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Fluctuations of the largest fragment charge in projectile fragmentation and its nonequilibrium effect

Jun Su ,* Long Zhu, and Erxi Xiao
Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

(Received 6 July 2021; revised 19 October 2021; accepted 14 January 2022; published 16 February 2022)

Background: The projectile fragmentation is associated with the liquid-gas phase transition in the finite nuclear
system. Recent experimental data and calculations by the statistical multifragmentation model indicated that
the higher-order fluctuations of the largest fragment charge exhibit the signatures of the second-order phase
transition [PLB809(2020)135763]. However, these higher-order fluctuations calculated by the dynamical model
are still not reported.
Purpose: This work is proposed to investigate dynamically this signature and emphasize the nonequilibrium
effect.
Methods: The isospin-dependent quantum molecular dynamics (IQMD) model is used to study the nonequi-
librium thermalization and fragmentation in the 124Sn + 120Sn collisions at 600 MeV/nucleon. The minimum
spanning tree algorithm is applied to distinguish the hot projectile-like system during the dynamics evolution.
Results: The fluctuations of the largest fragment charge Zmax up to the fourth order by the IQMD model
reproduce the experimental data. The pseudocritical point indicated by zero of skewness (third-order fluctuation)
together with minimum of kurtosis excess (fourth-order fluctuation) is found at impact parameter b = 8.7 fm,
where the multifragmentation and nucleon evaporation are well balanced. Two observables are defined to
describe the asymmetry of temperature and density in the projectile-like system. The nonequilibrium of the
projectile-like system is verified by the distributions of these two observables. By comparing the distributions of
the largest fragment charge for the equilibrium and nonequilibrium systems, it is found that the nonequilibrium
of the hot projectile-like system influences the competitive relation between the multifragmentation and nucleon
evaporation.
Conclusions: It is proposed that the nonequilibrium effect should be considered when study the pseudocritical
point from the projectile fragmentation.
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I. INTRODUCTION

A deeply investigated and universal phenomenon in sta-
tistical physics is the phase transition, which consists of
changing symmetry characterized by a so-called order pa-
rameter within the smooth variation of an external driving
parameter [1]. In nuclear physics, the liquid-gas phase transi-
tion is a natural phenomenon in infinite nuclear matter where
the Van-der-Waals type of the nuclear force dominates [2–4].
It leads to a spinodal region defined by the negative isothermal
compressibility, where the pure liquid phase is unstable and
hence the system breaks into mix of the liquid and gas phases
in equilibrium [5,6]. The multifragmentation in heavy-ion
collisions at intermediate energies is proposed to observe the
liquid-gas phase transition [7–14]. However, the conditions in
finite hot nuclear system forming in the heavy-ion collisions
are more complex comparing to that in the infinite system
where the thermodynamic limit is satisfied. Although several
signatures of the liquid-gas phase transition have been pro-
posed but debates about the order of the phase transition and
the critical properties still exist [15–20]. For instance, caloric
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curve extracted using the isotopic thermometer displays a
platform and suggests the first-order phase transition [21], but
the platform is missing in the caloric curve extracted using the
apparent temperatures [22].

Recent progresses associated with the phase transition
in various different fields of physics are generalization and
implementation in the nonequilibrium systems [23–26]. In-
deed, the nonequilibrium effects are certainly important in
heavy-ion collisions [8]. The nonequilibrium descriptions of
the multifragmentation by nuclear transport models such as
Boltzmann-Langevin type and quantum molecular dynamics
type models have achieved success [6,27]. A comparison
of phase transition signature measured in experiments with
theoretical predictions by the event-by-event dynamics simu-
lations looks rather significant.

It has been proposed that the higher-order fluctuations of
the largest fragment size could provide a robust signature of
the second-order phase transition [28]. Recent experimental
data in the projectile fragmentation following 107,124Sn + Sn
and 124La + Sn collisions at 600 MeV/nucleon and calcula-
tions by the statistical multifragmentation model (SMM) have
supported this signature and further deduced pseudocritical
point where two phases are well balanced [29]. However,
these higher-order fluctuations calculated by the dynamical
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model are still not reported. In our previous work, the data
about the intermediate-mass fragments (IMFs) in 107,124Sn
and 124La projectile fragmentation have been successfully
reproduced with the isospin-dependent quantum molecular
dynamics (IQMD) model [9]. The model has also been pro-
vided an uniform description of breakup mechanisms in the
central collision, projectile fragmentation, and proton-induced
spallation [6]. This work is proposed to investigate dynami-
cally higher-order fluctuations of the largest fragment charge
in projectile fragmentation and emphasize the nonequilibrium
effect.

The paper is organized as follows. In Sec. II, the theoretical
framework is described. In Sec. III, both the results and dis-
cussions are presented. Finally, Sec. IV presents conclusions.

II. THEORETICAL FRAMEWORK

In the IQMD model, the nucleons are represented by a
Gaussian wave packet while the nuclear system is described
by the N-body phase-space density. It is considered the time
evolution of the nucleons under the mean field and the equiv-
alent quantum jumps of the momenta performed by the binary
nucleon-nucleon collisions with Pauli blocking. The version
of the IQMD code used in this paper is IQMD-BNU (Beijing
Normal University), which has been introduced and com-
pared to other versions within the Transport Model Evaluation
Project [30–32]. One can refer to the theoretical description of
the model for projectile fragmentation in the Ref. [9]. Here we
emphasize the improvement in several aspects.

First, the minimum spanning tree (MST) algorithm is
applied to distinguish the hot system during the evolution.
Nucleons with relative distance of coordinate and momentum
of |ri − r j | � 3.5 fm and |pi − p j | � 250 MeV/c belong to
a hot system. The excitation energy per nucleon of the hot
system can be calculated as follows:

E∗ =
∑

i Ui + ∑
i

(pi−p f )2

2m − B(Z f , A f )

A f
. (1)

Here Ui and pi are the single-particle potential and momentum
of the ith nucleon; p f , Z f , and A f are the average momen-
tum per nucleon, charge number, and mass number of the
fragment; and B(Z f , A f ) is the binding energy of a nucleus
with charge number Z f and mass number A f . The summation
is for the nucleons belonging to the same hot system. The
MST algorithm is performed at each time step, so that we can
extract the properties of projectile spectator. Please refer to
subsection A (“Properties of projectile spectator”) in Ref. [9]
for details.

Second, to avoid the spurious emissions of nucleons and
to preserve the number of prefragments, the evolution by the
IQMD model will be stopped when the excitation energies
of the two heaviest prefragments are less than a parameter
Estop. The parameter Estop is determined from the onset of
the multifragmentation as observed in heavy-ion reactions,
about 3 MeV/nucleon [33]. In fact, this improvement of the
IQMD model is the prominent contribution in Ref. [9]. It has
been stated that there are spurious emissions of nucleons in
the IQMD model due to the numerical fluctuations. It means

that a few nucleons will be evaporated even if one simulates
a single nucleus in its ground state. As the time proceeds
and for lighter nuclei, this effect becomes stronger. That is
why the IQMD usually underestimates the multiplicity of the
IMFs, which may disappear after spurious emissions of nu-
cleons. If one can stop the dynamic simulation (by the IQMD
model) and switch to the statistical simulation (by the GEM-
INI model) as soon as the process of the multifragmentation
is over, then the spurious emissions will be controlled and
the number of IMFs will be preserved. The MST algorithm
and Eq. (1) make it possible. To be more specific, the frag-
ments are distinguished and their excitation energies E∗ are
calculated and compared to Estop at each time step during the
dynamic evolution. When the condition E∗ < Estop for the
two heaviest prefragments is met, the dynamic evolution is
stopped. In Ref. [9], we have proven that this improvement
contributes to enhance the multiplicity of the IMFs.

Third, in order to describe the fermionic nature in the
region where the binary collisions are scarce, the method of
the phase-space density constraint (PSDC) [34] is applied.
Noting that the common approach to consider the fermionic
nature in the QMD type of models is the Pauli blocking in the
nucleon-nucleon (NN) collisions. The binary NN collisions
are allowed with the probability (1 − f ′

i )(1 − f ′
j), in which f ′

i

and f ′
j are the phase-space densities at the final states before

the scattered particle is placed there. In the current work the
PSDC method is used to better preserve the fermionic nature.
The phase-space occupation probability f i is calculated by
performing the integration on the hypercube of volume h3 in
the phase space centered around the ith nucleon at each time
step,

f i = 0.621 +
N∑
j �=i

δτ j ,τi

2

∫
h3

1

π3h̄3 e
− (r j −ri )2

2L − (p j −pi )2

h̄2/2L d3rd3 p,

(2)
where 0.621 is the contribution itself and τi represents isospin
degree of freedom. At each time step and for each nucleon,
the phase-space occupation f i is checked. If the phase-space
occupation f i has a value greater than 1, the momentum of
the ith nucleon is changed randomly by many-body elastic
scattering. Meanwhile, the Pauli blocking in the binary NN
collisions is modified. All the NN collisions for which the
values of f i and f j are less than 1.0 are accepted [with a
probability 1.0 rather than (1 − f ′

i )(1 − f ′
j)]. That is, by the

many-body elastic scattering and the Pauli blocking in the
binary NN collisions, the PSDC method ensures that f i and
f j are always less than 1.0. It has been shown that the PSDC
method is significant to describe the IMFs [6].

It is worth noting that the nuclear interaction applied in this
work is momentum independent, see Eq. (4) in Ref. [9]. The
momentum-dependent interaction (MDI) is optional in the
IQMD-BNU model. It is important especially for studying the
symmetry energy, see our previous works [35,36]. However,
the MDI in the model inhibits the generation of the IMFs.
The main reason is that the numerical approximation to solve
the MDI lead to the spurious emission of nucleons. How
to include the MDI in the IQMD model without numerical
approximation is still an open question, and the next topic
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in the Transport Model Evaluation Project. Before solve the
problem, we often use the momentum independent interaction
to study the observable about the IMFs. With this simplifi-
cation, the stopping, radial flow, and other observable about
the IMFs in the central collision, projectile fragmentation, and
proton-induced spallation are reproduced quit well [6,8].

III. RESULTS AND DISCUSSIONS

A. Pseudocritical point indicated by higher-order fluctuations
of the largest fragment charge

Useful measures of the fluctuations can be derived from
the central moments. Both the dimensional and dimensionless
cases are applied, see Refs. [37] and [29], respectively. Here
we use the dimensionless cases, which are defined as

μi = 〈(Zmax − 〈Zmax〉)i〉, K2 = μ2

〈Zmax〉2
,

K3 = μ3

μ
3/2
2

, K4 = μ4

μ2
2

− 3, (3)

where Zmax is the charge number of the largest fragment, 〈〉
denotes the ensemble average, K2 is the variance normalized
to the squared mean, K3 is the skewness, and K4 is the kurtosis
excess. In order to illustrate the meaning of K3 and K4, their
values are calculated using the double Gaussian distribution,

N (Zmax) ∝ (1 − a) exp

[
− (Zmax − 20)2

52

]

+ a exp

[
− (Zmax − 40)2

52

]
. (4)

As shown in Fig. 1, this double Gaussian distribution displays
two peaks at Zmax = 20 and 40. The value of the parameter a
indicates the proportions of two components. With increasing
a, the proportion of the left peak decreases while the value
of the skewness K3 decreases. For the value a = 0.5 when two
components are well balanced, the value of the skewness K3 is
close to zero and the kurtosis excess K4 reaches its minimum.
In the case of the second-order phase transition, the order
parameter changes continuously as a function of the principal
variable, indicting the transition of the states from an order to
anther. Due to the fluctuation, the order parameter for finite
systems given principal variable distributes in a wide range,
being similar to Eq. (4). The zero value of K3 together with
the minimum K4 derived from the distribution of the order
parameter provide a robust indication of the pseudocritical
point, where two components with different orders are well
balanced.

In the projectile fragmentation, the largest fragment charge
(atomic number Z of the largest fragment) has been proved
to be an order parameter to reveal the second-order phase
transition [28,29]. We simulate the 124Sn + 120Sn collisions at
600 MeV/nucleon event-by-event by the IQMD model. The
colliding systems producing same bound charge Zbound are
selected to calculate the fluctuations of the largest fragment
charge Zmax up to fourth order. In Fig. 2, the mean value
〈Zmax〉, normalized variance K2, skewness K3, and kurtosis
excess K4 are shown as a function of Zbound. In fact, those
values have been extracted from the data in Ref. [29]. The
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FIG. 1. (a) Double Gaussian distributions of the largest fragment
charge with different bimodal ratios, the corresponding (b) skewness
K3 indicating the distribution asymmetry, and (c) the kurtosis excess
K4 measuring the degree of peakedness. The value K3 = 0 and the
minimum K4 indicates the same proportion of two peaks.

figure shows that the calculations by the IQMD model agree
with the data. With increasing Zbound, the mean value of the
largest fragment charge 〈Zmax〉 increases, and the normalized
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FIG. 2. Experimental data (circles) and calculations by the
IQMD model (lines) of (a) the mean value 〈Zmax〉 of the largest
fragment charge, (b) the normalized variance K2, (c) the skewness
K3, and (d) the kurtosis excess K4 as a function of Zbound in 124Sn
+ 120Sn collisions at 600 MeV/nucleon. Dashed curves indicate the
pseudocritical point where K3 = 0 and K4 reaches the minimum.
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FIG. 3. (a) Mean multiplicity 〈MIMF〉 of intermediate-mass frag-
ments, (b) mean value 〈Zmax〉 of the largest fragment charge,
(c) skewness K3, and (d) kurtosis excess K4 as a function of the
impact parameter b. Dashed curves indicate the pseudocritical point
where K3 = 0 and K4 reaches the minimum.

variance K2 displays an increasing tendency of oscillation for
Zbound < 10 then decreases for Zbound > 10. The ensemble
with Zbound = 27 exhibits the zero transition of K3 and the min-
imum of K4 which indicates the pseudocritical point, shown as
dashed curves in Figs. 2(c) and 2(d). It is one of the prominent
results in Ref. [29].

The events are sorted using another principal variable, i.e.,
the impact parameter b, which cannot be measured directly in
experiment or calculated by the statistical model. The impact
parameter is an initial condition in the simulation by the
dynamics model. The fluctuations as a function of the impact
parameter provides a perspective on how the systems dissipate
and fluctuate for a given initial condition. As shown in Fig. 3,
〈Zmax〉 vs b displays a tendency of monotonous increase, as
like 〈Zmax〉 vs Zbound. It is a natural result, since the bound
charge of the fragments is monotonically correlated with the
impact parameter. As is well known, the excited projectile-
like systems decay mainly by the nucleon evaporation and
multifragmentation. In the following, we will explain the com-
petition between these two mechanisms and the corresponding
fluctuation from the point of view of the energy dissipation.
In midperipheral collisions (such as b = 7.5 fm), consider-
able incident energy dissipates into the thermal energy of the
projectile-like system, leading to the multifragmentation. One
sees a large value of the mean IMF multiplicity (〈MIMF〉 = 2.1)
for b = 7.5 fm in Fig. 3(a). With increasing impact parameter,
the dissipated energy decreases and the decay mechanism of
the hot projectile-like system changes from the multifragmen-
tation to the nucleon evaporation. It is shown that the mean
multiplicity of the IMF decreases to 0.2 at b = 10 fm. The
nucleon evaporation and multifragmentation are nothing but
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FIG. 4. Distributions of (a) maximum excitation energy of hot
projectile-like system E∗ and (b) largest fragment charge Zmax of the
fragments in collision at b = 7.5, 8.7, and 9.7 fm.

two kinds of orders in the decaying nuclear systems. In this
case, the continuous change of 〈MIMF〉 indicates the second-
order phase transition. At b = 8.7 fm (shown as dashed curves
in Fig. 3) and for Zbound = 27 (shown as dashed curves in
Fig. 2), two mechanisms are well balanced, so one sees the
zero value of K3 and the minima of K4.

During the evolution simulated by the IQMD model, the
hot projectile-like system is distinguished by the MST algo-
rithm together with the criterions of Z < 50 and pz > 0,
where Z is charge number and pz is the momentum in the
center-of-mass frame of the colliding system. The excitation
energy of the hot projectile-like system is calculated and its
maximum E∗

max during the evolution is a quantity to measure
how many incident energies are dissipated. For collisions at
b = 7.5, 8.7, and 9.7 fm, the distributions of the maximum
excitation energy E∗

max of the hot projectile-like system are
shown in Fig. 4(a). With increasing impact parameter, the
dissipated incident energy decreases, hence the most probable
values of the excitation energy move left. As indicated by
the fluctuation-dissipation theorem, more dissipation causes
larger fluctuation. So one see wider distribution at b = 7.5 fm
than that at 9.7 fm. The distributions of the largest fragment
charge Zmax are shown in Fig. 4(b). For collisions at b = 7.5
fm, the value of E∗

max distributes in a wide region along the
center E∗

max = 20 MeV/nucleon, corresponding to the peak
position Zmax = 12 and the long tail reaching Zmax = 46.
With increasing impact parameter, the peak position of the
E∗

max distribution moves left and that of the Zmax distribution
moves right. For the case at b = 9.7 fm, the value of E∗

max
distributes along 5 MeV/nucleon with a right-long tail, and
that of Zmax distributes near Zmax = 50 and the left-long
tail. At b = 8.7 fm, the wide distribution of Zmax from 10
to 50 is observed. Since the events at b = 8.7 fm provide
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FIG. 5. Illustrating the heat and decay processes of the hot
projectile-like system. The subensemble number n includes the
events experiencing the states with excitation energy E∗

max ∈ [3n −
3, 3n).

K3 	 0 and minimum K4 (see Fig. 3), it is called the well-
balanced distribution. Difference between the ideal and real
well-balanced distributions should be mentioned. The ideal
case is the bimodal distribution, as shown in Fig. 1, but the
real well-balanced distribution in the projectile fragmentation
is unimodal and wide, as shown in Fig. 4(b).

In order to explain why the collisions at b = 8.7 fm cause
the well-balanced distribution of Zmax, the events are sorted
by not only the impact parameter b but also another principal
variable, i.e., the maximum excitation energy E∗

max of the
hot projectile-like system. As illustrated in Fig. 5, the pro-
jectile fragmentation consists of two processes, i.e., heating
and decay. In the early state of the collision, the projectile is
heated via the friction between the projectile and the target,
resulting in a hot projectile-like system with excitation energy
E∗

max. Then the system decay by the nucleon evaporation or
multifragmentation, producing the largest fragment (together
with other IMF fragments and free nucleons). The ensemble
including the collision events at b = 8.7 fm is divided into
several subensembles. The subensemble number n includes
the events in which the projectile-like systems are heated to
the states with excitation energy E∗

max ∈ [3n − 3, 3n), where
n is a positive integer. The Zmax distributions in the subensem-
bles 1 to 8 are shown in Fig. 6.

It is worth noting that the simulations of the IQMD
model are stopped when the excitation energy of the heaviest
prefragment is less than the threshold energy of the multifrag-
mentation, i.e., 3 MeV/nucleon. The largest fragments in the
subensemble 1 [Fig. 6(a)] are the projectile-like systems after
heating. They have the charge number near 50. Those in the
subensemble 2 [Fig. 6(b)] experience the decay from excita-
tion energies in the region [6,3) to 3 MeV/nucleon. Several
nucleons emit during the decay and the Zmax distribution of
the residual fragments become wider comparing to that in the
subensemble 1. If one only considers the nucleon evaporation
in the decay, with increasing E∗

max (i.e., increasing id number
of subensembles), then the number of the emission nucleons
increases and hence the fluctuation of residual charge number
are stronger. However, the presence of another decay mech-
anism, i.e., multifragmentation, breaks this trend. The inlet

FIG. 6. Distributions of largest fragment charge Zmax in the
subensembles in collision at b = 8.7 fm. The definition of the
subensembles is illustrated in Fig. 5. The inlet (i) displays the vari-
ances of the Zmax distribution varies with the subensemble number.

(i) display the variances of the Zmax distribution varies with
the subensemble number. One sees in Fig. 6 that the widest
Zmax distribution occurs in subensembles 4 and 5 rather than
subensembles with larger excitation energies.

B. Nonequilibrium effect

On the other hand, the nonequilibrium of the hot projectile-
like system should be concerned in order to explain the
fluctuation of the largest fragment charges. A necessary con-
dition for equilibrium is an uniform temperature distribution.
Linear fitting is carried out for the microscopic kinetic ener-
gies of nucleons as function of the coordinate in the x axis
in the hot projectile-like system. The slope can be applied to
measure if the temperature is uniform in the x axis,

Lx(E ) =
∑N

i xiEi − NxE∑N
i x2

i − Nx2
, (5)

where xi and Ei are the coordinate in x axis and the kinetic
energy in the center-of-mass frame of ith nucleon, x and E are
their average values over the hot projectile-like system, and N
is the number of the nucleons in the hot projectile-like system.
A nonzero value of Lx(E ) means that the temperature is not
uniform in the x axis. Replacing x by y (or z), one obtains
the symmetry of the temperature in the y axis (or z axis). The
symmetry of the density can be also defined by linear fitting
for the density as function of the coordinate,

Lx(ρ) =
∑N

i xiρ(ri ) − Nx · ρ∑N
i x2

i − Nx2
, (6)

where ri is position of the ith nucleon and ρ(ri ) is the nucleon-
density at position ri. Similarly, Ly(ρ) and Lz(ρ) are defined.
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FIG. 7. (a) The evolution time to reach the excited state with the
excitation energy E∗ for the projectile-like system. The time t = 0
fm/c is chosen to be the moment when the distance between the
projectile and the target is 70 fm. The error bar denotes the variance
of the time distribution. Mean values of (b) L(E ) and (c) L(ρ ) as a
function of the excitation energy E∗ during the evolution.

A natural picture to study the dynamical evolution of a
specific property is its time evolution. In fact, the time evo-
lutions of several properties in the projectile fragmentation,
such as density and isospin asymmetry, have been studies in
our previous work [38]. With the help of the MST algorithm
in the IQMD model, the excitation energy E∗ of the hot
projectile-like system as a function of the evolution time can
be calculated. In the same way, the evolution-time to reach the
excited state with the excitation energy E∗ for the projectile-
like system can also be extracted, as shown in Fig. 7(a). Here
the time t = 0 fm/c is chosen to be the moment when the dis-
tance between the projectile and the target is 70 fm. The error
bar denotes the variance of the time distribution. One sees that
times to reach the excited states with E∗ > 10 MeV/nucleon
are almost the same. This time is nothing but the moment
after the heating process. In the subsequent decay process,
the fluctuation of the decay time is huge, although its mean
value is monotonically correlated with the excitation energy.
Comparing to the time evolution, property as a function of
excitation energy E∗ is better to study the evolution in the
decay process.

The evolving states with the same excitation energy E∗ are
sorted to study the symmetry of the temperature and density
along each axis in the rectangular coordinate system. The z
axis is the direction of incidence of the projectile, and the x
axis is the direction of the impact parameter. Values of L(E )
and L(ρ) as a function of the excitation energy E∗ are shown
in Figs. 7(b) and 7(c). The initial symmetry in the y axis keeps
during the collision, causing the values close to zero of Ly(E )
and Ly(ρ). The asymmetry in the x and z axis are observed.
The negative value of Lx(E ) at the excited state with E∗ = 14
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FIG. 8. Distributions of (a) Lz(E ), (b) Lz(ρ ), and (c) largest frag-
ment charge Zmax in the subensemble 4 in the collisions at 8.7 fm and
for the equilibrium systems with the excitation energies in the region
from 9 to 12 MeV/nucleon.

MeV/nucleon indicates that the temperature of the projectile-
like system in the side of friction is higher than the other
side. However, this asymmetry is weak and transitory. The
asymmetry of the temperature in the z axis is more obvious.
The mean value of Lz(E ) is negative before the projectile-like
system decay to the excited state with E∗ < 10 MeV/nucleon.
In the decay process, the projectile and target move far away
from each other. The negative mean value of Lz(E ) indicates
that the temperature of the projectile-like system in the par-
ticipant side is higher. With the emission of the nucleons in
the participant, E∗ decreases and the projectile-like system re-
turns to be symmetry. The positive values of Lx(ρ) and Lz(ρ)
indicate smaller density in the friction and participant sides.
The IMF should form mainly in these sides. This asymmetry
keep until the projectile-like system decay to the states with
E∗ < 6 MeV/nucleon.

The symmetry mentioned above is an average over the en-
semble. The distribution of Lz(E ) and Lz(ρ) in the subensem-
ble 4 are shown as solid curves in Figs. 8(a) and 8(b). One
sees the wide distribution along Lz(E ) = 0.8 MeV/fm and
Lz(ρ) = 1.5 × 10−3 fm−4. The nonzero centers indicate the
nonequilibrium, and the wide distributions are caused by the
fluctuation of the fine system. The nonequilibrium effect can
be revealed by comparing the decays between the nonequi-
librium system and the equilibrium system. The equilibrium
systems with the excitation energies in the region from 9 to 12
MeV/nucleon, which is the same as those in the subensemble
4 in the collisions at 8.7 fm, are initialized in the IQMD model.
The distribution of Lz(E ) and Lz(ρ) in these equilibrium
systems are shown as dashed curves in Figs. 8(a) and 8(b).
Wide distributions are also seem, but the centers are zero. The
decays of the equilibrium systems are simulated by the IQMD
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model until the fragments with excitation energies less than
3 MeV/nucleon are formed. The distribution of largest frag-
ment charge Zmax in these productions are shown in Fig. 8(c)
and comparing with that in the subensemble 4 in the collisions
at 8.7 fm. The strong nonequilibrium effect can be found. For
the equilibrium systems, the decay results in the asymmetric
distribution along Zmax = 16 with right tail. The skewness K3

calculated from this distribution is 0.46. But in the collisions
at 8.7 fm, the projectile is heated in one side, resulting in a
nonequilibrium system. Figures 8(a) and 8(b) show that tem-
perature in the heated side is higher and the density is smaller
than those in the other side. Subsequently, the heat transfer
is simultaneous with the decay. Local high temperature in
the nonequilibrium system results in fast nucleon emission
and suppress the multifragmentation. The corresponding dis-
tribution is along Zmax = 31 with left tail. The skewness K3

calculated from this distribution is −0.63. K3 = 0.46 for equi-
librium systems and K3 = −0.63 for nonequilibrium systems
are in two sides of the pseudocritical point (K3 = 0.0). Such a
big difference indicates that the nonequilibrium effect should
be considered when study the pseudocritical point from the
projectile fragmentation.

We notice that the equilibrium hypothesis has been applied
widely when studying the multifragmentation. For example,
the authors in Ref. [29] assumed the equilibrium at some
intermediate stage of the reaction and describe the experi-
mental data well by the SMM model. The temperature T is
an important input in the SMM model. However, the results
in this work show that the fragmenting source forming in the
heavy-ion collision is nonequilibrium, and also describe the
experimental data well. It is indicated that the equilibrium
system with the temperature T can decay in the same way as
the nonequilibrium nuclear system forming in the heavy-ion
collision. We define T as the equivalent temperature of the
nonequilibrium nuclear system. Then an interesting question
arises. Can one measure the equivalent temperature by the
frequently used nuclear thermometer, such as the isotopic
thermometer [39], the slope thermometer [40,41], and the
kinetic thermometer [7]. This is the another story, which will
be studied in our further work.

IV. CONCLUSION

Recent experimental data and calculations by the statistical
multifragmentation model indicated that the higher-order fluc-
tuations of the largest fragment charge exhibit the signature of
a second-order phase transition [29]. This work is proposed to
investigate this signature and emphasize the nonequilibrium
effect. The 124Sn + 120Sn collisions at 600 MeV/nucleon are
simulated by the IQMD model. The fluctuations of the largest
fragment charge Zmax up to fourth order are calculated. It is
shown that the calculations of the fluctuations as a function
of the total bound charge are quantitatively agree with the
experimental data. Then the events are sorted using another
principal variable, i.e., the impact parameter b, which cannot
be measured directly in experiment or by the statistical model.
The pseudocritical point indicated by zero of third-order fluc-
tuation together with the minimum of fourth-order fluctuation
are found in collisions at 8.7 fm, where the multifragmentation
and nucleon evaporation are well balanced.

The minimum spanning tree algorithm is applied to dis-
tinguish the hot projectile-like system during the dynamics
evolution. Two observables are defined to describe the asym-
metry of temperature and density of the projectile-like system.
One is the slope parameter in the linear fitting of microscopic
kinetic energies of nucleons as function of their coordinate,
and the other is the similar but replacing microscopic ki-
netic energies by the density. The nonequilibrium of the
projectile-like system is verified by the distributions of these
two observables. Since the projectile is heated in one side,
the temperature in the heated side is higher and the density is
smaller. This nonequilibrium influence the competitive rela-
tion between the multifragmentation and nucleon evaporation,
which should be studied in detail when study the critical
temperature from the projectile fragmentation.
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