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The new single-channel, single-energy partial-wave analysis method based on a simultaneous use of amplitude
and partial-wave analysis called AA-PWA, developed and tested on η photoproduction in [Phys. Rev. C 102,
064609 (2020)] is applied to the K+� photoproduction for the center-of-mass energy range of 1625 MeV <

W < 2296 MeV. A complete set of multipoles has been created. The advantages of the method have been
confirmed and a comparison with the only existing single-energy partial-wave analysis of K+� photoproduction
given in [Phys. Rev. Lett. 119, 062004 (2017), Eur. Phys. J. A 53, 242 (2017)] is presented. We confirm the size
and shape of Bonn-Gatchina multipoles, but we do not confirm the unambiguous interpretation of the structure
in the M1− multipole as a N (1880) 1

2

+
resonance. The decisive role of the self-consistency of the world database

is emphasized.
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I. INTRODUCTION

Single-channel, singe-energy partial-wave analysis (SC-
SE-PWA) has always been of particular interest primarily for
experimentalists, but also for theorists. For experimentalists,
it seemed to be the most direct way to convert measured
data to physically interpretable partial waves, and for theorists
it seemed to be the most direct way to test the validity of
their theoretical approach. Many attempts have been made to
prove the uniqueness of SC-SE-PWA [1] even in the case of
a single elastic channel, and they culminated with research
by Stefanescu, who has formulated necessary conditions for
the uniqueness of SC-SE-PWA in the elastic domain1 [2].
However, as the search for nucleon resonances basically takes
place in the inelastic region, the continuum-ambiguity prob-
lem became of utter importance [3]. This discussion has
started a long time ago, but has never been completely fin-
ished. Recently, this problem was reopened by our group and
culminated with the conclusion that each single-channel PWA
in the inelastic region is inherently model dependent, as it
depends on the free-energy- and angle-dependent continuum
ambiguity phase which leaves all observables invariant, but
the angular-dependent part of the ambiguity mixes partial

*svarc@irb.hr
1The proof of uniqueness requires the multivariate analyticity of

the amplitude as a function of two Mandelstam variables.

waves. Hence this makes the quantum numbers of resonances
unidentifiable without additional information [4]. Since the
full information on the phase can be obtained only from all
possible inelastic channels, it remains undetermined in single-
channel models, and the only way to make a single-channel
PWA unique is to fix this phase to some known value. Here we
have to distinguish the following two subcases: single-channel
energy-dependent PWA (SC-ED-PWA) and single-channel
energy-independent PWA (SC-SE-PWA). In SC-ED-PWA the
phase is automatically determined by the analyticity of the
continuous ED model but possibly incorrectly as only one
channel is involved, and in SC-SE-PWA it is absolutely free,
so we just have to take it over from some theoretical calcula-
tion. Observe that the common denominator of both cases is
that the analysis is deficient and has to be extended to multiple
channels, as fixing the continuum-ambiguity phase is only
possible by restoring multichannel unitarity, and that can only
be done in analyzing all available channels for this reaction.
So, we have to use coupled-channels models, but even there
the missing phase can only be at least approximately deter-
mined as all possible, open two- and three-body channels are
never known.

Here we give a short overview of worldly accepted energy-
dependent models of kaon photoproduction, and we stress
that the most important ones are those which are done within
the framework of coupled-channels formalism as they by
definition fix the phase. Starting in the 1980s, kaon photo-
production has been investigated in various energy-dependent
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(ED) approaches, isobar models, Lagrangian models, quark
models, Regge models, and more. An overview can be found
in Ref. [5]. Most of those early modelings were single-channel
analyses, where only the coupling to well-known nucleon
resonances provided a weak coupling between different chan-
nels. In most cases the overall phase problem was ignored or
unknown. Comparing the partial waves of those analyses leads
often to very large differences, a very clear case of model
dependence. In the 1990s the situation was improved by the
development of coupled-channels approaches. Starting from
the 2-channel problem {πN, γ N}, at low energies the phases
were completely determined and unique, as the πN phase
shifts are free of ambiguities. This is the result of the well-
known Watson Theorem from two-body unitarity. It is strictly
valid only up to the ππN threshold, which nominally opens
already in the �(1232) resonance region, however with neg-
ligible consequences. Starting around W = 1300 MeV, when
the broad Roper resonance gets excited, first the P11 partial
wave shows large violations of the Watson theorem. In eta
photoproduction the phase ambiguity becomes evident and it
cannot be simply cured by a coupled-channels approach with
a trivial extension to three channels, {πN, ηN, γ N}. Many
attempts have been undertaken to include the three-body chan-
nel ππN , in the simplest cases it has been done by effective
two-body channels as σN , π�, and ρN . Over the years the
treatment of the three-body channels have been considerably
improved, and currently three coupled-channels models are
on the market, ANL-Osaka [6–8], Bonn-Gatchina [9,10], and
Jülich-Bonn-GWU [11,12], which carefully treat the three-
body channels; however, still more or less in approximate
ways. These very elaborate investigations have led to the un-
derstanding that partial-wave analyses (PWA) are inherently
model dependent and will so probably remain in the future.
Furthermore, the more phenomenological Kent State Univer-
sity (KSU) model [13–15] has recently been updated with fits
to new experimental data. And finally, also the GWU-SAID
approach [16], where nucleon resonances are not explicitly
built in but are analyzed afterwards from the obtained partial
waves, is regularly updated with new data. This approach is
less model dependent: it treats coupled channels in the Chew-
Mandelstam K-matrix method. The problem totally collapses
when genuine three-body channels are involved (not replacing
them with effective two-body channels like in ππN). This is
specially emphasized by the point, which was already noted
by scattering theorists many years ago: for a channel-space
of multiple coupled two- and n-body channels, with n > 2,
unitarity can only be used as a tool to model independently and
uniquely determine the amplitudes of all possible reactions
(including their overall phases) if complete sets of data are
given for all possible reactions. However, reactions with n >

2 particles in the initial state cannot be measured experimen-
tally. Therefore, at least some residual model dependence will
always remain in the partial-wave analyses for baryon spec-
troscopy, at least as soon as one crosses the ππN-threshold
(see for instance Sec. 3 of Ref. [17]). So we have to face and
live with the fact that each single-channel PWA is inherently
model dependent due to the lack of information on unitarity.
So, when we compare different PWAs, we have to match the
reaction-amplitude phases first.

Constraining SC-SE-PWA has for decades been done by ei-
ther fixing some partial waves to values from some theoretical
model, or penalizing some or all partial waves to the particular
constraining theoretical model. This is the traditional way.
A strong step forward was taken by the Karlsruhe-Helsinki
group in the 1980s [18] when the problem was raised to the
level of reaction amplitudes where phase ambiguities appear.
Following the work of Stefanescu [2] on the importance of
analyticity in two Mandelstam variables, fixed-t analyticity
was introduced in πN elastic scattering. Analyticity in t was
achieved using the manifestly analytic Pietarinen decompo-
sition of invariant amplitudes and fitting the free parameters
of the decomposition to the data base transformed from
[Wfixed, θ ] coordinates into [tfixed,W ] coordinates,2 while ana-
lyticity in Mandelstam s is enforced by using the traditional
partial-wave decomposition. The free continuum-ambiguity
phase was predetermined by the choice of starting values in
the t-variable minimization. As the reaction-amplitude phase
is fairly well known for the elastic scattering, this method
resulted in the KH80- and KH84 solutions for elastic πN
partial waves [18], which have been accepted and used for
decades. The same method was recently revived and applied
with great success to pion photoproduction [19,20]. Luck-
ily, in pion photoproduction this phase is for sufficiently
low energies linked to the well-determined phase of elastic
πN scattering due to Watson’s theorem [21]. Therefore, in
Refs. [19,20] the authors also do not face the problem of the
unknown phase. However, for all other reactions where Wat-
son’s theorem breaks down (like η or K� photoproduction)
this is not true, so the phase stays poorly determined, and SC-
SE-PWA stays model dependent. Triggered by the fact that
the continuum-ambiguity phase in SC method in the inelastic
domain has to be constrained in particular for reactions where
Watson’s theorem breaks down, a new method based on only
one, i.e., the Mandelstam s variable has been developed in
Ref. [22]. However, in this model we openly acknowledge
the problem that the continuum-ambiguity phase is unknown,
and from the very start constrain it to a phase of some chosen
theoretical coupled-channels model. The rest is very similar to
the fixed-t analyticity procedure but restricted to the s channel
only. The procedure is a two-step process applied to the same
database: the first step consists of an amplitude analysis of
the database where the moduli of the reaction amplitudes
are fit while the reaction-amplitude phases are fixed to the
values of a particular ED coupled-channels model (this elimi-
nates the continuum ambiguity); the second step is a standard
truncated partial-wave analysis (TPWA), where the reaction
amplitudes are forced to be close to the reaction amplitudes
of the first step using penalization techniques. In this way
the continuity in energy is ensured through the continuous
phase, and continuity in angle is ensured by the TPWA. Let
us observe that the proposed method relies on using minimal
theory dependence, which is given by fixing the phase only.
Unfortunately, this works perfectly well only for the ideal
case when all observables are self-consistent. This has been
shown in Ref. [23] for a complete set of pseudo-observables

2Observables are traditionally analyzed in [Wfixed, θ ] space
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(numeric data) for η photoproduction generated by the ETA-
MAID model [24] which are by definition self-consistent.
The free phase in unconstrained SC-SE-PWA is replaced by
the original ETA-MAID phase, and the continuous generating
multipoles were exactly reproduced. Unfortunately, real data
are never self-consistent, so when the method is applied to
real data some discontinuities in partial waves might appear.
Therefore, all scatter of the result is the consequence of ex-
perimental errors and data inconsistencies. The method has
been developed and tested on a world database of η photo-
production and presented in Ref. [22]. As the results for η

photoproduction were stable [22], and the pole content of the
obtained solution looked very reasonable [4], in this paper
we used this method for the K� photoproduction reaction
where the isospin structure is identical. However, the main
advantage of K� photoproduction is that we have access to
results from complementary analyses, to which our results
can be compared. First of all, there exists a very confident
theoretical coupled-channels ED model by the Bonn-Gatchina
group to start with [25]. Second, results of SC-SE-PWA made
by the same group are published [26,27], so we have direct
numbers to compare our results with. The situation is even
more favorable. The Bonn-Gatchina SC-SE-PWA was done
in the standard way: only lower partial waves were left free,
while all higher partial waves were fixed to the Bonn-Gatchina
ED model, while we offer the simultaneous variation of all
multipoles within the framework of AA-PWA method. So,
results and advantages and disadvantages of both approaches
can be directly compared. Third, but not the least important,
is that we had access to a full K� photoproduction database
in numeric form from the Bonn-Gatchina web page [25]. So,
as all input can be made identical, the benefits of the new
approach could be clearly detected. We discuss similarities
and differences, and point out the reasons why this is so.

II. THE AA-PWA METHOD

In the AA-PWA method, from the very start we openly
accept the fact that the overall continuum-ambiguity phase of
the reaction amplitudes in any inelastic SC analysis is by de-
fault undetermined because it depends on other channels [4],
and we fix it to a phase of some chosen theoretical coupled-
channels model. However, let us stress that the way it is done
in our paper is only an approximation. The amplitude phases
contain two parts: the first part are relative phases which are
determined by single- and double-polarization observables,
and can be uniquely determined in the SC model,3 and the sec-
ond part is the continuum-ambiguity phase which is unknown
in any SC approach [22]. In principle, we should only fix the
unknown continuum ambiguity phase to a theoretical model.
However, as the separation of each reaction-amplitudes phase
in relative- and continuum ambiguity part is unknown, we

3Let us remember that in pseudoscalar meson photoproduction, the
four observables dσ/d
, �, T , and P determine the absolute values
of the four transversity amplitudes (see Table IV in Appendix A), and
the remaining four observables in a complete set determine the three
remaining relative phases.

opted to fully fix the phases of all four reaction amplitudes.
So, we expect that the model we use will be fairly good,
and fit also the nonmeasured spin observables. The rest is
very similar to procedures implementing fixed-t analyticity
[18–20,28], but restricted to the s channel only. The procedure
is a two-step process applied to the same data base: the first
step is an amplitude analysis of the database, where the moduli
of reaction amplitudes are fit while the reaction-amplitude
phases are fixed to the values of a particular ED coupled-
channels model (this eliminates the continuum ambiguity);
and the second step is a standard truncated partial-wave anal-
ysis (TPWA) where the reaction amplitudes are forced to be
close to the reaction amplitudes resulting from the first step,
using a penalization technique. In this way the continuity in
energy is ensured through the continuous phase, and continu-
ity in angle is ensured via the TPWA. All scatter of the result
is, hence, the consequence of experimental errors and data
inconsistencies, as in Ref. [23] it has been shown that fixing
only the phase results in a smooth and unique solution in the
case where a self-consistent database has been generated in
the form of pseudo observables from a known model. The
AA-PWA method has been developed and tested on a world
database for η photoproduction, and in details presented in
Ref. [22].

For the convenience of the reader, we summarize the
essence of the method mostly relying on the text in Ref. [4].

In Ref. [22] we have formulated a single-channel, single-
energy partial-wave analysis (SC-SE-PWA) procedure of
determining reaction amplitude via fitting scattering data
when the number of equations may be less than number of
unknown quantities, which combines amplitude- and partial-
wave analyses into one logical sequence, and directly from
the data generates a set of continuous partial waves using
a minimally model-dependent input (AA-PWA). We have
demonstrated that by controlling the reaction-amplitude phase
and freely varying the reaction-amplitude partial waves, we
obtain a continuous solution with far better agreement with
the used data base than the original energy dependent (ED)
model.

The most standard, classic approach is the one where one
penalizes partial waves by requiring that fitted partial waves
reproduce the observable O and are at the same time close to
some partial waves taken from a theoretical model:

χ2(W ) =
Ndata∑
i=1

wi
[
Oexpt

i (W, θi ) − Otheor
i (Mfit(W ), θi )

]2

+ λpen

Nmult∑
j=1

∣∣Mfit
j (W ) − Mtheor

j (W )
∣∣2

, (1)

where

M def= {M0,M1,M2, . . . ,MNmult}.

wi is the statistical weight and Nmult is the number of partial
waves (multipoles), Mfit are fitting parameters, and Mtheor

are continuous functions taken from a particular theoretical
model (for a detailed outline of how the observables Oi are
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composed in terms of multipoles for pseudoscalar meson pho-
toproduction, see Appendix A). Instead, we use the possibility
to make the penalization function independent of a particular
model as first formulated in the Karlsruhe-Helsinki πN elastic
PWA by Höhler in the mid-1980s [18]. Partial waves which
are inherently model dependent are replaced with a penaliza-
tion function which was constructed from reaction amplitudes
which can be in principle directly linked to experimental data
without any model in the amplitude-reconstruction procedure.
So, Eq. (1) was changed to

χ2(W ) =
Ndata∑
i=1

wi
[
Oexpt

i (W, θi ) − Otheor
i (Mfit(W ), θi )

]2

+P (W ),

P (W ) = λpen

Ndata∑
i=1

Namp∑
k=1

∣∣Ak (Mfit(W ), θi ) − Apen
k (W, θi )

∣∣2
,

(2)

where Ak is the generic name for any of reaction amplitudes
(invariant, helicity, transversity, . . .). Ak (Mfit(W ), θi ) is the
reaction-amplitude value generated by the fitted multipoles,
and Apen

k (W, θi ) is the penalizing function coming from the
amplitude analysis. However, one is now facing two chal-
lenges: to get reaction amplitudes which fit the data, and
also to make them continuous. In the Karlsruhe-Helsinki case
[18–20,28], this was accomplished by implementing fixed-t
analyticity and fitting the data base for fixed t . So, the first
step of the KH fixed-t approach was to create the data base
O(W )|t=fixed using the measured base O(cos θ )|W =fixed, and
then to fit them with a manifestly analytic representation of the
reaction amplitudes for a fixed t . Manifest analyticity was im-
plemented by using the Pietarinen decomposition of reaction
amplitudes. Then the second step was to perform a penalized
PWA defined by Eq. (2) in the fixed-W channel where the
penalizing factor Ak (Mpen(W, θi )) was obtained in the first
step in a fixed-t channel. In that way a stabilized SE PWA was
performed. This approach was revived recently for SE PWA of
ηp and π0 p photoproduction and very recently also for pion
photoproduction in full isospin by the Mainz-Tuzla-Zagreb
collaboration, and analyzed in detail in Refs. [19,20,28].

We propose an alternative. We also use Eq. (2), but the
penalizing factor P (W ) is generated by an amplitude analysis
performed in the same fixed-W representation, and not in
the fixed-t one. The phase is in our approach openly rec-
ognized as undeterminable, and taken over from the chosen
coupled-channels ED model. This simplifies the procedure
significantly and avoids quite some theoretical assumptions
on the behavior in the fixed-t representation.

We also propose a two-step process as in Refs. [4,18,28]:
Step 1 Amplitude analysis of experimental data in fixed-W

system to generate penalizing factor P (W ).
Step 2 Penalized PWA using Eq. (2) with the penalization

factor from Step 1.
And now we are bound to say something about the im-

portance of the reaction-amplitude phase. The continuum
ambiguity forbids us from concluding about the correct phase
in any single-channel analysis because the loss of probability
flux to other channels starts after the first inelastic threshold
opens. The only way to solve the continuum ambiguity prob-
lem is to reintroduce the unitarity constraint in the context of a
coupled-channels formalism. If we pick the phase in a single-
channel analysis arbitrarily by hand, we are departing from the
genuine “true” phase, the phase in which partial waves do not
mix, and we introduce a pole-shift from one partial wave into
another via the angular dependent part of the continuum am-
biguity (see Refs. [23,29]). However, each coupled-channels
model by construction results in the non-pole-mixing solution.
Namely, some form of interaction introducing poles is formu-
lated, and the background contribution is included. Then, the
data in all channels are simultaneously fit, forcing the phase
to be the correct one, and the non-pole-mixing situation is
established. Background contributions automatically enforce
the phase to be a non-mixing one. It is needless to say that all
coupled-channels models should end up with the same phase
in the ideal case, but incompleteness of the data forbids that
to happen. Therefore, phases of different models [16,30–32]
are somewhat different, and we cannot avoid this. However,
fixing the phase to the phase of a particular model ensures
to obtain the non-mixing pole solution; departure from it
automatically enforce pole mixing, so the analytic structure
of such a solution is spoiled. So, we can chose a different
phase, a phase coming from any model, but it has to be the

TABLE I. Experimental data from CLAS and GRAAL used in our PWA. Note that the observables Cx and Cz are measured in a rotated
coordinate frame [35]. They are related to the standard observables Cx′ and Cz′ in the center-of-mass (c.m.) frame by an angular rotation:
Cx = Cz′ sin(θ ) + Cx′ cos(θ ) and Cz = Cz′ cos(θ ) − Cx′ sin(θ ), see Ref. [27].

Obs. N Ec.m. [MeV] NE θc.m. [deg] Nθ Reference

dσ/d
 ≡ σ0 3615 1625–2295 268 28–152 5–19 CLAS(2007) [35], CLAS(2010) [36]
� 400 1649–2179 34 35–143 6–16 GRAAL(2007) [37], CLAS(2016) [38]
T 408 1645–2179 34 31–142 6–16 GRAAL(2007) [37],CLAS(2016) [38]
P 1597 1625–2295 78 28–143 6–18 CLAS(2010) [36], GRAAL(2007) [37]
Ox′ 415 1645–2179 34 31–143 6–16 GRAAL(2007) [37], CLAS(2016) [38]
Oz′ 415 1645–2179 34 31–143 6–16 GRAAL(2007) [37], CLAS(2016) [38]
Cx 138 1678–2296 14 31–139 9 CLAS(2007) [35]
Cz 138 1678–2296 14 31–139 9 CLAS(2007) [35]
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FIG. 1. Quality of the 2D interpolation for Cx and Cz observables. The lighter-hue (red) symbols symbols are measured values, and the
lighter-hue (orange) surface shows the interpolated values.

proper phase originating from that model. A free, uncontrolled
departure from ED model phase is not allowed.

Of course the question is purely quantitative: How much
can we depart from the true phase in an uncontrolled way to
maintain the correct analytic properties? In other words, the
question is how much we are allowed to reduce the importance
of the penalty function and maintain the correct analyticity.

All relevant formulas and more details on the photoproduc-
tion formalism are given in Appendix A of this paper.

III. APPLICATION OF AA-PWA to K+�

PHOTOPRODUCTION DATA

Given that the AA-PWA method worked so well on η

photoproduction, we decided to test it on the next natural
candidate reaction, and that is K+� photoproduction. This
reaction has the same isospin structure as η photoproduction,
it has a rich database, so the technical effort involved in adapt-
ing the AA-PWA scheme was minimal. However, there is
one big advantage: we have results from other complementary

analyses to compare with. Namely, four years ago the Bonn-
Gatchina group made a classic SC-SE-PWA analysis of K+�

photoproduction. In Ref. [26], the first four multipoles (E0+ ,
M1− , E1+ , and M1+ ) were let free, while all higher multipoles
were forced by a penalty function to stay close to the Bonn-
Gatchina ED theoretical coupled-channels model, while in the
forthcoming Ref. [27] the next three multipoles (E2− , M2− ,
and M2+ ) were released in addition. In this paper we focus on
comparing our results with the results of Ref. [26].

However, to do so we have to use the identical data base,
and identical Bonn-Gatchina (BG) ED model constraining
partial waves. This turned out not to be a problem, as the data
base is in numerical form given on two very nice web pages
[25,33]. Unfortunately, choosing BG ED multipoles turned
out to be much more difficult. For some reason, the particular
BG ED solution used for both BG publications [26,27] is not
given on the BG web page, so we obtained these numbers via
private communication [34]. As the reader will see later, this
turned out to be extremely important because this solution was
especially tuned to fit K+� data, and the absolute normaliza-
tion of all multipoles is somewhat different. This is trivially

FIG. 2. The quality of the BG2017 and BG2019 solutions for the polarization observables �, T , Ox′ , and Oz′ is illustrated at one randomly
chosen energy. Discrete symbols (red) are measured data, light-hue (cyan) symbols are interpolated data, the dashed line (blue) is the result of
the BG2019 and BG2017 model respectively, and the full line (red) is the result of our fit.

024614-5



A. ŠVARC, Y. WUNDERLICH, AND L. TIATOR PHYSICAL REVIEW C 105, 024614 (2022)

FIG. 3. The multipoles for the L = 0, 1, and 2 partial waves of our AA-PWA solution are shown. Red discrete symbols correspond to our
solution, and the black full line gives the BG2017 ED solution for comparison. The thin vertical black line marks the energy where only four
observables are measured instead of eight (cf. Table I).

visible for the dominant E0+ multipole, where the value of
used BG ED solution was notably larger than either of the
solutions BG2014-2 or BG2019 given on their web page.

A. Description of the database

In Table I we give our data base which is in numeric form
taken over from the Bonn-Gatchina and George Washington

024614-6
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FIG. 4. The multipoles for the L = 2 and 3 partial waves of our AA-PWA solution are shown. Red discrete symbols correspond to our
solution, and the black full line gives the BG2017 ED solution for comparison. The thin vertical black line marks the energy where only four
observables are measured instead of eight (cf. Table I).

University web pages [25,33]. As we see from the Table I, we
have a situation at hand which is very similar to η photopro-
duction:

(1) We have eight measured observables at our disposal,
and unfortunately, identically as in η photoproduc-
tion, this is still not a complete set of observables

024614-7
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FIG. 5. The χ 2/Ndata for individual observables, calculated on measured values of energies and angles, is shown. Our AA-PWA solution is
given with lighter-hue (red) symbols, and the same quantity evaluated for the ED BG2017 solution [25] is given with black symbols.

(some observables from either the beam-target or the
target-recoil categories are missing). For details, see
Appendix B 1.

(2) We have a strong dominance of dσ/d
 data over all
other observables.

(3) Only four observables out of eight are given in the
full, analyzed energy range of 1625 MeV < Wc.m. <

2296 MeV, and these are dσ/d
, P, Cx, and Cz. The
remaining four observables �, T , Ox′ , and Oz′ are

measured only up to ≈2180 MeV. This might create
unwanted discontinuities at this energy.4 For details
see Appendix B 2.

4Eight observables at lower energies might create slightly different
multipoles than only four at energies above ≈2180 MeV. So, the
transition may not be smooth for all multipoles at this energy.
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FIG. 6. Comparison of experimental data for σ0 (discrete symbols) with our results from AA-PWA full line (red) and the BG2017 fit dashed
line (blue) at representative energies.

Even a superficial glimpse at Table I tells us that the mea-
sured data are given at different energies and different angles,
so some data rebinning is in order. Standardly, data binning
consists of using the data not at the exact energy where they
were taken, but in the energy interval Wexact − �/2 < Wexact <

Wexact + �/2, where � is the energy bin width. However,
in the case of scarce data this procedure might introduce an
unwanted dissipation of data, resulting in possible discon-
tinuities between energy bins. Therefore, we have adopted
and used an altogether different method. Instead, we rely
on a two-dimensional (2D) data interpolation. We simultane-
ously interpolate experimental data and their corresponding
experimental error in energy W and angle θ using a standard

Mathematica routine [39], and use interpolated values instead
of binned ones.

Our interpolation strategy is as follows:

(i) Energy grid. The analysis is performed on a collection
of energies where at least one polarization observable
apart from the cross section σ0 was measured (141
energy points).

(ii) Angular grid. The analysis is done on the following
prechosen fixed values of 16 points: (cos θ ) =
{−0.7,−0.6,−0.5,−0.4,−0.3, −0.2, −0.1, 0., 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.80}.
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FIG. 7. Comparison of experimental data for � (discrete symbols) and interpolated values lighter-hue (cyan) symbols with our results from
AA-PWA full line (red) and the BG2017 fit dashed line (blue) at representative energies.

So, let us summarize. The AA-PWA method is not done
on the realistic, measured energy and angular values, but
at interpolated values of all observables instead. Instead,
some interpolation has to be done since we are doing a
single-energy analysis, i.e., at least energies between analyzed
observables have to match (which they do not do for the
measured data sets). This has some advantages and possibly

some drawbacks. The main advantage is that the number of
analyzed points is increased. In the standard binning method,
the number of analyzed energy and angular points is di-
rectly limited by the number of measured points for the least
known observable. So, when we perform the analysis with the
energy-binning technique, we can make an analysis using a
maximum number of observables only on a small number of
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FIG. 8. Comparison of experimental data for T (discrete symbols) and interpolated values lighter-hue (cyan) symbols with our results from
AA-PWA full line (red) and the BG2017 fit dashed line (blue) at representative energies.

points, on points where the least known observable is mea-
sured. We can never benefit from the vast amount of energy
and angular points where all other energies are measured.
On the rest of the energies and angles the number of used
observables is smaller, and the uncertainty introduced into the
analysis hence grows. However, when we use the interpolation

technique, we have all measured observables at all analyzing
points as interpolated values, and the confidence into our
analysis depends on the quality of the interpolation. So, it is
of utter importance to have a confident interpolation for the
“worst” observable where the separation between measured
points is the farthest. In our case the worst observables are Cx
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FIG. 9. Comparison of experimental data for P (discrete symbols) and interpolated values lighter-hue (cyan) symbols with our results from
AA-PWA full line (red) and the BG2017 fit dashed line (blue) at representative energies.

and Cz (see Table I), and in Fig. 1 we show the quality of the
corresponding interpolations. We are of the opinion that the
interpolation of these two observables is fairly good.

Of course, the natural drawback is that we introduce ad-
ditional unmeasured points, so the contribution of poorly
measured observables to the overall χ2 grows. However, this
effect of over-stressing the statistical importance of poorly
measured observables is present in the binning technique, but
is introduced differently (by increasing the weighting factor
for these observables). So, the idea is similar, but for the
interpolation method implemented in a more confident way.

Our fitting strategy reads as follows:

(i) The AA step is done on interpolated energies (141
points) and interpolated angles (16 points).

(ii) The TPWA minimization step for obtaining multipoles
is also done on interpolated energies and prechosen
angular values. However, the statistical data analysis to
obtain χ2 is done at exact energies and exact number
of angles (energy dependent) for each observable (cf.
Table I).

B. Choosing the energy-dependent constraining model

Our first intention was to take the solution BG2019 from
the Bonn-Gatchina web page [25] as a constraining solution.
To our surprise, this solution fits the polarization observables
�, T , Ox′ , and Oz′ rather poorly at higher energies. We show
the discrepancy of that solution with the above-mentioned
four observables at one randomly chosen higher energy in
Fig. 2. However, when the SE-PWA has been performed in
Refs. [26,27], another Bonn-Gatchina ED model was used to
constrain the higher partial waves, and this solution was differ-
ent from BG2019. We call this solution the BG2017 model. As
one of the goals of the present paper is to compare the results
of our AA-PWA method with results from Bonn-Gatchina
publications, it is natural to take the same constraining input,
but to be used on the level of reaction-amplitude phases. As
seen in Refs. [26,27] the agreement of the BG2017 model
with polarization observables is very good, and this is very
important for choosing the phase as we fix relative phases in
addition to the continuum-ambiguity phase. Unfortunately, we
realized that this solution is never given anywhere in numbers
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FIG. 10. Comparison of experimental data for Ox′ (discrete symbols) and interpolated values (cyan symbols) with our results from
AA-PWA (red full line) and the BG2017 fit (blue dashed line) at representative energies.

explicitly, and we got it only via private communication [34].
As our model requires fairly good agreement with all data, the
natural model of choice for the constraining phase had to be
the officially unpublished BG2017 model, in spite of the fact
that it is older and actually never published.

C. Results

In Figs. 3 and 4 we show our final results for multi-
poles on the full set of energies. The penalty factor λ is
picked by hand and is set to λ = 250. Red symbols give
the values of multipoles for our AA-PWA solution, and the
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FIG. 11. Comparison of experimental data for Oz′ (discrete symbols) and interpolated values (cyan symbols) with our results from
AA-PWA (red full line) and the BG2017 fit (blue dashed line) at representative energies.

black full line gives the prediction of the BG2017 solu-
tion [25]. In Fig. 5 we give the χ2 per data point for each
observable calculated on measured values of energies and
angles as red symbols, and the same quantity for the ED
BG2017 solution [25] as black symbols. In Figs. 6–13 we

give the fits to measured observables resulting from our AA-
PWA method (red full line) as well as predictions from the
ED BG2017 solution [25] (dashed blue line) at representa-
tive energies only. All further energies are available upon
demand.
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FIG. 12. Comparison of experimental data for Cx (discrete symbols) and interpolated values (cyan symbols) with our results from AA-PWA
(red full line) and the BG2017 fit (blue dashed line) at representative energies.

In Fig. 14 we also give predictions resulting from our AA-
PWA method for the unmeasured BT polarization observables
E , F , G, and H at two representative energies out of the full
energy range.

We have also given predictions for unmeasured BT observ-
ables E , F , G, and H . They show good agreement at low
energies and larger spread at the highest energies. This is,
however, also already seen in the BR observables that are fit-
ted. Many observables shown in the paper, like T , show sharp
structures near 0◦ and 180◦, especially for higher energies.

We consider those structures as natural, since most observ-
ables must vanish at those extreme angles, either as sin(θ ) or
sin2(θ ). And at higher energies, when lots of multipoles can
contribute, the bending towards zero becomes quite sharp. In
the experiment such structures are hard to see because of the
small solid angles.

Up to about 2 GeV the fitted data are practically complete,
and further additional polarization observables will hardly im-
prove the PWA. Above 2 GeV and even more above 2.2 GeV,
the number of observables and also the quality of the data is

FIG. 13. Comparison of experimental data for Cz (discrete symbols) and interpolated values (cyan symbols) with our results from AA-PWA
(red full line) and the BG2017 fit (blue dashed line) at representative energies.
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FIG. 14. Prediction of our AA-PWA method full line (red) and the BG2017 fit dashed line (blue) for the E , F , G, and H spin observable at
the representative energies of W = 1805 and W = 2080.7 MeV out of the full energy range.

more limited and additional measurements of BT observables
can very well improve the PWA.

D. Discussion

The obtained multipoles given in Figs. 3 and 4 are very
close to the values of the chosen theoretical model BG2017.
This demonstrates the stability of that model; however, some
additional resonant structures in all multipoles are made more
visible which is to expected as the AA-PWA is significantly
improving the ED BG2017 fit for all observables in the par-
ticular channel of K� photoproduction, see Fig. 5.

The AA-PWA multipoles are fairly smooth. However, we
would like to warn the reader that we basically have two
distinct energy ranges: the lower one where eight observables
have been measured (1625 MeV < W < 2179 MeV), and the
higher one where only four observables have been measured
(2179 MeV < W < 2296 MeV). As fits are in principle done
on individual energies one by one, they are correlated only
through the penalty function, so a change in multipoles due
to the change of the number of observables might be ex-
pected (cf. the solution theory discussed in Appendix B).
The crucial energy where the transition happens is indicated
by the vertical black line at 2179 MeV in all figures. The

fits in the lower energy range should tend to be smoother,
and more constrained, while some visible changes might
occur at higher energies. This produces discontinuities. As
the AA-PWA method gives a set of smooth multipoles for a
self-consistent and complete dataset by forcing the reaction-
amplitude phases to be smooth (this has been shown in
Ref. [23]), this indicates that the remaining discontinuities are
the result of an inconsistency of the database. So, the AA-
PWA method offers a possibility to test the self-consistency
of the experimental database. However, this discussion can
be reliably performed only when a confident method for
pole detection is used, so one should in principle get some
answers with the use of Laurent plus Pietarinen (L + P)
formalism [40–43].

E. Comparison of AA-PWA with BG SC-SE-PWA of Ref. [26]

For relatively new methods such as AA-PWA, a compar-
ison with old, double-checked, and worldly accepted models
is crucial. Such an opportunity is offered to us by the Bonn-
Gatchina group. They have performed SE-PWA and used the
standard constrained PWA method (letting lower multipoles
free and strongly penalizing higher ones to theoretical ED

FIG. 15. A comparison of E0+ BG ED solution BG2017 from Ref. [26] lighter-hue (red) full line which was used in this publication, and
the BG2019 solution given in BG2019 [25] full line (black).
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FIG. 16. Comparison of E0+, M1−, E1+, and M1+ SC-SE-BG PWA solutions presented in Ref. [26] full circles (red) and the same multipoles
obtained using the AA-PWA method in this publication full triangles (blue). The lighter-hue full line (red) is the BG2017 ED solution used in
the SC-SE-BG PWA publication, see Ref. [25]. Black arrows on the horizontal axis mark the pole masses of nucleon resonances as given by
PDG [44].
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values; cf. Sec. II). This enabled us to make a direct com-
parison of our results with theirs. As we mentioned before,
their constraining ED solution was, unfortunately, not made
public, but differed notably from the values of the published
old BG2014-02 and new BG2019 solutions [25] (we show the
difference for the E0+ multipole in Fig. 15). However, upon
request, they provided us with the exact numbers [34] for all
multipoles. So, as our AA-PWA method required exactly the
same input (data base and theoretical ED multipoles), and we
have achieved that, we used the chance to compare the results
directly.

We show in Fig. 16 the result for the four lower mul-
tipoles, where the SE results of Ref. [26] only exist. We
see a very good agreement between both solutions regard-
ing the overall absolute values and functional shape. Both
solutions are also quite close to the constraining BG2017 ED
solution.

We see that the AA-PWA method results in many more
points. This is a result of the data-preparation philosophy
because the AA-PWA method uses data interpolation instead
of data binning as the Bonn-Gatchina SE-PWA does.

We see some discrepancy in the absolute values of some
multipoles at lower energies, but our values are closer to the
BG2017 values. We conclude that both SE methods are in full
agreement.

The advantage of the AA-PWA method is obvious: first
we generate much many more data points in reconstruction
multipoles, and second we generate all multipoles, and not
only the lowest ones.

The main issue is to answer the question whether we repro-
duce the structures in the M1− multipole around 1890 MeV,
which were interpreted in Ref. [26] as a confirmation of the

N (1880) 1
2

+
resonance. The answer is definitely affirmative:

Yes, we do. However, the “size” of the structure is not so
pronounced, so we need a detailed L + P analysis to confirm
or dismiss this interpretation. This will be done in the forth-
coming section of this paper.

IV. EXTRACTION OF RESONANCE PARAMETERS
FROM THE SINGLE-ENERGY MULTIPOLES

Extracting poles directly from SE partial-wave solutions
is very difficult, and the only method which showed quite
some flexibility and confidence is the L + P method [40–43].
So we use this method to analyze the crucial multipole M1−.
However, for the convenience of the reader, we repeat the
essence of the method in Sec. IV A.

A. The L + P method

The driving concept behind the Laurent-Pietarinen expan-
sion (L + P) was the aim to replace elaborate theoretical
models by a local power-series representation of partial-wave
amplitudes [41]. The complexity of any reaction-theoretical
model which leads to partial waves is thus replaced by a
much simpler model-independent expansion which just ex-
ploits analyticity. The L + P approach separates the pole and
regular parts in the form of a Laurent expansion, and instead
of modeling the regular part by some physical model it uses
a conformal mapping to expand it into a rapidly converging
power series with well-defined analytic properties. In such an
approach the model dependence is minimized and is reduced
to the choice of the number and location of branch points used
in the L + P expansion.

(a) (b) (c)

FIG. 17. The L + P fit of the M1− multipole. In panel (a) we show the result of the single-channel fit of BG-SE data, in panel (b) we show
the result of the two-pole fit of our AA-PWA solution, and in panel (c) we show the result of its three-pole fit. Red and blue symbols are
single-energy BG-SE and AA-PWA solutions, the thin dashed red line is the resonant contribution, thin dashed black line is the background
part, and thick red line is the result of the full fit.
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TABLE II. Formulas defining the Laurent plus Pietarinen (L + P) expansion (see Ref. [27]).

T a(W ) =
Npole∑
j=1

xa
j + iya

j

Wj − W
+

Ka∑
k=0

ca
k X a(W )k +

La∑
l=0

da
l Y a(W )l +

Ma∑
m=0

ea
mZa(W )m

X a(W ) = αa−
√

xa
P−W

αa+
√

xa
P−W

, Y a(W ) = βa−√
xa

Q−W

βa+√
xa

Q−W
, Za(W ) = γ a−

√
xa

R−W

γ a+
√

xa
R−W

Da
d p = 1

2Na
W − Na

par

Na
W∑

i=1

{[
ReT a(W (i) ) − ReT a,exp(W (i) )

ErrRe
i,a

]2

+
[

ImT a(W (i) ) − ImT a,exp(W (i) )

ErrIm
i,a

]2}
+ Pa

Pa = λa
c

Ka∑
k=1

(
ca

k

)2
k3 + λa

d

La∑
l=1

(
da

l

)2
l3 + λa

e

Ma∑
m=1

(
ea

m

)2
m3, Dd p =

all∑
a

Da
d p

a is the channel index. Npole is the number of poles. Wj,W ∈ C.

xa
i , ya

i , ca
k , da

l , ea
m, αa, βa, γ a ∈ R

Ka, La, Ma ∈ N are the number of Pietarinen coefficients in channel a.

Da
d p is the discrepancy function in channel a. Na

W is the number of energies in channel a.

Na
par is the number of fitting parameters in channel a. Pa is the Pietarinen penalty function.

λa
c, λ

a
d , λ

a
e are the Pietarinen weighting factors. xa

P, xa
Q, xa

R ∈ R (or ∈ C).

ErrRe
i,a and ErrIm

i,a are the minimization error of the real and imaginary parts, respectively.

The L + P expansion is based on the Pietarinen expansion
used in some older papers in the analysis of pion-nucleon
scattering data [45–48], but for the L + P model the Pietari-
nen expansion is applied in a different manner. It exploits
the Mittag-Leffler theorem5 of partial-wave amplitudes near
the real energy axis, representing the regular, but unknown,
background term by a conformal-mapping-generated, rapidly
converging power series called a Pietarinen expansion.6 The
method was used successfully in several few-body reactions
[40,42,43] and was recently generalized to the multichannel
case [50]. The formulas used in the L + P approach are col-
lected in Table II.

In the fits, the regular background part is represented by
three Pietarinen series and all free parameters are fitted. The
first Pietarinen expansion with branch point xP is restricted
to an unphysical energy range and collectively represents all
left-hand singularities. The next two Pietarinen expansions
describe the background in the physical energy range with
branch points xQ and xR respecting the analytic properties
of the analyzed partial wave. The second branch point is in
most cases fixed to the elastic channel branch point, the third
one is either fixed to the dominant inelastic threshold, or left
free. Thus, only rather general physical assumptions about
the analytic properties are made like the number of poles
and the number and the position of branch points, and the
simplest analytic function with the correct set of poles and
branch points is constructed. The method is applicable to both,

5Mittag-Leffler theorem [49]: This theorem provides the general-
ization of a Laurent expansion to a more-than-one-pole situation. For
simplicity, we simply refer to this as a Laurent expansion.

6A conformal-mapping expansion of this particular type was intro-
duced by Ciulli and Fisher [45,46]. It was described in detail and
used in pion-nucleon scattering by Pietarinen [47,48]. The procedure
was denoted as a Pietarinen expansion by Höhler in Ref. [18].

theoretical and experimental input, and represents a reliable
procedure to extract pole positions from experimental data,
with minimal model bias.

The generalization of the L + P method to a multichan-
nel L + P method is performed in the following way: (i)
separate Laurent expansions are made for each channel; (ii)
pole positions are fixed for all channels, (iii) residues and
Pietarinen coefficients are varied freely; (iv) branch points are
chosen as for the single-channel model; (v) the single-channel
discrepancy function Da

d p [see Eq. (5) in Ref. [40] ] which
quantifies the deviation of the fitted function from the input
is generalized to a multichannel quantity Dd p by summing up
all single-channel contributions; and (vi) the minimization is
performed for all channels in order to obtain the final solution.

B. Detailed analysis of the M1− multipole
using the L + P method

The only reliable way to establish whether the structure
seen in the M1− multipole corresponds to a resonance pole
is to use the L + P formalism, and try to find any analytic
function with an explicit pole and realistic background which
fits the data. If we find it, then we can claim that the observed
structure is at least consistent with a function having a pole.
Very often, especially for narrow or small resonances, such
a function cannot be found, so this is an indication that the
observed structure is originating not from a pole, but from
some other effect possible in the method.

In Ref. [26] the L + P formalism was used to analyze the
obtained result, and it was found that a function containing
a pole of mass M = 1876 MeV and a width of � = 33 MeV
can describe the data well, so in spite of the fact that the width
was rather narrow for the formerly found state N (1880) 1

2
+

[33(19) MeV corresponding to previously established
230(50) MeV] it was interpreted as a signal of a new resonant
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TABLE III. The pole parameters for the M1− multipole extracted using the single-channel L + P formalism of Refs. [40–43] are given.
BG-SE denotes the solution of Refs. [26,27] with one pole, and AA-PWA denotes two solutions for AA-PWA determined in this paper, with
two and three poles respectively. Mi, �i, ri, and θi, i = 1, . . . , 3 are pole masses, widths as well as absolute values of the residue and its phase,
while χ 2 is the value of the total chi-squared. Values given by the PDG [44] for these resonances are given in bold for comparison.

Model M1 �1 |a1| θ1 M2 �2 |a2| θ2 M3 �3 |a3| θ3 χ 2

PDG 1700(40) 120(40) 1860(40) 230(50) 2100(50) 290(50)
BG-SE 1876(11) 31(19) 6(2) 57(14) 36
AA-PWA2poles 1715(12) 118(31) 117(62) 12454(35) 2002(59) 201(100) 84(103) −116(92) 32.7
AA-PWA3poles 1714(19) 120(33) 122(98) 121(45) 1882(3) 6(6) 0.6(0.6) 123(54) 2007(70) 187(102) 71(120) −113(108) 29.2

state. Unfortunately, in the present paper we do not confirm
this finding.

In this paper we have performed an L + P analysis of our
AA-PWA solution. Instead of using the whole energy range
up to 2295 MeV, from our analysis we have omitted the high-
energy part above 2179 MeV, where four spin observables
�, T , Ox′ , and Oz′ are not measured (cf. Table I) because
we anticipate discontinuities in our solution in that energy
range. Observe that this is also the energy range analyzed
in Refs. [26,27]. The fit has been performed with two and
three poles, and our solutions are documented in Fig. 17 and
Table III.

In spite of obtaining a suspiciously narrow width of
33 MeV, the BG-SE solution is completely consistent with
a N (1880) 1

2
+

resonant state, and in Refs. [26,27] it has
been interpreted as such. However, both our fits depicted in
Figs. 17(b) and 17(c) do not support this conclusion. While
the BG-SE fit identifies only a N (1880) 1

2
+

state, our model

clearly confirms the existence of N (1710) 1
2

+
and N (2100) 1

2
+

states, too. In Fig. 17(b) we show the fit of the data with two
poles only. The fit is smooth and reliable, with χ2 = 32, and
covers all data in the whole energy range very reliably. Some
deviation from the data is only seen in the energy range of the
N (1880) 1

2
+

resonance, but it is small. In Fig. 17(c) we show
the three-pole fit to the data. The χ2 is slightly improved from
32 to 29.2, but the obtained resonance, in spite of being in
the right place at 1882 MeV, has an extremely narrow width
of 6 MeV.

As such a narrow state of 6 MeV is extremely unlikely, and
we do not see the mechanism how a wider state could influ-
ence data in such a narrow energy range, we do not confirm
the existence of N (1880) 1

2
+

state contrary to Bonn-Gatchina
result. We confirm that we do have a “one- or two-point
structure,” but as the energy step in BG-SE case is much wider
(20 MeV) the width of the disturbance raises to ca 30 MeV.
In our case our energy step is much lower (ca. 2–5 MeV), a
two-point structure remains, but the width of a corresponding
resonance becomes much narrower.

We conclude that L + P analysis indicates that the narrow
disturbance in this energy range is more consistent with the
instability due to violation of data consistency at this narrow
energy range than to the existence of N (1880) 1

2
+

resonance.

V. CONCLUSIONS AND OUTLOOK

The proposed single-channel, single-energy data analysis
method AA-PWA, fully explained and demonstrated for η

photoproduction in Ref. [22], has been applied to the world
collection of data for K� photoproduction. It is shown that a
precise set of multipoles which improves the agreement with
the data compared with the theoretical ED Bonn-Gatchina
model [34] was obtained. Some discontinuities in the obtained
multipoles are observed, and this is explained by the violation
of self-consistency of the measured data, as well as the incom-
pleteness of existing data sets. To overcome these difficulties
a stronger constraint on the penalizing functions is required.
Let us observe that, after Step 1, the constraining amplitudes
can be discontinuous because their continuity is in the present
AA-PWA method guaranteed only by data consistency and
completeness of the data set. As both requirements are not
met in most measured processes, additional conditions for the
achievement of continuity are needed. One natural way is to
impose fixed-t analyticity [18–20].

The obtained results were compared with the already pub-
lished classic SE-PWA made in Refs. [26,27], and it has been
shown that our results qualitatively and quantitatively agree
with the results of these references. The mutual agreement
of both approaches improves the probability that they are
correct.

We confirm that the M1− multipole in our model repro-
duces a narrow structure around 1880 MeV, but our L + P
analysis fails to confirm that this structure is the confirmation
of a N (1880) 1

2
+

resonant state. The pole which would explain
this structure in our model is much narrower than the any-
ways very narrow pole given in Refs. [26,27] (1876 MeV −
i31 MeV), so we interpret it as a discontinuity due to data
inconsistency rather than a resonance signal. Preliminary tests
have confirmed that if we more strongly constrain the TPWA
of the second step of the AA-PWA method to the smooth
amplitudes of the ED BG2017 model, this structure disap-
pears. However, this has to be elaborated in forthcoming
presentations.

As the method shows a strong sensitivity to the
self-consistency of the data, we advocate it as a
reliable method to perform data self-consistency
testing.
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TABLE IV. The definitions of the 16 polarization observables
of pseudoscalar meson photoproduction are given here in terms of
transversity amplitudes b1, . . . , b4 (cf. Ref. [52]; sign conventions
are consistent with Ref. [56]). Expressions are given both in terms of
real- and imaginary parts of bilinear products of amplitudes and in
terms of moduli and relative phases of the amplitudes. Furthermore,
the phase-space factor ρ has been suppressed in the given expressions
(i.e., we have set ρ = 1). The four different groups of four observ-
ables each are indicated as well.

Observable Group

σ0 = 1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2)

�̂ = 1
2 (−|b1|2 − |b2|2 + |b3|2 + |b4|2) S

T̂ = 1
2 (|b1|2 − |b2|2 − |b3|2 + |b4|2)

P̂ = 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2)

Ê = Re[−b∗
3b1 − b∗

4b2] = −|b1||b3| cos φ13 − |b2||b4| cos φ24

F̂ = Im[b∗
3b1 − b∗

4b2] = |b1||b3| sin φ13 − |b2||b4| sin φ24 BT
Ĝ = Im[−b∗

3b1 − b∗
4b2] = −|b1||b3| sin φ13 − |b2||b4| sin φ24

Ĥ = Re[b∗
3b1 − b∗

4b2] = |b1||b3| cos φ13 − |b2||b4| cos φ24

Ĉx′ = Im[−b∗
4b1 + b∗

3b2] = −|b1||b4| sin φ14 + |b2||b3| sin φ23

Ĉz′ = Re[−b∗
4b1 − b∗

3b2] = −|b1||b4| cos φ14 − |b2||b3| cos φ23 BR
Ôx′ = Re[−b∗

4b1 + b∗
3b2] = −|b1||b4| cos φ14 + |b2||b3| cos φ23

Ôz′ = Im[b∗
4b1 + b∗

3b2] = |b1||b4| sin φ14 + |b2||b3| sin φ23

L̂x′ = Im[−b∗
2b1 − b∗

4b3] = −|b1||b2| sin φ12 − |b3||b4| sin φ34

L̂z′ = Re[−b∗
2b1 − b∗

4b3] = −|b1||b2| cos φ12 − |b3||b4| cos φ34 T R
T̂x′ = Re[b∗

2b1 − b∗
4b3] = |b1||b2| cos φ12 − |b3||b4| cos φ34

T̂z′ = Im[−b∗
2b1 + b∗

4b3] = −|b1||b2| sin φ12 + |b3||b4| sin φ34
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APPENDIX A: GENERAL PHOTOPRODUCTION
FORMALISM

In this Appendix, we collect essential parts of the general
formalism for pseudoscalar meson photoproduction in order
to keep the present work self-contained. We consider the
following 2 → 2 reaction:

γ (pγ ; mγ ) + N
(
Pi; msi

) −→ K (pK ) + �
(
Pf ; ms f

)
. (A1)

The 4-momenta as well as the variables necessary to label the
spin-states have been indicated for each particle.

The photoproduction process is conventionally described
using the well-known Mandelstam variables s, t , and u. Since
4-momentum conservation holds, i.e., pγ + Pi = pK + Pf ,

each of the Mandelstam variables can be written in two equiv-
alent forms:

s = (pγ + Pi )
2 = (pK + Pf )2, (A2)

t = (pγ − pK )2 = (Pf − Pi )
2, (A3)

u = (pγ − Pf )2 = (Pi − pK )2. (A4)

Since all particles in the initial- and final state of the reaction
(A1) are assumed to be on the mass-shell, the whole reaction
can be described by two independent kinematic invariants.
The latter are often chosen to be the pair (s, t ).

In this work, center-of-mass (CMS) coordinates are
adopted. The following relations are valid between (s, t ) and
the center-of-mass energy W and scattering angle θ of the
reaction:

s = W 2, (A5)

t = m2
K − 2k

√
m2

K + q2 + 2kq cos θ. (A6)

In these expressions, k and q are the absolute values of the
CMS 3-momenta for the photon and the kaon, respectively.
Both of these variables can be expressed in terms of W and
the masses of the particles in the initial and final states. One
can therefore describe the reaction equivalently in terms of
(W, θ ). The phase-space factor for the considered reaction
(A1) is defined as ρ = q/k.

The general decomposition of the reaction amplitude into
contributions of individual spin amplitudes has been found by
Chew, Goldberger, Low, and Nambu (CGLN) [51] and it reads
as follows:

F = χ†
ms f

(i
σ · ε̂ F1 + 
σ · q̂ 
σ · k̂ × ε̂ F2 + i
σ · k̂ q̂ · ε̂ F3

+ i
σ · q̂ q̂ · ε̂ F4) χmsi
. (A7)

In this expression, k̂ and q̂ are normalized CMS 3-momenta,
ε̂ is the normalized photon polarization vector and χmsi

,
χms f

are Pauli spinors for the baryons in the initial and final
states. The complex amplitudes F1, . . . , F4 are called CGLN
amplitudes and they depend on (W, θ ). This set of four
amplitudes contains the full information on the dynamics of
the considered process (A1).

The so-called transversity amplitudes b1, . . . , b4 are de-
fined by rotating the spin-quantization axis away from the ẑ
axis of the CMS frame, which has been inherent to equa-
tion (A7), to the direction normal to the so-called reaction
plane. The latter plane is spanned by the CMS 3-momenta 
k
and 
q. Using the conventions employed implicitly in the work
of Chiang and Tabakin [52], one obtains the following set of
linear and invertible relations between transversity and CGLN
amplitudes (see also Ref. [53]):

b1(W, θ ) = −b3(W, θ ) − 1√
2

sin θ [F3(W, θ )e−i θ
2 + F4(W, θ )ei θ

2 ], (A8)

b2(W, θ ) = −b4(W, θ ) + 1√
2

sin θ [F3(W, θ )ei θ
2 + F4(W, θ )e−i θ

2 ], (A9)
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b3(W, θ ) = i√
2

[F1(W, θ )e−i θ
2 − F2(W, θ )ei θ

2 ], (A10)

b4(W, θ ) = i√
2

[F1(W, θ )ei θ
2 − F2(W, θ )e−i θ

2 ]. (A11)

The transversity basis greatly simplifies the mathematical form of the definitions of the polarization observables (see Table IV
and the discussion further below). For this reason, this basis is also used in the analysis performed in the present work (cf.
Sec. III).

To access information on individual resonances, partial waves have to be analyzed. In the present work, we adopt the well-
known expansion of the CGLN amplitudes into electric and magnetic multipoles {E�±, M�±}, i.e. [51,54],

F1(W, θ ) =
∞∑

�=0

{[�M�+(W ) + E�+(W )]P′
�+1(cos θ ) + [(� + 1)M�−(W ) + E�−(W )]P′

�−1(cos θ )}, (A12)

F2(W, θ ) =
∞∑

�=1

[(� + 1)M�+(W ) + �M�−(W )]P′
�(cos θ ), (A13)

F3(W, θ ) =
∞∑

�=1

{[E�+(W ) − M�+(W )]P′′
�+1(cos θ ) + [E�−(W ) + M�−(W )]P′′

�−1(cos θ )}, (A14)

F4(W, θ ) =
∞∑

�=2

[M�+(W ) − E�+(W ) − M�−(W ) − E�−(W )]P′′
� (cos θ ). (A15)

The multipoles can be assigned to definite conserved spin-
parity quantum numbers JP (resonances with spin J = |� ± 1

2 |
couple to the multipoles E�± and M�±). The multipole expan-
sion of the Fi can be formally inverted using a set of known
projection integrals [55,56].

The polarization observables accessible in pseudoscalar
meson photoproduction are dimensionless asymmetries
among differential cross sections for different beam, target,
and recoil polarization states:

O = β
[(

dσ
d


)(B1,T1,R1 ) − (
dσ
d


)(B2,T2,R2 )]
σ0

. (A16)

The factor β is a consistency factor introduced in Ref. [54].
It takes the value β = 1

2 for observables which involve only
beam and target polarization and β = 1 for quantities with
recoil polarization. The unpolarized cross section σ0 is always
the sum of the two polarization configurations present in equa-
tion (A16): σ0 = β[( dσ

d

)(B1,T1,R1 ) + ( dσ

d

)(B2,T2,R2 )].

The dimensioned asymmetry σ0O is often called a profile
function [52,56] and is distinguished by a hat on the O:

Ô = β

[(
dσ

d


)(B1,T1,R1 )

−
(

dσ

d


)(B2,T2,R2 )]
. (A17)

For single-meson photoproduction, there exist in total 16 po-
larization observables [52,54]. They include the unpolarized
cross section σ0 and 15 further single- and double-polarization
observables. The full set of 16 observables can be divided into
the four groups of single-spin observables (S), beam-target
(BT ), beam-recoil (BR), and target-recoil (T R) observables
[52]. Each group is composed of four quantities. The defini-
tions of the 16 observables in terms of transversity amplitudes
are given in Table IV.

APPENDIX B: SOLUTION-THEORY FOR THE
COMPLETE-EXPERIMENT ANALYSIS OF THE

INVESTIGATED DATABASE

In the following, we give some more mathematical details
on the possible ambiguities of the complete-experiment anal-
ysis (CEA) when it is applied to the database analyzed in this
work (cf. Sec. III A). We are well aware that the facts given
below can be extracted from the well-known mathematical
treatments in the CEA for photoproduction [52,57]. Still, we
hope that the details given in the following can provide some
intuition on the mathematical ambiguities one has to be care-
ful about when analyzing the present database.

1. Lower-energy region (1625–2179 MeV): Observables
{σ0, �̂, T̂ , P̂, Ôx′, Ôz′, Ĉx′, Ĉz′ }

We consider the definitions (cf. Table IV) of the eight
analyzed observables (in the following, we set ρ = q/k ≡ 1):

σ0 = 1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2), (B1)

�̂ = 1
2 (−|b1|2 − |b2|2 + |b3|2 + |b4|2), (B2)

T̂ = 1
2 (|b1|2 − |b2|2 − |b3|2 + |b4|2), (B3)

P̂ = 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2), (B4)

Ôx′ = Re[−b1b∗
4 + b2b∗

3], (B5)

Ôz′ = Im[b1b∗
4 + b2b∗

3], (B6)

Ĉx′ = Im[−b1b∗
4 + b2b∗

3], (B7)

Ĉz′ = Re[−b1b∗
4 − b2b∗

3]. (B8)

In case the phases of the transversity amplitudes bj = |b j |eiφ j

are fixed to values coming from an energy-dependent, unitary
PWA model (e.g., BnGa), one can see very quickly that the
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system of equations composed of the eight observables (B1)
to (B8) is in principle capable of fixing the four moduli |bi|
uniquely. In fact, the group-S observables {σ0, �̂, T̂ , P̂} alone
are already capable of that feat and the four additional observ-
ables only should make the solution more stable.

In case we also wish to determine the phases of the four
transversity amplitudes, the situation is as follows: the four
moduli |bi| are fixed uniquely by the group-S observables
and the four additional observables {Ôx′ , Ôz′ , Ĉx′ , Ĉz′ } can
uniquely pin down the relative phases φ14 and φ23. The latter
statement is true due to the inverse relations:

eiφ14 = Re[b1b∗
4] + iIm[b1b∗

4]

|b1||b4| = (−Ôx′ − Ĉz′ )+i(Ôz′ − Ĉx′ )

2|b1||b4| ,

(B9)

eiφ23 = Re[b2b∗
3] + iIm[b2b∗

3]

|b2||b3| = (Ôx′ − Ĉz′ )+i(Ôz′ + Ĉx′ )

2|b2||b3| .

(B10)

The complex exponential functions eiφ jk can be inverted
uniquely for phases on the interval φ jk ∈ [0, 2π ) (via the
arctan2 function).

The amplitude-arrangement of four transversity amplitudes
is, however, not uniquely fixed.7 One additional “connecting”
relative phase is missing, for instance, φ12 or φ34. In other
words, the two subsets of amplitudes {b1, b4} and {b2, b3} can
be rotated relative to each other in a completely free way and
the observables {Ôx′, Ôz′ , Ĉx′ , Ĉz′ } are completely blind to such
a rotation. As an example, consider a rotation of only the two
amplitudes b2 and b3 by the same phase ϕ̃, which can have
any dependence on energy and angle:

b2(W, θ ) −→ eiϕ̃(W,θ )b2(W, θ ) and

b3(W, θ ) −→ eiϕ̃(W,θ )b3(W, θ ). (B11)

This rotation leaves both relative phases φ14 and φ23 invari-
ant and therefore also all four observables {Ôx′ , Ôz′ , Ĉx′ , Ĉz′ }.
However, a rotation like (B11) generally leads to a new set of
amplitudes with a very different partial-wave decomposition,
since it changes the unknown continuum ambiguity phase
(i.e., one overall phase for all four amplitudes) as well as
the connecting relative phases φ12 and φ34. One has to be
careful about such effects when analyzing the data, although,
as mentioned above, in our analysis this ambiguity is removed
by fixing the phases of all four transversity amplitudes to a
known ED model (cf. Secs. II and III).

2. Higher-energy region (2179–2296 MeV): Observables
{σ0, P̂, Ĉx′, Ĉz′ }

We start by considering the definitions (cf. Table IV) of the
four analyzed observables (again setting ρ = q/k ≡ 1):

σ0 = 1
2 (|b1|2 + |b2|2 + |b3|2 + |b4|2), (B12)

P̂ = 1
2 (−|b1|2 + |b2|2 − |b3|2 + |b4|2), (B13)

7That is, uniquely up to one overall phase for all four amplitudes.

Ĉx′ = Im[−b1b∗
4 + b2b∗

3], (B14)

Ĉz′ = Re[−b1b∗
4 − b2b∗

3]. (B15)

We assume that the phases of the four transversity amplitudes
are fixed to a model and define:

ci j := cos φi j and si j := sin φi j . (B16)

We reconsider the equations for Ĉx′ and Ĉz′ :

Ĉx′ = −|b1||b4|s14 + |b2||b3|s23, (B17)

Ĉz′ = −|b1||b4|c14 − |b2||b3|c23, (B18)

and recognize that these equations can be inverted for the
following products of moduli:

|b1||b4| = −c23Ĉx′ − s23Ĉz′

s14c23 + c14s23
=: ξ1, (B19)

|b2||b3| = c14Ĉx′ − s14Ĉz′

s14c23 + c14s23
=: ξ2. (B20)

The quantities ξ1 and ξ2 are uniquely fixed from the observ-
ables and the employed model phases.

We could now choose to eliminate, for instance, the quan-
tities |b3| and |b4| in the equations for the cross section (B12)
and the observable P̂ (B13) and thus obtain

σ0 = 1

2

[
|b1|2 + |b2|2 +

(
ξ2

|b2|
)2

+
(

ξ1

|b1|
)2]

, (B21)

P̂ = 1

2

[
−|b1|2 + |b2|2 −

(
ξ2

|b2|
)2

+
(

ξ1

|b1|
)2]

. (B22)

These are two quadratic equations for the two remaining un-
knowns |b1| and |b2|. One can make the following attempt at
solving them: We multiply the equation (B22) by |b2|2 in order
to obtain

|b2|4 +
[(

ξ1

|b1|
)2

− |b1|2 − 2P̂

]
|b2|2 − (ξ2)2 = 0. (B23)

This is a quadratic equation for |b2|2 and thus allows for the
following two solutions:

|b2|2I,II = 1

2

[
2P̂ + |b1|2 −

(
ξ1

|b1|
)2]

±
√

1

4

[
2P̂ + |b1|2 −

(
ξ1

|b1|
)2]2

+ (ξ2)2. (B24)

Irrespective of whether solution I or II is the correct one, the
“+” branch of the square root has to be taken in order to arrive
at a positive modulus |b2|. In case both solutions I or II are
allowed (i.e., larger than zero) in Eq. (B24), one obtains two
permissible moduli |b2|I and |b2|II. Then, one has to substitute
these solutions into the equation for the cross section (B21)
and solve for |b1|. In this way, at most a set of four discrete
ambiguities can emerge and all continuous ambiguities are
resolved for the four moduli |b1|, . . . , |b4|.

Therefore, in case one would attempt to let all four mod-
uli |b1|, . . . , |b4| run freely in the AA step (i.e., our Step
1), we expect the found solution to lie on a well-defined
(approximately) parabolic minimum where the derivative of
the minimized (“χ2-like”) function exactly vanishes. Data for
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the four observables {σ0, P̂, Ĉx′ , Ĉz′ } are, in principle, only
capable of distinguishing solutions up to the above-mentioned
discrete ambiguity. However, in case the initial conditions are

well chosen for the minimization procedure, we are confident
that the correct minimum can be found, i.e., that the moduli
extraction is sufficiently stable.
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R. Omerović, J. Stahov, V. Kashevarov, K. Nikonov, M.
Ostrich, L. Tiator, and R. Workman, Phys. Rev. C 97, 054611
(2018).

[30] A. V. Anisovich, V. Burkert, N. Compton, K. Hicks, F. J. Klein,
E. Klempt, V. A. Nikonov, A. M. Sandorfi, A. V. Sarantsev, and
U. Thoma, Phys. Rev. C 96, 055202 (2017).

[31] D. Rönchen, M. Döring, H. Haberzettl, J. Haidenbauer, U.-G.
Meißner, and K. Nakayama, Eur. Phys. J. A 51, 70 (2015).

[32] D. Drechsel, S. S. Kamalov, and L. Tiator, Eur. Phys. J. A 34,
69 (2007);

[33] https://gwdac.phys.gwu.edu/.
[34] A. V. Anisovich (private communication).
[35] R. Bradford et al., Phys. Rev. C 73, 035202 (2006).
[36] M. E. McCracken et al., Phys. Rev. C 81, 025201 (2010).
[37] A. Lleres et al., Eur. Phys. J. A 31, 79 (2007).
[38] C. A. Paterson et al., Phys. Rev. C 93, 065201 (2016).
[39] Wolfram Research, Inc., Mathematica, Version 11.0, Cham-

paign, IL, USA (2016).
[40] A. Švarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, and
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