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Two-nucleon momentum correlation functions are investigated for different single thermal sources at given
initial temperature (T ) and density (ρ ). To this end, the space-time evolutions of various single excited nuclei at
T = 1–20 MeV and ρ = 0.2−1.2 ρ0 are simulated by using the thermal isospin-dependent quantum molecular
dynamics model. Momentum correlation functions of identical proton-pairs [Cpp(q)] or neutron-pairs [Cnn(q)]
at small relative momenta are calculated by Lednický and Lyuboshitz analytical method. The results illustrate
that Cpp(q) and Cnn(q) are sensitive to the source size (A) at lower T or higher ρ, but almost not at higher T or
lower ρ. And the sensitivities become stronger for smaller source. Moreover, the T , ρ, and A dependencies of
the Gaussian source radii are also extracted by fitting the two-proton momentum correlation functions, and the
results are consistent with the above conclusions.
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I. INTRODUCTION

Properties of nuclear matter is one of the most interesting
topics in heavy-ion physics [1–4] and lots of works have
been done around zero temperature, including the nuclear
equation of state (EOS). However, the studies on properties
of nuclear matter at finite temperatures are relatively limited.
Many previous works mainly focus on the temperature depen-
dence of hot nuclear matter and the nuclear liquid-gas phase
transition (LGPT) [5–14], the ratio between shear viscosity
over entropy density (η/s) [15–19], as well as the nuclear
giant dipole resonance [20–22], etc. Among the above works,
the relationship between the phase transition temperature and
the source size has been investigated [5]. In Ref. [5], the finite-
size scaling effects on nuclear liquid-gas phase transition
probes are investigated by studying de-excitation processes of
the thermal sources by the isospin-dependent quantum molec-
ular dynamics model (IQMD). Several probes, including the
total multiplicity derivative, second moment parameter, in-
termediate mass fragment multiplicity, Fisher’s power-law
exponent as well as nuclear Zipf’s law exponent of Ma [9]
were explored, and the phase transition temperatures were
then obtained. Recently, the deep neural network has also been
used to determine the nuclear liquid gas phase transition [23]
and to estimate the temperature of excited nuclei by the charge
multiplicity distribution of emitted fragments [24]. The latter
work proposed that the charge multiplicity distribution can be
used as a thermometer of heavy-ion collisions.

*Corresponding author: mayugang@fudan.edu.cn

Considering that the intermediate state at high tempera-
ture and density in the evolution process of nuclear reactions
cannot be directly measured, one always explores properties
of nuclear matter and the dynamical description of heavy-
ion collisions through the analysis of the final-state products.
As is well known, the two-particle momentum correlation
function in the final state has been extensively used as a
probe of the space-time properties and characteristics of the
emission source [25–27]. The two-proton momentum cor-
relation function has been explored systematically by a lot
of experiments as well as different models, several reviews
can be found in Refs. [28–31]. In various studies on the
momentum correlation function, impacts of the impact pa-
rameter, the total momentum of nucleon pairs, the isospin
of the emission source, the nuclear symmetry energy, the
nuclear equation of state (EOS) as well as the in-medium
nucleon-nucleon cross section have been discussed in litera-
ture [32–38]. Even more, nuclear structure effects were also
carefully investigated, such as the effects from binding energy
and separation energy of the nucleus [39], density distribution
of valence neutrons in neutron-rich nuclei [40], as well as
high momentum tail of the nucleon-momentum distribution
[41], etc. Two-proton momentum correlation function was
also constructed in few-body reactions as well as α-clustered
nucleus induced collisions [42–46]. In addition, a momentum
correlation function between two light charged particles also
offers a unique tool to investigate dynamical expansion of the
reaction zone [38].

Here, we extend the momentum correlation method of the
final-state interaction to study the time-spatial information
of the finite-temperature nuclear systems which have differ-
ent initial density. The purpose of the present paper is to
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systematically investigate the relationship between two-
particle momentum correlation functions and system param-
eters, such as the source temperature, density as well as
system size in a framework of the thermal isospin-dependent
quantum molecular dynamics (ThIQMD) model [5,14,17]. In
addition, the Gaussian source radii are quantitatively extracted
by an assumption of Gaussian source fits to the momen-
tum correlation function distributions. In this article, the
evolution process of excited nuclear sources at given initial
temperatures varying from 1 MeV to 20 MeV are studied.
The present work selects six different nuclear systems with
a similar ratio of neutron to proton numbers, i.e., N/Z ∼
1.3, which include (A, Z ) = (36, 15), (52, 24), (80, 33),
(100, 45), (112, 50), and (129, 54) nuclei. Then, Lednický-
Lyuboshitz theoretical approach [47] is applied for calculating
two-particle momentum correlation functions which are con-
structed based on phase-space information from the evolution
process of single excited nuclear sources by the ThIQMD
model.

The rest of this article is organized as follows. In Sec. II,
we first describe the thermal isospin-dependent quantum
molecular dynamics model [14,17], then briefly introduce
the momentum correlation technique using Lednický and
Lyuboshitz (LL) analytical formalism. In Sec. III, we show
the results of the ThIQMD plus the LL method for the
source-temperature dependence of two-particle momentum
correlation function. The two-particle momentum correlation
functions of different system sizes at different initial densi-
ties are systematically discussed. The detailed analysis of the
extracted Gaussian source radii are presented under different
source temperature and density. Furthermore, the momentum
correlation function of two-neutron is also analyzed. Finally,
Sec. IV gives a summary of the paper.

II. MODELS AND FORMALISM

A. The ThIQMD model

In this paper, the thermal isospin-dependent quantum
molecular dynamics transport model is used as the event gen-
erator, which has been applied successfully to study the LGPT
[5,24]. In the following discussion, we introduce this model
briefly. As is well-known, the isospin-dependent quantum
molecular dynamics (IQMD) model was used to describe the
collision process between two nuclei. The quantum molecular
dynamics transport model is an n-body transport theory, which
describes heavy-ion reaction dynamics from intermediate to
relativistic energies [48–51]. In the present work, we use a
single excited source in the ThIQMD which is different from
the traditional IQMD. Usually, the ground state of the initial
nucleus is considered to be T = 0 MeV in the traditional
IQMD model. However, the ThIQMD model developed by
Fang, Ma, and Zhou in Ref. [17] is used to simulate single
thermal source at different temperatures and densities.

The main parts of the QMD transport model include
the following issues: the initialization of the projectile and the
target, nucleon propagation under the effective potential, the
collisions between the nucleons in the nuclear medium, and
the Pauli blocking effect. In the ThIQMD, instead of using the

Fermi-Dirac distribution for T = 0 MeV with the nucleon’s
maximum momentum limited by Pi

F (�r) = h̄[3π2ρi(�r)]1/3, the
initial momentum of nucleons is sampled by the Fermi-Dirac
distribution at finite temperature:

n(ek ) = g(ek )

e
ek −μi

T + 1
, (1)

where the kinetic energy ek = p2

2m , p and m are the momentum

and mass of the nucleon, respectively. g(ek ) = V
2π2 ( 2m

h̄2 )
3
2
√

ek

represents the state density with the volume of the source V =
4
3πr3, where r = rV A

1
3 (rV is a parameter to adjust the initial

density).
In addition, the chemical potential μi is determined by the

following equation:

1

2π2

(
2m

h̄2

) 3
2
∫ ∞

0

√
ek

e
ek −μi

T + 1
dek = ρi, (2)

where i = n or p refer to the neutron or proton.
In the ThIQMD model, the interaction potential is also

represented by the form as follows:

U = USky + UCoul + UYuk + USym + UMDI, (3)

where USky, UCoul, UYuk, USym, and UMDI are the density-
dependent Skyrme potential, the Coulomb potential, the
surface Yukawa potential, the isospin asymmetry poten-
tial, and the momentum-dependent interaction, respectively.
Among these potentials, the Skyrme potential, the Coulomb
potential, and the momentum-dependent interaction can be
written as

USky = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

, (4)

where ρ and ρ0 are total nucleon density and its normal value
at the ground state, i.e., 0.16 fm−3, respectively. The above
parameters α, β, and γ with an incompressibility parameter
K are related to the nuclear equation of state [52–58]:

USym = Csym
(ρn − ρp)

ρ0
τz, (5)

UCoul = 1

2
(1 − τz )Vc, (6)

where ρn and ρp are neutron and proton densities, respectively,
τz is the zth component of the isospin degree of freedom for
the nucleon, which equals 1 or −1 for a neutron or proton,
respectively, and Csym is the symmetry energy coefficient.
UCoul is the Coulomb potential where Vc is its parameter for
protons:

UMDI = δ ln2(ε(�p)2 + 1)
ρ

ρ0
, (7)

where �p is the relative momentum, δ and ε can be found in
Refs. [48,49]. Their values of the above potential parameters
are all listed in Table I.

B. Lednický and Lyuboshitz analytical formalism

Next, we briefly review the method for the two-particle
momentum correlation function proposed by Lednický and
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TABLE I. The value of the interaction potential parameters.

α β K δ ε

(MeV) (MeV) γ (MeV) (MeV) ((GeV/c)−2)

−390.1 320.3 1.14 200 1.57 500

Lyuboshitz [47,59,60]. The momentum correlation technique
in nuclear collisions is based on the principle as follows: when
they are emitted at small relative momentum, the two-particle
momentum correlation is determined by the space-time char-
acteristics of the production processes owing to the effects
of quantum statistics (QS) and final-state interactions (FSI)
[61,62]. Therefore, the two-particle momentum correlation
function can be expressed through a square of the sym-
metrized Bethe-Salpeter amplitude averaging over the four
coordinates of the emitted particles and the total spin of the
two-particle system, which represents the continuous spec-
trum of the two-particle state.

In this theoretical approach, the final-state interactions of
the particle pairs is assumed independent in the production
process. According to the conditions in Ref. [63], the correla-
tion function of two particles can be written as the expression

C(k∗) =
∫

S(r∗, k∗)|�k∗ (r∗)|2d4r∗∫
S(r∗, k∗)d4r∗ , (8)

where r∗ = x1 − x2 is the relative distance of the two particles
in the pair rest frame (PRF) at their kinetic freeze-out, k∗
is half of the relative momentum between two particles in
the PRF, S(r∗, k∗) is the probability to emit a particle pair
with given r∗ and k∗, i.e., the source emission function, and
�k∗ (r∗) is the equal-time (t∗ = 0) reduced Bethe-Salpeter
amplitude which can be approximated by the outer solution of
the scattering problem in the PRF [64,65]. This approximation
is valid on condition |t∗| � m(r∗)2, which is well fulfilled
for sufficiently heavy particles like protons or kaons and rea-
sonably fulfilled even for pions [59]. In the above limit, the
asymptotic solution of the wave function of the two charged
particles approximately takes the expression

�k∗ (r∗) = eiδc
√

Ac(λ)

×
[

e−ik∗r∗
F (−iλ, 1, iξ ) + fc(k∗)

G̃(ρ, λ)

r∗

]
. (9)

In the above equation, δc = arg �(1 + iλ) is the Coulomb
s-wave phase shift with λ = (k∗ac)−1, where ac is the
two-particle Bohr radius, Ac(λ) = 2πλ[exp(2πλ) − 1]−1 is
the Coulomb penetration factor, and its positive (negative)
value corresponds to the repulsion (attraction). G̃(ρ, λ) =√

Ac(λ)[G0(ρ, λ) + iF0(ρ, λ)] is a combination of regu-
lar (F0) and singular (G0) s-wave Coulomb functions
[59,60]. F (−iλ, 1, iξ ) = 1 + (−iλ)(iξ )/1!2 + (−iλ)(−iλ +
1)(iξ )2/2!2 + · · · is the confluent hypergeometric function
with ξ = k∗r∗ + ρ, ρ = k∗r∗:

fc(k∗) =
[

Kc(k∗) − 2

ac
h(λ) − ik∗Ac(λ)

]−1

(10)

is the s-wave scattering amplitude renormalized by the
long-range Coulomb interaction with h(λ) = λ2 ∑∞

n=1[n(n2 +
λ2)]−1 − C − ln[λ], where C = 0.5772 is the Euler constant.
Kc(k∗) = 1

f0
+ 1

2 d0k∗2 + Pk∗4 + · · · is the effective range
function, where d0 is the effective radius of the strong interac-
tion, f0 is the scattering length, and P is the shape parameter.
The parameters of the effective range function are important
parameters characterizing the essential properties of the FSI,
and can be extracted from the correlation function measured
experimentally [38,65–67].

For n-n momentum correlation functions which include an
uncharged particle, only the short-range particle interaction
works. For p-p momentum correlation functions, both the
Coulomb interaction and the short-range particle interaction
dominated by the s-wave interaction are taken into account.

III. ANALYSIS AND DISCUSSION

Within the framework of the thermal isospin-dependent
quantum molecular dynamics model [5,14,17], the
two-particle momentum correlation functions are calculated
by using the phase-space information from the freeze-out
stage of the excited nuclear source at an initial temperature
varying from 1 MeV to 20 MeV and/or density varying
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(a) T = 2.0 MeV
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(d) T = 8.0 MeV

(b) T = 4.0 MeV (e) T = 10.0 MeV

(c) T = 6.0 MeV (f) T = 12.0 MeV

q (MeV/c)

FIG. 1. The proton-proton momentum correlation function
[Cpp(q)] at different densities (i.e., 0.2ρ0, 0.4ρ0, 0.6ρ0, 0.8ρ0, 1.0ρ0,
and 1.2ρ0) for the smaller nucleus (A = 36, Z = 15) with fixed
source-temperatures T = 2 MeV (a), 4 MeV (b), 6 MeV (c), 8 MeV
(d), 10 MeV (e), and 12 MeV (f), respectively. The freeze-out time
is taken to be 200 fm/c.
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FIG. 2. Similar to Fig. 1, but at different source-temperatures
(T = 2, 4, 6, 8, 10, and 12 MeV) with different fixed densities,
namely ρ = 0.2ρ0 (a), 0.4 ρ0 (b), 0.6 ρ0 (c), 0.8 ρ0 (d), 1.0 ρ0 (e),
and 1.2ρ0 (f).

from ρ = 0.2ρ0 to 1.2ρ0. This work performs calculations
for thermal source systems with different mass including
(A, Z ) = (36, 15), (52, 24), (80, 33), (100, 45), (112, 50),
and (129, 54).

We first calculated the proton-proton momentum correla-
tion function Cpp(q) for finite-size systems at temperatures
ranging from 1 to 20 MeV. In Fig. 1, the results of Cpp(q) for
temperature of 2, 4, 6, 8, 10 and 12 MeV at different values
of density (0.2ρ0 - 1.2ρ0) are presented. The proton-proton
momentum correlation function exhibits a peak at relative
momentum q = 20 MeV/c, which is due to the strong final-
state s-wave attraction together with the suppression at lower
relative momentum as a result of Coulomb repulsion and the
antisymmetrization wave function between two protons. The
shape of the two-proton momentum correlation functions is
consistent with many previous experimental data in heavy-
ion collisions, e.g., Ref. [68]. For protons which are emitted
from the lower temperature (T < 8 MeV) source in Fig. 1(a)–
1(c), the general trend is very similar. The figure shows that
Cpp(q) increases as ρ increases for fixed T (T < 8 MeV).
The increase of the density indicates that the geometrical
size becomes smaller for a source with fixed neutrons and
protons, which makes the strength of the momentum correla-
tion function stronger. Finally, the p-p momentum correlation
function becomes almost one at q > 60 MeV/c. For larger
T (T > 8 MeV) in Fig. 1(d)–1(f), the difference of Cpp(q)

2
4
6
8

10
12
14

2
4
6
8

10
12
14

20 40 60 80

2
4
6
8

10
12
14

20 40 60 80

(b) T = 4.0 MeV

(a) T = 2.0 MeV
 ρ = 0.2 ρ0  ρ = 0.4 ρ0 

 ρ = 0.6 ρ0  ρ = 0.8 ρ0 

 ρ = 1.0 ρ0  ρ = 1.2 ρ0

(d) T = 8.0 MeV

(e) T = 10.0 MeV

(c) T = 6.0 MeV

q (MeV/c)

C
nn

(q
)

(f) T = 12.0 MeV

FIG. 3. The neutron-neutron (n-n) momentum correlation func-
tions [Cnn(q)] in the same conditions as Fig. 1.
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FIG. 4. Same to Fig. 1, but for a larger system (A = 129, Z = 54).
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FIG. 5. Cpp(q) of different source size systems at fixed temperatures (i.e., from left column to right column, they correspond to T = 2, 4,
and 6 MeV, respectively) or fixed densities (i.e., from top row to bottom row, they correspond to ρ = 0.2ρ0, 0.6ρ0, 1.0ρ0, respectively).

between different densities becomes smaller. From Fig. 1, it
is found that the Cpp(q) almost keep the same above T =
8 MeV for different densities and the p-p momentum corre-
lation function becomes almost unique above approximately
q = 30 MeV/c. It indicates that the emitted proton is not
affected by the change of density when the source temperature
beyond certain value (T ≈ 8 MeV in present work). In order
to understand which one of the two factors (i.e., temperature
and density) has larger influence, the two-particle momentum
correlation in Fig. 2 is plotted by exchanging of the two
input parameters. From Fig. 2, we can intuitively observe
dependence of the two-particle momentum correlation on the
source temperature. The dependence of Cpp(q) on the source
temperature is stronger than on density. In other words, the
Cpp(q) is more sensitive to T than to density ρ. In addition,
for larger ρ from Fig. 2(a) to (f), the difference of Cpp(q)
between different densities becomes bigger. Next, we explore
whether the phenomenon exists in momentum correlation
functions for the uncharged-particle pairs. Figure 3 presents
the neutron-neutron momentum correlation functions [Cnn(q)]
for temperature of 2, 4, 6, 8, 10, and 12 MeV at different

values of density, respectively. For neutron-neutron momen-
tum correlation function, it peaks at q ≈ 0 MeV/c caused
by the s-wave attraction. Although the Cnn(q) has different
shape compared with the p-p momentum correlation function,
it has the similar dependence on the source temperature and
density. The similar trend in Cpp(q) and Cnn(q) shows the
close emission mechanism in the evolution process.

Figure 4 shows the results of a larger system at differ-
ent source-temperature and density, and a similar behavior
of Cpp(q) is demonstrated. We also observe that the proton-
proton momentum correlation in larger-size system [(A, Z ) =
(129, 54)] in Fig. 4 becomes weaker in comparison with
the smaller-size source [(A, Z ) = (36, 15)] in Fig. 1. In view
of the above phenomenon, Fig. 5 describes the relationship
between system-size and momentum correlation function in
more details. The decreasing of Cpp(q) as the system-size
increasing for a fixed value of T or ρ can be clearly seen
in Fig. 5(g), which is consistent with the previous results
of Gaussian source [37,38,69]. In Fig. 5(a)–5(i), with larger
temperature or lower density, the difference of Cpp(q) between
different T or ρ becomes smaller, respectively. The Gaussian
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FIG. 6. Source-temperature T dependencies of Cmax(q) (a) and
of FWHM (b) of Cpp(q) distributions at different densities
(0.2ρ0−1.2ρ0) for the (A = 35, Z = 16) system.

source radii are extracted for further discussion later in this
article.

From the above plots, we can extract Cmax(q), i.e., the
maximum value of Cpp(q) as well as the full width at half-
maximum (FWHM) of Cpp(q) distribution, i.e., at Cpp(q) =
[Cmax(q) − 1]/2. The source-temperature T dependence of
Cmax(q) and FWHM for the proton-proton momentum cor-
relation function with different density are given in Fig. 6.
As shown in Fig. 6(a) and 6(b), both Cmax(q) and FWHM
decrease gradually with the increasing of T . In addition, both
of them increase gradually with density. At high temperature,
the change of Cmax(q) and FWHM is very small and not plot-
ted in the figure. Of course, the behavior of the Cmax(q) and
FWHM with T and ρ can also be clearly seen in Fig. 2, and
the increasing of Cmax(q) and FWHM are generally inversely
proportional to Gaussian radius r0 as shown later. Similarly,
the system-size A dependence of Cmax(q) and FWHM for the
proton-proton momentum correlation function at T = 2 MeV
and ρ = 0.6ρ0 is shown in Fig. 7. The dependence of Cmax(q)
and FWHM on system-size A is quite similar to the temper-
ature dependence in Fig. 6. The Cmax(q) and FWHM values
become smaller for larger systems.

Figure 8 shows the source-temperature, density, and
system-size dependence of Gaussian radii extracted from two-
particle momentum correlation functions, where panels (a)
and (b) are results with the smaller source size and the larger
source size, respectively. The radii are extracted by a Gaussian
source assumption, i.e., S(r) ≈ exp[−r2/(4r2

0 )], where r0 is
the Gaussian source radius from the proton-proton momentum
correlation functions. The theoretical calculations for Cpp(q)
was performed by using the Lednický and Lyuboshitz ana-
lytical method. The best fitting radius is judged by finding
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FIG. 7. Cmax(q) (a) and FWHM (b) for different source-size sys-
tems at given T = 2 MeV and ρ = 0.6ρ0.

the minimum of the reduced χ -square between the ThIQMD
calculations and the Gaussian source assumption. Since the
effect of the strong FSI scales as fc(k∗)/r∗ in Eq. (9), one
may read the sensitivity of the correlation function to the
temperature T , density ρ, and atomic number A from their
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FIG. 8. Gaussian source radius as a function of temperature at
different densities (ρ = 0.2ρ0, 0.4ρ0, 0.6ρ0, 0.8ρ0, 1.0ρ0, 1.2ρ0) for
a fixed source size. (a) and (b) correspond to the smaller source size
with (A = 36, Z = 15) and the larger source size with (A = 129, Z =
54), respectively.
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FIG. 9. Gaussian source radius as a function of temperature or
density at different source-size systems. Left and right columns cor-
respond to r0 at different densities, i.e., ρ = 0.2 ρ0 (a), 0.6 ρ0 (b), and
1.0 ρ0 (c) as well as different temperatures, i.e., T = 2 (d), 6 (e), and
10 (f) MeV, respectively.

effects on the Gaussian radius r0. One may observe a linear
dependence on these parameters up to T ≈ 8 MeV and then
a lost of sensitivity in a plateau region at higher temperatures
in Fig. 8. As the density decreases, the decreasing speed of
the Gaussian radius of the small system is larger than that
of the larger system. Figure 9 shows the Gaussian radius of
the different system-size varies with the temperature in pan-
els (a)–(c) or density in panels (d)–(f). The Gaussian source
radius is consistent with the system-size, i.e., at higher tem-
perature or larger density, the differences of Gaussian source
between different system sizes are bigger in the low density
and low temperature region, but the difference in opposite
conditions almost disappear. In other words, the sensitivity of
the source radii to the system size seem to be different in the
different regions of temperatures and densities. For example,
the sensitivity is better in the region of lower T and higher ρ

[Fig. 9(b) and 9(c)], or it is better in the higher T region for
the lower ρ [Fig. 9(a)], or it is better in the higher ρ region for
the lower T [Fig. 9(d)].

From the above discussion, it is demonstrated that the
strength of the two-particle momentum correlation function is
affected by the source temperature, density, and system size.
The two-particle momentum correlation function strength is
larger for a single source with lower temperature, higher den-
sity or smaller mass number as shown in Figs. 1–5. Otherwise,
the strength becomes smaller. To some extents, the strong

correlation between two particles is mainly caused by the
closed position of each other in phase space in both coordi-
nate and momentum. Varying only one in the three condition
parameters (temperature, density, and system size), lower
temperature means smaller momentum space, higher density
means smaller coordinate space, and small system size also
mean smaller coordinate space to keep fixed density compared
with large system size. The dependencies of the two-particle
momentum correlation function strength on the source tem-
perature, density, and system size could be explained by the
change of the phase space sizes. Two particles emitted from
small phase space will have strong correlation and those from
large phase space will have weak correlation. For example, the
increase of the Cpp(q) strength with the increase of the density
for a fixed system size could be explained by the decreasing
of the coordinate space as shown in Fig. 1(a). And the small
Cpp(q) strength at temperature higher than 8 MeV could be
caused by the large momentum space compared with lower
temperatures as shown in Fig. 1(d)–1(f). The decrease of the
Cpp(q) strength with the increase of the system size for a
fixed density could also be explained by the increasing of the
coordinate space as shown in Fig. 5(g). Thus it is concluded
that the phase space size for the emitted nucleons have strong
effect on strength of the two-particle momentum correlation
function, which can also be seen in the extracted Gaussian
radii as shown in Fig. 8.

IV. SUMMARY

In summary, the two-particle momentum correlation func-
tions for single excited sources are investigated using the
Lednický and Lyuboshitz analytical formalism with the phase-
space information at the freeze-out stage for different initial
temperatures and densities in a framework of the ThIQMD
transport approach. We mainly performed a series of studies
focusing on the varied effects of source temperature, density,
and system-size on the two-particle momentum correlation
functions. The results reflect that the shape of the two-proton
momentum correlation function is in accordance with the
previous experimental data in heavy-ion collisions [68]. At
the same time, the trend of the relationship between the two-
proton momentum correlation and system-size is consistent
with previous simulations [37,38,69]. At low source temper-
ature, the larger density makes the two-particle momentum
correlation stronger. However, at higher source temperature,
the effect almost disappear. Both proton-proton correlations
and neutron-neutron correlations have the similar responses
to temperature and density. This work also shows that the
emission source is not much influenced by density above a
certain temperature for a single excited source. In the same
way, the emission source is softly influenced by temperature
below a given density for a single excited source. In one word,
the dependence of the two-particle momentum correlation
function on the source temperature, density, and system size
could be explained by the change of the coordinate and/or
momentum phase space sizes. In the end, the Gaussian radii
are extracted to explore the emission source sizes in single
excited systems. Gaussian radii become larger in the larger
systems. The dependence of the extracted Gaussian radius on
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source-temperature and density is consistent with behavior of
the two-proton momentum correlation function as discussed
in the texts.
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