
B used,
being larger for larger 
B; see Ref. [46] for further details.
For example, for the values of the cutoff shown in Fig. 3, the
ϒ mass shift varies from −16 to −22 MeV at ρB = ρ0.

B. ηb mass shift

For the calculation of the ηb mass shift in nuclear matter,
we proceed similarly to the ϒ case and take into account only
the BB∗ loop contribution to the ηb self-energy. In Ref. [46]
we have also studied the inclusion of the ηbB∗B∗ interaction
in the ηb self-energy and found that its contribution to the mass
shift is essentially negligible. Thus, in order to be consistent
with the ϒ case above, i.e., in both cases we consider only the
minimal contribution, here we only give results for the BB∗
loop in the ηb self-energy. The effective Lagrangian for the
ηbBB∗ interaction is

LηbBB∗ = igηbBB∗ [(∂μηb)(B
∗
μB − BB∗

μ)

− ηb(B
∗
μ(∂μB) − (∂μB)B∗

μ)], (7)

where gηbBB∗ is the coupling constant for the ηbBB∗ vertex. We
use its value in the SU(5) scheme [46], namely,

gηbBB∗ = gϒBB = gϒB∗B∗ = 5g

4
√

10
. (8)

Using Eq. (7), the ηb self-energy for an ηb at rest is given by
[45]

�ηb = 8g2
ηbBB∗

π2

∫ ∞

0
dqq2K (q2), (9)

where

K (q2) = m2
ηb

( − 1 + q2
0/m2

B∗
)

(
q2

0 − ω2
B∗

)
(q0 − mηb − ωB)

∣∣∣∣∣
q0=mηb −ωB

+ m2
ηb

( − 1 + q2
0/m2

B∗
)

(q0 − ωB∗ )
[
(q0 − mηb )2 − ω2

B

]
∣∣∣∣∣
q0=−ωB∗

, (10)

and ωB∗ = (q2 + m2
B∗ )1/2.
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FIG. 4. ηb mass shift in nuclear matter as a function of the nu-
clear matter density ρB.

The mass of the ηb meson, in vacuum and in nuclear matter,
is computed similarly to the ϒ case. First, we introduce form
factors, as in Eq. (4), into each ηbBB∗ vertex, with 
B = 
B∗ ,
in order to regularize the divergent integral in the self-energy,
Eq. (9). Second, we fix the value of the ηb bare mass using the
physical (vacuum) mass of the ηb, namely, mηb = 9399 MeV,
using Eq. (6) appropriately written for the ηb case. Then, for
the calculation of the ηb mass shift in nuclear matter, the self-
energy �ηb is computed using the medium-modified B and B∗
masses calculated in the QMC model and shown in Fig. 2.
The results for the ηb mass shift in nuclear matter are shown
in Fig. 4 as a function of the nuclear matter density ρB. Note
that we use the same range of values for the cutoff mass 
B

as for the ϒ . As can be seen from Fig. 4, the mass of the ηb is
shifted downwards in nuclear matter for all values of the cutoff

B, similarly to the ϒ . For example, at the normal density of
nuclear matter ρ0, the mass shift varies from −75 to −82 MeV
when the cutoff varies from 
B = 2000 MeV to 
B = 6000
MeV. Similarly to the ϒ mass shift, the dependence of the ηb

mass shift on the values of the cutoff is small, for example,
just −7 MeV when the cutoff is increased by a factor of three
at ρB = ρ0.

C. Discussion of the ϒ and ηb mass-shift results

Surprisingly, the mass shift for the ηb is larger than that of
the ϒ for the same range of cutoff values explored; see Figs. 3
and 4. A similar difference in mass shifts was observed for the
J/� and ηc mesons in Refs. [7,45] using the corresponding
Lagrangians in the SU(4) flavor sector. As demonstrated in
Refs. [45,46], these differences in the mass shifts for the ηb

and ϒ are probably due to the following reasons: (a) a badly
broken SU(5) symmetry such that the couplings gηbBB∗ and
gϒBB are very different, and not equal as assumed here, see
Eq. (8). Indeed, as shown in Ref. [45], the mass shift for the ηc

gets closer to that of the J/� when SU(4) flavor symmetry is
broken, such that gηcDD∗ = (0.6/

√
2) gJ/�DD � 0.424 gJ/�DD

[45,63]. SU(5) flavor symmetry, like SU(4), is also broken in
nature, as attested to by the difference is masses of the ϒ and
ηb mesons. However, since we do not have an empirical value

for gηbBB∗ , which we can use to compute the ηb self-energy,
we therefore resort to SU(5) symmetry and use the value for
gηbBB∗ given in Eq. (8). (b) The form factors are not equal for
the vertices ϒBB and ηbBB∗ and we have to readjust the cutoff
values, which means 
B �= 
B∗ and the comparisons for the
mass shifts have to be made for different values of the cutoffs.
This is also a reason why we explore a range of values for 
B.
(c) At the g2

ηbBB∗ order, the number of possible contractions to
give the BB∗ loop in the ηb self-energy is 4 × 4 = 16 for the
isodoublet B and B∗ fields, and this number is larger than that
of 2 × 2 = 4 to give the BB loop in the ϒ self-energy at the
g2

ϒBB order [see Eqs. (1) and (7)]. This may give the larger
contribution for the ηb potential.

The results for the mass shifts in nuclear matter, shown
in Figs. 3 and 4, for the ϒ and ηb, respectively, support the
argument that the nuclear medium provides attraction to these
mesons and open the possibility to study the binding of theses
mesons to nuclei since the mass shifts, for both the ϒ and
ηb, at around ρB = ρ0, are significant. We will see in the next
section that this is indeed the case and allows for the formation
of nuclear bound states for both the ϒ and ηb, and furthermore
we calculate the corresponding binding energies for several
nuclei.

III. NUCLEAR BOUND STATES

The results for the mass shifts of the ϒ and ηb in nuclear
matter clearly indicate that nuclear medium provides attrac-
tion to these mesons. Therefore, we now consider the nuclear
bound states of the ϒ and ηb mesons when these mesons have
been produced nearly at rest inside nucleus A and study the
following nuclei in a wide range of masses, namely 4He, 12C,
16O, 40Ca, 48Ca, 90Zr, 197Au, and 208Pb.

In the local density approximation, the bottomonium h
(h = ϒ, ηb) potential within nucleus A is given by

VhA(r) = �mh
(
ρA

B (r)
)
, (11)

where r is the distance from the center of the nucleus and
�mh is the mass shift computed in Sec. II for h = ϒ, ηb. The
nuclear density distributions ρA

B (r) for the nuclei listed above
are calculated using the QMC model [51], except for 4He,
which we obtain from Ref. [64].

In Figs. 5 and 6 we present the bottomonium h-nucleus
potentials for the eight nuclei mentioned above and the same
values of the cutoff parameter 
B that were used in the com-
putation of the mass shifts in Sec. II. We can see from Figs. 5
and 6 that the VhA potentials, for h = ϒ and ηb, respectively,
are attractive for all nuclei and all values of the cutoff mass
parameter. However, for each nuclei, the depth of the potential
depends on the value of the cutoff parameter, being more
attractive the larger 
B is. This dependence is expected and is,
indeed, an uncertainty in the results obtained in our approach.

We now compute the bottomonium h-nucleus bound-state
energies for the potentials shown in Figs. 5 and 6 by solv-
ing the Klein-Gordon equation for these potentials. To apply
the Klein-Gordon equation to obtain the ϒ-nucleus single-
particle energies, since the ϒ is a spin-1 particle, we make
an approximation where the transverse and longitudinal com-
ponents in the Proca equation are expected to be very similar
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FIG. 5. ϒ-nucleus potentials for various nuclei and values of the cutoff parameter 
B.

for an ϒ at rest, hence it is reduced to one component, which
corresponds to the Klein-Gordon equation.

We treat the bottomonium h-nucleus potential as a
scalar and add it to the mass term in the Klein-Gordon

equation

{−∇2 + [m + VhA(	r)]2}φh(	r) = E2φh(	r), (12)
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FIG. 6. ηb-nucleus potentials for various nuclei and values of the cutoff parameter 
B.

where h = ϒ, ηb, m = mhmA/(mh + mA) is the reduced mass
of the bottomonium h-nucleus system with mh (mA) the mass
of bottomonium h (nucleus A) in vacuum, and VhA(	r ) is the
bottomonium h-nucleus potential given in Eq. (11) and shown
in Figs. 5 and 6.

We note that in previous works we have approximated
Eq. (12) by ignoring the V 2

hA term. We now solve the
full Klein-Gordon equation Eq. (12) using momentum-space
methods. Here, the Klein-Gordon equation is first converted
to a momentum-space representation via a Fourier transform,
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TABLE I. Bound-state energies of ϒ in nucleus of mass number A. All dimensioned quantities are in MeV.

Bound-state energies

n� 
B = 2000 
B = 3000 
B = 4000 
B = 5000 
B = 6000

4
ϒHe 1s −5.6 −6.4 −7.5 −9.0 −10.8
12
ϒ C 1s −10.6 −11.6 −12.8 −14.4 −16.3

1p −6.1 −6.8 −7.9 −9.3 −10.9
1d −1.5 −2.1 −2.9 −4.0 −5.4
2s −1.6 −2.1 −2.8 −3.8 −5.1

16
ϒ O 1s −11.9 −12.9 −14.2 −15.8 −17.8

1p −8.3 −9.2 −10.4 −11.9 −13.7
1d −4.4 −5.1 −6.2 −7.5 −9.2
2s −3.7 −4.4 −5.4 −6.7 −8.3
1 f n −0.9 −1.8 −2.9 −4.3

40
ϒ Ca 1s −15.5 −16.6 −18.2 −20.0 −22.3

1p −13.3 −14.4 −15.9 −17.7 −19.8
1d −10.8 −11.9 −13.3 −15.0 −17.1
2s −10.3 −11.3 −12.7 −14.4 −16.4
1 f −8.1 −9.1 −10.4 −12.1 −14.0

48
ϒ Ca 1s −15.3 −16.4 −17.9 −19.7 −21.8

1p −13.5 −14.6 −16.0 −17.8 −19.9
1d −11.4 −12.4 −13.8 −15.6 −17.6
2s −10.8 −11.8 −13.2 −14.9 −16.9
1 f −9.1 −10.1 −11.4 −13.1 −15.0

90
ϒ Zr 1s −15.5 −16.6 −18.1 −19.9 −22.0

1p −14.5 −15.5 −17.0 −18.8 −20.9
1d −13.2 −14.2 −15.7 −17.4 −19.5
2s −12.7 −13.8 −15.2 −16.9 −19.0
1 f −11.7 −12.7 −14.1 −15.9 −17.9

197
ϒ Au 1s −15.3 −16.3 −17.7 −19.4 −21.5

1p −14.7 −15.8 −17.2 −18.9 −20.9
1d −14.0 −15.0 −16.4 −18.1 −20.1
2s −13.7 −14.7 −16.0 −17.8 −19.8
1 f −13.2 −14.2 −15.6 −17.3 −19.3

208
ϒ Pb 1s −15.7 −16.8 −18.2 −20.0 −22.1

1p −15.2 −16.2 −17.7 −19.4 −21.5
1d −14.5 −15.5 −16.9 −18.7 −20.8
2s −14.1 −15.2 −16.6 −18.3 −20.4
1 f −13.6 −14.7 −16.1 −17.8 −19.9

followed by a partial-wave decomposition. For a given value
of angular momentum l , the eigenvalues Enl of the result-
ing equation are found by the inverse iteration eigenvalue
algorithm.

The bound-state energies E of the bottomonium h-nucleus
system, given by Enl = Enl − m, are listed in Tables I and
II. In Table I we show the ϒ-nucleus bound state energies
for all nuclei listed at the beginning of this section and the
same range of values for the cutoff mass parameter as used in
the mass-shift calculation. For each nucleus we have listed
only a few bound states, since the number of bound states
increases with the mass of the nucleus and for the heaviest of
these the number of bound states is quite large. For example,
for the heaviest nucleus we have ≈70 states. In Table II we
show the ηb-nucleus bound-state energies for the same nuclei
and range of values of the cutoff mass parameter as in Table I.
Furthermore, as in the case of the case of the ϒ-nucleus
bound-state energies, for each nucleus we have listed only
a few bound states. For the heaviest nucleus we have ≈200

states and clearly is not practical to show them all. We have
also solved the Schrödinger equation for all the potentials
shown in Figs. 5 and 6 and found essentially the same results.
We can now give some general conclusion concerning the
results given in Tables I and II. These results show that the
ϒ and ηb mesons are expected to form bound states with all
the nuclei studied, independent of the value of the cutoff pa-
rameter 
B. However, the particular values for the bound-state
energies are dependent on the cutoff parameter, increasing in
absolute value as the cutoff parameter increases. This depen-
dence was expected from the behavior of the bottomonium
h-nucleus potentials, since these are more attractive for larger
values of the cutoff parameter. Note also that bottomonium h
binds more strongly to heavier nuclei and therefore a richer
spectrum is expected for these nuclei.

Discussion of the ϒ and ηb single-particle energies

The discussion of the mass shifts results for the ϒ and
ηb carried out in Sec. II C can be translated to the ϒ and ηb
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TABLE II. Bound-state energies of ηb in nucleus of mass number A. All dimensioned quantities are in MeV.

Bound-state energies

n� 
B = 2000 
B = 3000 
B = 4000 
B = 5000 
B = 6000

4
ηb

He 1s −63.1 −64.7 −66.7 −69.0 −71.5
1p −40.6 −42.0 −43.7 −45.8 −48.0
1d −17.2 −18.3 −19.7 −21.4 −23.2
2s −15.6 −16.6 −17.9 −19.4 −21.1

12
ηb

C 1s −65.8 −67.2 −69.0 −71.1 −73.4
1p −57.0 −58.4 −60.1 −62.1 −64.3
1d −47.5 −48.8 −50.4 −52.3 −54.4
2s −46.3 −47.5 −49.1 −51.0 −53.0
1 f −37.5 −38.7 −40.2 −42.0 −43.9

16
ηb

O 1s −67.8 −69.2 −71.0 −73.1 −75.4
1p −61.8 −63.2 −64.9 −67.0 −69.2
1d −54.9 −56.2 −57.9 −59.9 −62.0
2s −53.2 −54.6 −56.3 −58.2 −60.3
1 f −47.3 −48.6 −50.2 −52.1 −54.2

40
ηb

Ca 1s −79.0 −80.6 −82.6 −85.0 −87.5
1p −75.4 −77.0 −79.0 −81.4 −83.9
1d −71.4 −73.0 −74.9 −77.2 −79.7
2s −70.5 −72.0 −74.0 −76.3 −78.8
1 f −67.0 −68.5 −70.4 −72.7 −75.1

48
ηb

Ca 1s −76.7 −78.2 −80.2 −82.5 −85.0
1p −74.0 −75.5 −77.4 −79.7 −82.1
1d −70.8 −72.3 −74.2 −76.4 −78.8
2s −69.9 −71.4 −73.3 −75.5 −77.9
1 f −67.2 −68.6 −70.6 −72.8 −75.1

90
ηb

Zr 1s −75.5 −77.0 −78.9 −81.1 −83.5
1p −74.1 −75.6 −77.5 −79.7 −82.1
1d −72.3 −73.8 −75.7 −77.9 −80.2
2s −71.6 −73.0 −74.9 −77.1 −79.5
1 f −70.2 −71.7 −73.6 −75.8 −78.1

197
ηb

Au 1s −72.8 −74.2 −76.1 −78.2 −80.5
1p −72.3 −73.7 −75.6 −77.7 −80.0
1d −71.3 −72.8 −74.6 −76.7 −79.0
2s −70.7 −72.1 −74.0 −76.1 −78.4
1 f −70.2 −71.7 −73.5 −75.6 −77.9

208
ηb

Pb 1s −74.7 −76.2 −78.1 −80.3 −82.6
1p −74.2 −75.7 −77.5 −79.7 −82.1
1d −73.2 −74.7 −76.6 −78.8 −81.1
2s −72.7 −74.1 −76.0 −78.2 −80.5
1 f −72.1 −73.6 −75.5 −77.6 −80.0

single-particle energies. From Tables I and II, we see that the
bound-state energies for the ηb are larger than those of the
ϒ for the same nuclei and range of cutoff values explored.
As before, these differences are probably due to two reasons:
(a) The couplings gηbBB∗ and gϒBB are very different. Indeed,
the results obtained in Ref. [45] on the ηc nuclear bound-state
energies are closer to those the J/� when the SU(4) flavor
symmetry is broken, such that gηcDD∗ = (0.6/

√
2) gJ/�DD �

0.424 gJ/�DD [45,63]. Thus a reduced coupling gηbBB∗ can
bring the ηb nuclear bound-state energies closer to those of the
ϒ , since the ηb self-energy is proportional to g2

ηbBB∗ . (b) The
form factors are not equal for the vertices ϒBB and ηbBB∗ and
we have to readjust the cutoff values, which means 
B �= 
B∗ ,
and the comparisons for the mass shifts have to be made for
different values for the cutoff parameters.

IV. SUMMARY AND DISCUSSION

We have calculated the ϒ- and ηb-nucleus bound-state
energies for various nuclei neglecting any possible effects
of the widths and various values of the cutoff parameter 
B

that was introduced to regularize the divergent integral in the
self-energies for these mesons. The bottomonium h-nucleus
potentials were calculated using a local density approxima-
tion, with the inclusion of the BB (BB∗) meson loop in the
ϒ (ηc) self-energy. The nuclear density distributions and the
in-medium B and B∗ meson masses were calculated using
the quark-meson coupling model. Using the bottomonium
h potentials in nuclei, we have solved the Klein-Gordon
equation and obtained bottomonium h-nucleus bound-state
energies.
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Our results show that the ϒ and ηb mesons are expected
to form bound states with all the nuclei studied, indepen-
dent of the value of the cutoff parameter 
B. However, the
particular values for the bound-state energies are dependent
on cutoff parameter 
B. The sensitivity of our results to
the cutoff parameter 
B has also been explored. However,
a study needs to be done where we use a more properly
determined coupling gηbBB∗ and different functional forms for
the form factors. Furthermore, it is certainly necessary to
include the possible effects of the widths for the ϒ and ηb.
Such elaborated studies are underway and will be reported
elsewhere.
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