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Quantum statistics effects near the critical point in systems with different interparticle interactions
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Equation of state with quantum statistics corrections is derived for systems of the Fermi and Bose particles
by using their van der Waals (vdW) and effective density-dependent Skyrme mean-field interactions. The first
few orders of these corrections over a small quantum-statistics parameter, ε ≈ h̄3n(mT )−3/2g−1, where n and
T are the particle number density and temperature, m and g are the mass and degeneracy factor of particles,
are analytically obtained. For an interacting system of nucleon and α particles, a small impurity of α particles
to a nucleon system at leading first order in both α- particle and nucleon small parameters ε does not change
the basic results for the symmetric nuclear matter in the quantum vdW consideration much. Our approximate
analytical results for the quantum vdW and Skyrme mean-field approaches are in a good agreement with accurate
numerical calculations.
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I. INTRODUCTION

In a system of interacting hadrons, first of all, nuclear
matter is an attractive subject [1–12]. Realistic versions of
the nuclear matter equation of state include both the attractive
and repulsive forces between particles. Thermodynamical be-
havior of this matter leads to the liquid-gas first-order phase
transition which ends at the critical point. Experimentally, a
presence of the liquid-gas phase transition in nuclear matter
was reported and then analyzed in numerous papers (see, e.g.,
Refs. [13–19]).

Recently, the proposed van der Waals (vdW) equation of
state accounting for the quantum statistics was used to de-
scribe the properties of hadronic matter [20] and was extended
further to multicomponent systems [21]. Many works have
presented the extensions of the phase-transition theory to
the effective density-dependent Skyrme forces in terms of
the potential density [22–24]; see also reviews [25]. They are
especially helpful for the description of the Bose condensate
in bosonic systems [23]. Starting from the pioneer works
of Skyrme (Ref. [26]) and famous Skyrme self-consistent
Hartree-Fock calculations by Vautherin and Brink (Ref. [27]),
these forces have become very popular in nuclear physics and
astrophysics; see, e.g., review articles [25,28]. In different
systems of hadrons, the critical points, including the Bose
condensate, for the classical and quantum approaches based
on the vdW and Skyrme mean-field forces were studied in
Refs. [21–23,29–37].

The role and size of the quantum statistics effects were
analytically studied for nuclear matter, as well as for pure
neutron and pure α-particle matter, in Ref. [38]. In this ap-
proximation, the dependence of critical point parameters on
the particle mass m, the degeneracy factor g, and the vdW
interparticle interaction parameters a and b was described well
for each of these systems. Our consideration was restricted to

small temperatures, T � 30 MeV, and not too large particle
densities. Within these restrictions, the number of nucleons
becomes a conserved number, and the chemical potential of
such systems was determined by a particle number. An ex-
tension to the fully relativistic hadron resonances in a gas
formulation with vdW interactions between baryons and an-
tibaryons was considered in Ref. [39]. We do not include
Coulomb forces and make no differences between protons
and neutrons (both these particles are referred to as nucleons).
In addition, under these restrictions, the nonrelativistic treat-
ment becomes very accurate and, therefore, is adopted in our
studies.

In the present work we apply the same analytical method
as presented in Ref. [38] for systems of nucleons and α par-
ticles but with another interparticle interaction in terms of the
density-dependent effective Skyrme potential. This method
will be applied also to a mixed two-component system of
nucleons and α particles. Another attractive subject of the
application of our analytical results to the analysis of the
particle number fluctuations near a critical point of nuclear
matter (see, e.g., Ref. [29], and the more recent Ref. [40]) will
be studied in a separate forthcoming work.

The paper is organized as follows. Equations of state for the
ideal quantum gases with expansion over the small quantum-
statistics parameter related to the de Broglie wavelength are
considered in Sec. II. Taking into account the vdW inter-
particle interaction we present the quantum statistics effects
in Sec. III. Section IV is devoted to the extension of our
analytical results to those using the effective Skyrme potential.
In Sec. V, the quantum statistics effects near the critical point
are studied for a mixed system of the isotopically symmetric
nuclear matter with a small impurity of α particles. The results
of our calculations are discussed in Sec. VI, and are summa-
rized in Sec. VII. Some details of our derivations are presented
in the Appendix.
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II. IDEAL QUANTUM GASES AND QUANTUM
STATISTICS PARAMETERS

The pressure Pi(T, μ) for a system of particles (e.g., i = N
for nucleons, i = α for α particles) plays the role of the
thermodynamical potential in the grand canonical ensemble
(GCE) where the temperature T and chemical potential μ

are independent variables [41]. The particle number den-
sity ni(T, μ), entropy density si(T, μ), and energy density
Ei(T, μ) are given by

ni =
(

∂Pi

∂μ

)
T

,

si =
(

∂Pi

∂T

)
μ

, (1)

Ei = T si + μni − Pi.

In the thermodynamic limit V → ∞ considered in the present
paper, all of intensive thermodynamical functions–P, n, s, and
E–depend on T and μ, rather than on the system volume V ;
see, for instance, Ref. [42]. We start with the GCE expres-
sions,

∑
i Pid

i (T, μ), for the pressure Pid (T, μ) and particle
number density, nid (T, μ) = ∑

i nid
i (T, μ), for the ideal non-

relativistic quantum gas [41,43],

Pid
i = 1

3
gi

∫
dp

(2π h̄)3

p2

mi

[
exp

(
p2

2miT
− μ

T

)
− θi

]−1

, (2)

nid
i = gi

∫
dp

(2π h̄)3

[
exp

(
p2

2miT
− μ

T

)
− θi

]−1

, (3)

where mi and gi are, respectively, the particle mass and de-
generacy factor of the i component. The value of θi = −1
corresponds to the Fermi gas, θi = 1 to the Bose gas, and
θi = 0 is the Boltzmann (classical) approximation when ef-
fects of the quantum statistics are neglected.1

Equations (2) and (3) for the pressure Pid
i and density nid

i ,
proportional to the famous Fermi-Dirac and Bose-Einstein
integrals, can be expressed in terms of the fugacity

z ≡ exp(μ/T ) (4)

as

Pid
i (T, z) ≡ giT

θiλ
3
i

Li5/2(θiz), (5)

nid
i (T, z) ≡ gi

θiλ
3
i

Li3/2(θiz). (6)

Here, λi is the de Broglie thermal wavelength [41]

λi ≡ h̄

√
2π

miT
, (7)

1The units with Boltzmann constant κB = 1 are used. We keep the
Planck constant in the formulas to illustrate the effects of quantum
statistics, but put h̄ = h/2π = 1 in all numerical calculations. For
simplicity, we omitted here and below the subscript “id” for the ideal
gas everywhere where it will not lead to a misunderstanding.

and Liν is the polylogarithmic function of order ν. The integral
representation of the polylogarithmic functions was used in
these derivations; see Eqs. (2) and (3), and Refs. [44,45]. It is
convenient also to use the power series for the polylogarithmic
functions,

Liν (θiz) ≡ θiz


(ν)

∫ ∞

0

dxxν−1

exp(x) − θiz
=

∞∑
k=1

(θiz)k

kν
, (8)

where 
(x) is the gamma function. Indexes ν = 3/2 and 5/2
of these functions were used in Eqs. (5) and (6). The values
of μ > 0, i.e., z > 1, are forbidden in the ideal Bose gas.
The point μ = 0 corresponds to an onset of the Bose-Einstein
condensation in a system of bosons. For fermions, any values
of μ are possible, i.e., integrals (2) and (3) [see also Eq. (8)]
exist for θi = −1 at all real values of μ. The power series [see
Eqs. (5) and (6) with Eq. (8)] is obviously convergent at z < 1
(z > 0) (see, e.g., Ref. [45]). For the Fermi statistics at z � 1,
the integral representation of the corresponding polylogarith-
mic function [see Eq. (8)] in Eqs. (5) and (6) can be used (see
Ref. [44]). Particularly, at z → ∞ one can use the asymptotic
Sommerfeld expansion of Liν (−z) functions over 1/ln2|z|; see
Ref. [46].

For the nucleon gas we take mN
∼= 938 MeV neglecting

a small difference between proton and neutron masses. The
degeneracy factor is then gN = 4 which takes into account two
spin and two isospin states of the nucleon. For the ideal Bose
gas of α nuclei, one has gα = 1 and mα

∼= 3727 MeV.
At z � 1, only one term, k = 1, in series, Eq. (8), is suf-

ficient to use in Eqs. (5) and (6) which leads to the classical
ideal gas relationship Pi = ni T . Note that this result follows
automatically from Eqs. (2) and (3) at θi = 0 . The classical
Boltzmann approximation at z � 1 is valid for large T and/or
small n region of the n-T plane. In fact, at very small ni, one
observes z < 1 at small T too.

Inverting Eq. (6) with respect to the fugacity, z = z(ni ), and
substituting it into Eq. (5), one obtains the equation of state
for an ideal gas through the pressure, Pi = Pi(T, ni ), for any
i components. Instead of the particle number density, ni, it is
convenient to introduce the dimensionless argument, ei ∝ ni,
of the fugacity z at a given point of the μ-T plane:

ei ≡ −θi εi,

εi = niλ
3
i

4
√

2 gi

= Dini, (9)

Di = h̄3 π3/2

2 gi (miT )3/2
.

The fugacity z as function of the quantum statistics parameter
ε for its small values for nuclear matter is shown in Fig. 1.
Taking thus a given component i, e.g., for nucleon matter
(θi = −1), for simplicity, we omit a subscript i in discussions
of this figure. In Fig. 1, the exact fugacity z(ε) was obtained by
multiplying Eq. (6) by the factor λ3/(4

√
2 g) to get ε = ε(z)

and, then, inverting this equation with respect to z.
So far, we did not use the series representation [Eq. (8)] for

the polylogarithms Liν in discussions of Fig. 1, in particular,
for calculations of the solid curve “exact”. Other different
curves in this figure present the calculations for the maximal
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FIG. 1. Fugacities z [Eq. (4)] as functions of the quantum statis-
tics parameter ε [Eq. (9)] for its small values where one finds the
critical points εc = 0.15–0.16 [Eq. (9) at T = Tc and n = nc; see
Ref. [38] and Table I below for nuclear matter]. Solid black curve
shows the exact fugacity z(ε) found by inverting Eq. (6) and using
Eq. (9) at θ = −1, and kmax is the maximal power of the cut-off
series for the polylogarithm Li3/2(−z); see Eq. (8). Arrows show
approximately the maximal critical values, εc and corresponding zc,
under our consideration (Ref. [38]).

power, kmax, in the partial sum of Eq. (8) over k. We multiply
Eq. (6) with Eq. (8) by the same factor, λ3/(4

√
2 g), and use a

cutoff of the power series (8) for the polylogarithmic function
Li3/2(−z) at the power kmax. As seen from this figure, one has
the asymptotic convergence (see Ref. [44]) of z = z(ε) over
kmax, with good convergence at ε � 0.2. Such a convergence
is better with smaller ε. The first-order correction leads near
the critical point (Refs. [17,19,20,38]) in the region of ε � 1.
More accurately, this region is given by ε � εc ≈ 0.15–0.16,
where εc is the critical value of ε [see Eq. (9) at the critical
values T = Tc and n = nc, Ref. [38], or Table I below]. This
region of the variable ε is related to that of z � zc ≈ 0.8–1.2
(see Fig. 1), which covers well the corresponding critical
values zc. The first (at kmax = 2) and, even better, second
(kmax = 3) quantum statistics corrections improve the conver-
gence. The cut-off sum (8) for Li3/2 at the maximal power
kmax = 3 practically, with the precision of lines, achieves the
exact result for the fugacity z = z(ε) (Fig. 1) at ε � 0.2. In
Fig. 1, the arrows show approximately the maximal values of
the quantum statistics parameter ε and corresponding fugacity
z for which one has still a very good approximation by a
few first-order quantum-statistics corrections. However, for
larger ε, where the fugacity z is larger or about 1.5 (e.g., in
the small temperature limit), the inversion of the cut-off sum

[Eq. (8)] for the polylogarithmic function Li3/2 fails: We need
more terms and, then, meet a divergence of the series over k
with an increasing cut-off value of kmax. The region of larger
fugacity z (and respectively, larger ε) are shown in Fig. 1 for
the purpose of a contrast comparison with that of small values
of z � 1, which are really used in our approach. As mentioned
above, in a region of very large fugacity, z 
 1, one has to use
another asymptotic expansion, for instance, over 1/ ln2 |z|, as
suggested by Zommerfeld [46].

The expansion of z(ε) in powers of ε is inserted, then, into
Eq. (5). At small values, εi � 1, the expansion of the pres-
sure over powers of εi is rapidly convergent. This expansion
converges well to the exact (polylogarithmic) function results
(5) and (6). Its convergence is the faster the smaller εi, such
that a few first terms provide already a good approximation
of the quantum statistics effects. Taking the few first terms
(e.g., kmax = 4) in the power series of Eq. (8), one obtains
from Eqs. (5) and (6) a classical gas result, Pi = niT , and
the leading first few-order corrections due to the quantum
statistics effects:

Pid
i (T, ni ) = niT

[
1 + ei − c2e2

i − c3e3
i + O

(
e4

i

)]
, (10)

where c2 = 4[16/(9
√

3) − 1] ∼= 0.106, c3 = 4(15 + 9
√

2 −
16

√
3)/3 ∼= 0.0201, and so on. For brevity, we will name

the linear and quadratic εi terms in Eq. (10) as the first- and
second-order quantum-statistics corrections.

Equation (10) demonstrates explicitly a deviation of the
quantum ideal-gas pressure from its classical value: the Fermi
statistics corrections lead to an increasing of the classical
pressure while the Bose statistics yields its decreasing. This
is often interpreted [41] as the effective Fermi ‘repulsion’ and
Bose ‘attraction’ between particles.

III. QUANTUM STATISTICS EFFECTS WITH THE VAN
DER WAALS INTERPARTICLE INTERACTION

Recently, the vdW equation of state was extended by tak-
ing into account the effects of quantum statistics for nuclear
matter in Ref. [20]. The pressure function of the quantum vdW
(QvdW) model for the one-component system was presented
in this paper as

P(T, n) = Pid[T, nid (T, μ∗)] − an2, (11)

nid (T, μ∗) = n

1 − bn
, (12)

where Pid and nid are respectively given by Eqs. (2) and
(3). The modified chemical potential, μ∗, is the solution of

TABLE I. Results for the CP parameters of the van der Waals model (second column), the symmetric nuclear matter (N) (gN = 4, mN =
938 MeV; third, fourth, and fifth columns), and the mixed N + α matter (gα = 1, mα = 3737 MeV; sixth and seventh columns). Numerical
results obtained within the full QvdW model in Refs. [20,23] are shown in the fifth and seventh columns, respectively.

Critical point vdW N 1st-order N 2st-order N numerical N + α 1st-order N + α numerical
parameters Eq. (A2) Eq. (16) Eq. (17) full QvdW Eq. (38) full QvdW

Tc [MeV] 29.2 19.0 20.0 19.7 19.4 19.9
nc [fm−3] 0.100 0.065 0.079 0.072 0.072 0.073
Pc [MeV fm−3] 1.09 0.48 0.56 0.52 0.51 0.56
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a transcendental equation; see more details in Ref. [20] and
the Appendix, as applied for the one-component system. Fol-
lowing Ref. [38], we introduce a small quantum-statistics
parameter δ of an expansion of the pressure P(T, n) ac-
counting for the vdW interaction in terms of parameters a
and b,

δ ≡ − θε

1 − bn
= −θ

h̄3 π3/2n

2 g (1 − bn)(mT )3/2
, (13)

where θ was defined above for different statistics. Both first
and second quantum-statistics corrections over δ to the vdW
model will be presented below.

Expanding the pressure component Pid[T, nid (T, μ∗)] in
Eq. (11) over the small parameter δ [Eq. (13)], and using
Eqs. (10) and (12), one obtains

P(T, n) = nT

1 − bn
[1 + δ − c2δ

2 + O(δ3)] − a n2, (14)

where c2 is the same small number coefficient as in Eq. (10).
We proved [38] that at small |δ| the expansion of the pressure
over powers of δ becomes rapidly convergent to the exact
results. Therefore, a few first terms provide already a good
approximation. A new point of our consideration is the ana-
lytical estimates of the quantum statistics effects, and further
study of the convergence of the results, including the second
order in δ. Similar to the ideal gases, the quantum corrections
in Eq. (14) increase with the particle number density n and
decrease with the system temperature T , particle mass m,
and degeneracy factor g. A new feature of quantum statistics
effects in the system of particles with the vdW interaction is
the additional factor (1 − bn)−1 in the correction δ [Eq. (13)].
Thus, the quantum statistics effects become stronger because
of the repulsive interaction between particles.

The vdW model, both in its classical form and in its QvdW
extension (11) and (12), describes the first order liquid-gas
phase transition. The critical point (CP) of this transition sat-
isfies the following equations [41]:(

∂P

∂n

)
T

= 0,

(
∂2P

∂n2

)
T

= 0. (15)

Using Eq. (14) in the first and second approximation over δ,
one derives from Eq. (15) the system of two equations for
the CP parameters nc and Tc at the same corresponding order.
Solutions of this system in the same first and second order
approximation over δ have the form

T (1)
c

∼= T (0)
c (1 − 2δ0),

n(1)
c

∼= n(0)
c (1 − 2δ0), (16)

and

T (2)
c

∼= T (0)
c

(
1 − 2δ0 + 4

3 δ2
0

)
,

n(2)
c

∼= n(0)
c

(
1 − 2δ0 + 4.62 δ2

0

)
. (17)

In Eqs. (16) and (17), the values T (0)
c and n(0)

c are the CP
parameters of the classical vdW model; see Eq. (A2). They
are defined by Eq. (15) and the vdW equation of state at the
zero approximation [see Eq. (14) at δ = 0]. The parameter δ0
in Eqs. (16) and (17) is given by Eq. (13), taken at the CP of

the zero-order approximation (A2), i.e., at n = n(0)
c and T =

T (0)
c . For simplicity, we present approximately the number

4.62 in Eq. (17) for a cumbersome expression. Substituting
Eqs. (16) and (17) for the results of the corresponding critical
temperature, T ( j)

c , and density, n( j)
c , where j = 1 and 2, into

equation of state [Eq. (14)], at a given perturbation order, one
can calculate the CP pressure P( j)

c at the same order. Notice
that the temperature T (1)

c and density n(1)
c are decreased for

Fermi and increased for Bose particles with respect to T (0)
c

and n(0)
c .

IV. THE SKYRME POTENTIAL MODEL WITH QUANTUM
STATISTICS CORRECTIONS

The pressure function of the quantum Skyrme mean-field
(QSMF) model [23], after some transformations, can be pre-
sented as

Psk,i(T, ni ) = Pid
i (T, ni ) − ask,in

2
i + bsk,in

γ+2
i , (18)

where Pid
i is given by Eq. (2); ask,i, bsk,i, and γ are parameters

of the QSMF parametrization. The index i means, e.g., nucle-
ons N or α particles (i = {N, α}). The QSMF parameters are
chosen by fitting properties of one-component nucleon or α

matter at temperature T = 0.
Within the QSMF model, one can consider the crit-

ical points for a first-order liquid-gas phase transition
for pure nucleon (i = N) or α (i = α) matter, separately.
The critical point (CP) for the QSMF model obeys the
same equation (15) but with the quantum Skyrme mean-
field pressure, Pi = Psk,i(T, ni ) [Eq. (18)] for each of
components i, (

∂Pi

∂ni

)
T

= 0,

(
∂2Pi

∂n2
i

)
T

= 0. (19)

For calculations of the first-order quantum-statistics correc-
tions over the small parameter |ei| [see Eq. (9)] to the QSMF
pressure Psk,i(T, ni ) [Eq. (18)], one obtains approximately
from Eq. (10) the following expression for the pressure com-
ponent Pid

i (T, ni ) of Eq. (18):

Pid
i (T, ni ) = ni T (1 + ei ). (20)

Then, the system of two equations [Eq. (19) for a given i] for
the CP density and temperature values, nsk,c and Tsk,c, up to
the same first order over ei, is reduced to

Tsk (1 + 2ei )−2ask,insk +(γ + 2)bsk,in
γ+1
sk = 0,

2Tskei−2ask,insk +(γ + 2)(γ + 1)bsk,in
γ+1
sk = 0. (21)

Solving the system [Eq. (21)] of equations for the CP
parameters, in the first-order approximation over ei, one
obtains

T (1)
sk,c

∼= T (0)
sk,c

(
1 − 2ei,0

)
,

n(1)
sk,c

∼= n(0)
sk,c

(
1 − 2ei,0T (0)

sk,c

γ (γ + 1)(γ + 2)bsk,i

[
n(0)

sk,c

]γ+1

)
.

(22)
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TABLE II. Results for the CP parameters of the symmetric
nuclear matter in the quantum Skyrme mean-field (QSMF) model
(g = 4, m = 938 MeV, γ = 1/6, ask,N = 1.167 GeV fm3, bsk,N =
1.475 GeV fm3+3γ ). Numerical results obtained within the full
QSMF model in Ref. [23] are shown in the fourth column.

Critical point 0th-order 1st-order numerical
parameters Eq. (23) Eq. (22) full QSMF

Tsk,c [MeV] 20.06 15.1 15.3
nsk,c [fm−3] 0.06 0.047 0.048
Psk,c [MeV fm−3] 0.325 0.194 –

In Eq. (22), the temperature T (0)
sk,c and density n(0)

sk,c are the solu-
tions of equations [see Eq. (21)] at zeroth-order perturbation,
ei = 0,

T (0)
sk,c = 2γ ask,i

γ + 1

[
2ask,i

bsk,i(γ + 1)(γ + 2)

]1/γ

,

n(0)
sk,c =

[
2ask,i

bsk,i(γ + 1)(γ + 2)

]1/γ

; (23)

see also Ref. [22] where another Skyrme parametrization for
the critical temperature and particle number density at zero
quantum statistics corrections was used. The parameters of
Skyrme parametrization, ask,i and bsk,i, and their dimensions
are given in the captions of Tables II and III. The value ei,0

in Eq. (22) is defined by Eq. (9) at T = T (0)
sk,c and n = n(0)

sk,c
[Eq. (23)]. For the CP pressure at ei = 0, from Eqs. (18), (20),
and (23) one finds

P(0)
sk,c = n(0)

sk,cT (0)
sk,c − ask,i

[
n(0)

sk,c

]2 + bsk,i

[
n(0)

sk,c

]γ+2
. (24)

The first-order pressure, P(1)
sk,c, can be straightforwardly calcu-

lated from Eq. (18) by using Eq. (20) and expressions for T (1)
sk,c

and n(1)
sk,c [Eq. (22)].

V. QUANTUM STATISTICS EFFECTS IN THE QVDW
MODEL FOR N AND α PARTICLES SYSTEMS

For the infinite system of a mixture of different Fermi
and Bose particles, e.g., nucleons and α particles, one can
present a more simple model based on the vdW forces as a
continuation of Sec. III. For this aim, we present the results

TABLE III. Results for the CP parameters of pure α mat-
ter in the QSMF model (g = 1, m = 3727 MeV, γ = 1/6, ask,α =
3.831 GeV fm3, bsk,α = 6.667 GeV fm3+3γ ). Numerical results ob-
tained within the full QSMF model in Ref. [23] are shown in the
fourth column.

Critical point 0th-order 1st-order numerical
parameters Eq. (23) Eq. (22) full QSMF

Tsk,c [MeV] 9.667 10.198 10.200
4nsk,c [fm−3] 0.0353 0.037 0.037
Psk,c [MeV fm−3] 0.023 0.025 –

for the pressure function of the vdW model with quantum
statistics ingredients of the QvdW model [21],

P(T, n) = Pid
N (T, μ∗

N ) + Pid
α (T, μ∗

α )

− aNN n2
N − 2aNαnN nα − aααn2

α, (25)

where Pid
i is the pressure of an ideal (i = N, α) gas [Eq. (A5)].

The chemical potential, μ∗
i , in Eq. (25) is modified, as shown

in the Appendix, through the transcendent system of equa-
tions (A3) and (A4) within the QvdW model in terms of the
particle number densities ni. Following Ref. [21], one can fix
the interparticle interaction parameters ai j and bi j . Then, it
is convenient to introduce the new volume-exclusion param-
eters, b̃i j = 2biibi j/(bii + b j j ), where bi j = 2π (Ri + Rj )3/3,
and Ri is the hard-core radius for the ith hard-core particle of
a multicomponent system; see Refs. [11,21]. Using the ground
state properties of the corresponding system components (see,
e.g., Ref. [20]), one has

a = aNN = 329.8 MeV fm3,

b = bNN = b̃NN = 3.35 fm3. (26)

Again, these values are very close to those found in
Refs. [20,21]. Small differences appear because of the non-
relativistic formulation used in the present studies. For
simplicity, for other attractive interparticle-interaction compo-
nents we will put [21]

aNα = aαN = aαα = 0. (27)

For the repulsive interaction components b̃i j of the vdW
exclusion-volume constants we will use those of Ref. [21]:

b̃αα = 16.76 fm3,

b̃αN = 13.95 fm3, (28)

b̃Nα = 2.85 fm3.

Notice that the system of N and α particles was studied
in Ref. [23] within the quantum Skyrme mean-field model
(Sec. IV). However, the authors of this article criticized the
QvdW approach because the Bose condensation cannot be
described within the QvdW model. This phenomenon is out of
scope of the present study, and will be worked out within our
analytical approach based on the QSMF model of the previous
section in the forthcoming work.

In the Boltzmann approximation, i.e., at θ = 0 in Eqs. (2)
and (3), the quantum vdW model is reduced to the classical
vdW one [21],

Pi = niT

1 − n jb̃i j
− ai jnin j, (29)

where the summations over double repeated subscripts j are
implied. Note that the classical vdW approach (29) is further
reduced to the ideal classical gas, Pi = niT , at ai j = 0 and
bi j = 0. At ai j = 0 and bi j = 0, the QvdW approach turns into
that of the quantum ideal gas [Eqs. (2) and (3)].

As mentioned above, a few first quantum-statistics correc-
tions of the QvdW model will be considered. Expanding the
pressure component Pid

i (T, μ∗
i ) [Eq. (A5)] over small param-

eters |e∗
i | (i = N, α), given by Eq. (9) with replacing ni by n∗

i ,
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which will be used below, at the first order in e∗
i one obtains

Pid
i (T, n∗

i ) = n∗
i T (1 + e∗

i ). (30)

This expression is similar to those of Eq. (10) at the first
order over ei. As found below, at small e∗

i , the expansion of
the pressure over powers of e∗

i becomes rapidly convergent
to the exact results, and even the first term provides already
a good approximation. Our results of Eqs. (25) and (14) for
equations of state, in contrast to Eq. (10), as discussed in
Refs. [41,47], take into account the particle interaction effects
(cf. with Sec. III). A new point of our consideration now is
the analytical estimates of the quantum statistics effects in a
mixed system of interacting fermions and bosons. Similar to
the ideal gases, the quantum statistics corrections in Eqs. (25)
and (14) are increased for Fermi or decreased for Bose parti-
cles with the particle number density ni. They are decreased
(or relatively, increased) with the system temperature T , par-
ticle mass mi, and degeneracy factor gi.

As in Ref. [21], we introduce the “mass fraction” for the α

particles impurity,

Xα = 4nα

nN + 4nα

≡ 4nα

n
, (31)

where n is the baryon particle-number density, n = nN + 4nα .
According to the numerical solutions in Ref. [21], for the pa-
rameters of Eqs. (26)–(28), the value of Xα [Eq. (31)] has been
approximately obtained from a thermodynamical equilibrium
of our mixed system, Xα ≈ 0.013. As shown in Ref. [32],
the critical point in a similar two-component (neutron-proton)
system, as a function of Xi (i is protons), converges with de-
creasing Xi smoothly to the one-component (neutron) system.
In line with these results, one may assume similarly a small
change of the critical point with a small α particle impurity,
Xα , mentioned above. Therefore, for simplicity, we will use
below a smallness of the α particle contribution, Xα , in our
approximate CP calculations by Eq. (15) which was applied
in Secs. III and IV for one-component systems. Taking this
estimate for a simple exemplary case, one can easily find n∗

N
and n∗

α from Eq. (A4). Then, using Eqs. (31) and (28), one can
present them in the following approximate form:

n∗
N ≈ r1n

1 − b1n
, n∗

α ≈ r2n

1 − b2n
, (32)

where

r1 ≈ 1 − Xα ≈ 0.987, r2 ≈ Xα

4
≈ 0.0033. (33)

In Eq. (32), b1 and b2 are the coefficients which are related
approximately to the repulsive interaction constants b̃i j [i, j =
N, α; see Eq. (28)]. These coefficients, as functions of b̃i j , can
be evaluated as

b1 ≈ 3.29 fm3, b2 ≈ 2.81 fm3. (34)

For another modified attractive-interaction parameter a1, one
can use

a1 = r2
1 aNN ≈ 321.3 MeV fm3. (35)

Using Eqs. (11), (30), and (32), for the total system pressure
P(T, n) one arrives at

P(T, n) = T
r1n(1+ρ1)

1 − b1n
+ T

r2n(1 − ρ2)

1 − b2n
− a1n2. (36)

Here,

ρ1 = DN r1n

1 − b1n
, ρ2 = Dαr2n

1 − b2n
, (37)

DN and Dα are the constants given by Eq. (9), r1 and r2 are
given by Eq. (33). Note that the expression for the pressure,
Eq. (36), in the case of r2 = 0 and r1 = 1 is exactly the
same as for a pure nuclear matter presented in Ref. [38] (see
Sec. III). A new feature of the quantum statistics effects in the
system of particles with the vdW interactions is the additional
factors (1 − b1n)−1 and (1 − b2n)−1 in the perturbation pa-
rameters. Thus, the quantum statistics effects become stronger
because of the repulsive interactions between particles.

The vdW model, both in its classical form (29) and in
its QvdW extension [Eqs. (11) and (36)], describes the first-
order liquid-gas phase transition. As the value of Xα in our
derivations is very small, the critical points in the considered
approach can be determined approximately (see above) by
the same equations given by Eq. (15). Using Eq. (36) in the
first approximation over quantum statistics corrections, one
derives from Eq. (15) the system of two equations for the CP
parameters nc and Tc at the same first order:

2na1 = Tr1 (1 + 2ρ1)

(1 − b1n)2 + Tr2 (1 − 2ρ2)

(1 − b2n)2 ,

a1 = Tr1b1

(1 − b1n)3

[
1 + ρ1

(1 + 2b1n)

b1n

]

+ Tr2b2

(1 − b2n)3

[
1 − ρ2

(1 + 2b2n)

b2n

]
. (38)

Note that Eq. (38) for the CP in the case of r1 = 1, r2 = 0,
and b1 = bNN is exactly the same as that for a pure nucleon
matter, which was derived in Ref. [38] (see Sec. III).

VI. DISCUSSION OF THE RESULTS

A summary of the results for CP parameters are presented
for the QvdW model and Skyrme mean-field parametrization
in Figs. 2 and 3 and Tables I–III. Figure 2 shows the contour
graphics in the n-T plane where black lines mean z(n, T ) =
const [see Fig. 1 and Eqs. (6) and (4)] in the left and ε(n, T ) =
const [Eq. (9)] in the right panels with the constant values
written in white squares. As seen from these plots, all values
of z � 1 (z � 1.2) correspond to ε � 1 (ε � 0.2) above blue
regions. Therefore, together with Fig. 1, this explains the
reason for using the expansion over a small parameter ε, even
when the fugacity z is of the order of one, having a little
larger values. In particular, such a region of ε � 1 and z ∼ 1
contains the critical points, which were obtained in Ref. [38]
and shown now in Fig. 2 and Table I.

Figure 3 shows the isotherms of the pressure P as a func-
tion of the reduced volume, v = 1/n, and the particle number
density n for an isotopically symmetric nuclear matter. The
first- (and second-)order quantum-statistics corrections are
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FIG. 2. Contour plots for the first-order fugacity z(n, T ) (kmax = 2) and corresponding parameter ε(n, T ) for nucleon matter in the plane
of density n and temperature T are shown in the left and right panels, respectively. The red line (left) shows the zero entropy line, such that
the white area is related to a nonphysical region where the entropy of the ideal gas is negative. The critical point for our first-order and the
zero-order (standard vdW) approximations for nuclear matter at the parameters a and b [Eq. (26)] are shown in the right panel by the red [see
Eq. (16), Table I, and Ref. [38]] and the black (vdW) point, respectively. The blue point in the same plot presents the numerical result for the
critical point (Ref. [20] and Table I).

presented in this figure and Table I. The critical point is
shown by the closed circle found from the accurate solution
to equations of Eq. (15) [see Eq. (16)] for nucleon matter;
see also the closed red circle in Fig. 2. The dotted line shows
the second-order approximation [see Eqs. (17) and (14)] at
the same nuclear matter parameters. Dotted line presents
schematically a binodal boundary for the two-phase coex-
istence curve in the transition from the two- to one-phase
range [38].

Results for the CP parameters obtained by Eqs. (16) and
(17), and by solving the system of equations, Eq. (38), are
presented in Table I. These analytical results are close to
the numerical results obtained in Refs. [20,21]. For the same
nucleon matter case, a difference of the results for the vdW
[Eq. (A2)] and QvdW [Eqs. (16) and (17)] models in Ta-
ble I demonstrates a significant role of the effects of quantum
statistics for the CP of the symmetric nuclear matter. Table I
shows also a good convergence of expansion over the quantum
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FIG. 3. Pressures P as functions of the reduced volume v (a) and particle number density n (b) at different temperatures T (in units of the
critical value Tc) at first order in the quantum statistics expansion over δ [Eq. (13)] for the simplest case of the symmetric nucleon matter. The
critical point is shown by the closed circle, see text for details. The dotted line shows the second-order approximation over δ; see Ref. [38] and
Eq. (14). The horizontal lines are plotted by using the Maxwell area law in (a) and correspondingly in (b). The unstable and metastable parts
of the isothermal lines are presented by dashed and dash-dotted lines, respectively. Other closed dots show schematically a binodal boundary
for the two-phase coexistence curve.
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statistics parameter for the case of the mixed N-α system with
a small Xα , given by Eq. (31). Even the first-order corrections
are in good agreement with the exact numerical QvdW results;
see Refs. [20,21,38]. In addition, many other examples were
recently considered in Ref. [48]. As seen from Table I, the
quantum statistics effects of the α-particle impurity are, in
fact, small because, first of all, of too small of a relative
concentration Xα of this impurity, according to Eq. (31), which
was suggested in Ref. [21]. The size of these effects appears
to be rather different for the case of impurity contributions
Xα

∼= 1 of α particles into the nucleon matter.
As stated above, our analysis can be applied beyond the

vdW model. In fact, similar estimates of the quantum statistic
effects have been done also for one of the mean-field models
(Ref. [24] and references therein) in Sec. IV; see Tables II and
III. The QSMF calculations were performed for γ = 1/6 and
other corresponding parameters from Ref. [23] and presented
in these tables. We found very good agreement between the
analytical results of calculations (22) up to the first-order
corrections over ei and numerical results obtained in Ref. [23];
see Table II for nucleon matter and Table III for α matter.
A similar good agreement with the results of Ref. [23] takes
place also for another parameter, γ = 1. This value was found
in the derivations of the SMF approach [25] from the original
Skyrme forces [26,27]. Thus, the first order over small param-
eter ei in the expansion of the pressure within the quantum
Skyrme mean-field approach, as well in the QvdW model,
turns out to be sufficient for a very good agreement with
numerical calculations [23] of the CP parameters.

We should emphasize also that it is remarkable that the
results obtained up to the first-order corrections reproduce
the quantum statistics effects with a high accuracy (see Ta-
bles I–III). The contribution of high-order (e.g., second-order)
corrections in an expansion over δi for the QvdW model, or
over ei for the Skyrme-mean field parametrization, is much
smaller than the first-order correction, that shows a fast con-
vergence in δi, or ei, by accounting for the first-order terms.
Notice that a smallness of the parameters δi is associated with
those of ei because of δi ∝ ei. Therefore, high-order correc-
tions due to the quantum statistics effects can be neglected for
main evaluations of the critical point values.

VII. CONCLUSIONS

We derived the critical-point temperature, particle number
density, and pressure for the nucleon and α-particle matter
within the quantum van der Waals (QvdW) and quantum
Skyrme mean-field (QSMF) models taking into account the
Fermi and Bose statistics corrections. We found their an-
alytical dependence on the system parameters of particles,
such as their mass, degeneracy, and interparticle interaction
constants. In order to determine the equation of state and the
critical point while accounting for the quantum statistics and
interaction effects, it is sufficient to keep only the first term
in the pressure expansion basically over the small quantum-
statistics parameter ei, where i denotes the baryon system
under consideration. The specific properties of particles (their
mass and degeneracy factor) appear in the CP values through
this small parameter ei.

Our derivations were carried out for systems of Fermi or
Bose particles in two cases: for the QvdW model and the
QSMF parametrization. In both cases, taking into account
already the first-order terms in the expansion of the pres-
sure over ei greatly simplifies the form of the equation of
state and solution of this equation for the critical values
of temperature, density, and pressure. The values of these
critical quantities at leading first order turn out to be very
close to those obtained in the accurate numerical calculations
within the full QvdW and QSMF models. For relatively small
temperatures T and/or large particle-number densities n, the
quantum statistics parameter, |ei| ∝ niT −3/2, becomes large.
In this region of the phase diagram, the perturbation expansion
diverges and, therefore, the QvdW and QSMF approaches
should be treated within the full quantum statistical formula-
tion. However, as is well known [41], for the limit of small
temperatures T and/or large particle densities n, the vdW
approach fails. In particular, as shown earlier (Ref. [23]), the
Bose condensation phenomenon should be treated within the
QSMF model, in contrast to the vdW approach.

A simple and explicit dependence on the system parame-
ters, such as the particle mass mi and degeneracy factor gi, is
demonstrated at the leading few first orders of expansion over
ei. Such a dependence is absent within the classical van der
Waals and Skyrme mean-field models. The quantum statis-
tics parameter ei, is proportional to m−3/2

i g−1
i . Therefore, the

effects of quantum statistics become smaller for more heavy
particles and/or for larger values of their degeneracy factor.

The quantum statistics corrections to the CP parameters of
the symmetric nuclear matter appear to be quite significant.
For a pure nuclear matter, the value of T (0)

c = 29.2 MeV in the
classical vdW model is decreased dramatically to the QvdW
value T (1)

c = 19.0 MeV at the first-order approximation in the
quantum statistics expansion. On the other hand, this approxi-
mate analytical result within the first-order quantum-statistics
approach is already close to the accurate numerical value of
Tc = 19.7 MeV, which was obtained by numerical calcula-
tions within the full QvdW model. For the Skyrme mean-field
parametrization, the quantum statistics effect is smaller than
that for the quantum van der Waals model. This improves the
foundation of the perturbation approach used with respect to
the small parameter ei. The agreement of the first-order QSMF
approach with full numerical calculations [23] is even better
than that within the QvdW model. The nuclear matter value
of T (0)

c = 20.6 MeV in the classical SMF case is decreased
to the quantum SMF value T (1)

c = 15.1 MeV. This result is
obviously very close to that of numerical calculations, Tc =
15.3 MeV, obtained in Ref. [23].

The QwdW equation of state has been derived analytically
and used to study the quantum statistics effects in a vicinity
of the critical point of the two-component system of nucleon
and α-particle matter. The expressions for the pressure of the
equation of state were obtained by using the quantum statistics
expansion over two small parameters e∗

i (i = {N, α}) near the
vdW approach. The CP parameters are somewhat increased as
compared to those for a pure nucleon system. These analytical
results are in good agreement with those of more accurate
numerical calculations. A very small impurity of α particles
to the nucleon matter leads to very small corrections to the

024621-8



QUANTUM STATISTICS EFFECTS NEAR THE CRITICAL … PHYSICAL REVIEW C 105, 024621 (2022)

equation of state, and to the critical point of the nuclear
matter.

Finally, one can conclude that our derivations within the
quantum van der Waals and Skyrme mean-field parametriza-
tions are straightforwardly extended to other types of interpar-
ticle interactions. In particular, it is expected to be the case for
a more general mean-field approach.
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APPENDIX: FORMULATION OF THE QVDW MODEL

The constants of the QvdW model, a > 0 and b > 0, are
responsible for, respectively, attractive and repulsive inter-
actions between particles. We fix the model parameters a
and b using the ground state properties of the symmetric
nuclear matter (see, e.g., Ref. [49]): at T = 0 and n = n0 =
0.16 fm−3, one requires P = 0 and the binding energy per
nucleon ε(T = 0, n = n0)/n0 = −16 MeV. From the above
requirements,2 one finds

a = 329.8 MeV fm3, b = 3.35 fm3. (A1)

Therefore, in Eqs. (16) and (17), one has the CP parameters
of the classical vdW model

T (0)
c = 8a

27b
∼= 29.2 MeV,

n(0)
c = 1

3b
∼= 0.100fm−3, (A2)

P(0)
c = a

27b2
∼= 1.09 MeV fm−3.

2The multicomponent QvdW model with different a and b param-
eters for protons and neutrons was discussed in Refs. [21,29].

They were found from Eq. (15) for the equation of states in
the case of δ = 0.

Following the formulation of the QvdW model [21], one
can present the equation of state (25) in terms of the pres-
sures of the ideal two-component gas in the grand canonical
ensemble, but in terms of the modified chemical potentials μ∗

i
(i = N, α). These potentials, μ∗

i , were determined through
the particle number densities ni by a system of transcendent
equations. First, they are found as functions of the densities
n∗

i by solving the following equations:

n∗
N = nid

N (T, μ∗
N ) ≡ 2gN√

πλ3
N

∫ ∞

0
dη

η1/2

exp
(
η − μ∗

N
T

) + 1
,

n∗
α = nid

α (T, μ∗
α ) ≡ 2gα√

πλ3
α

∫ ∞

0
dη

η1/2

exp
(
η − μ∗

α

T

) − 1
,

(A3)

where nid
i is defined by Eq. (3); see more details in

Refs. [20,21]. Then, n∗
i can be obtained in terms of the true

particle-number densities ni of an interacting particles system
where interaction is described by the vdW exclusion-volume
constants b̃i j , Eq. (28),

nN = n∗
N [1 + (b̃αα − b̃αN )n∗

α]

1 + b̃NN n∗
N + b̃ααn∗

α + (
b̃NN b̃αα − b̃Nα b̃αN

)
n∗

N n∗
α

,

nα = n∗
α[1 + (b̃NN − b̃Nα )n∗

N ]

1 + b̃NN n∗
N + b̃ααn∗

α + (
b̃NN b̃αα − b̃Nα b̃αN

)
n∗

N n∗
α

.

(A4)

Finally, one can obtain the pressure Pid
i given by Eq. (2)

but with the modified chemical potential μ∗
i , found from

Eqs. (A3) and (A4), as

Pid
N (T, μ∗

N ) = 4gN T

3
√

πλ3
N

∫ ∞

0
dη

η3/2

exp
(
η − μ∗

N
T

) + 1
,

Pid
α (T, μ∗

α ) = 4gαT

3
√

πλ3
α

∫ ∞

0
dη

η3/2

exp
(
η − μ∗

α

T

) − 1
. (A5)

Equations (A4) and (A5) are used for derivations of the equa-
tion of state (25) in the main text.
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