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With the framework of the KIDS (Korea-IBS-Daegu-SKKU) density functional model, the isoscalar and
isovector effective masses of nucleons and the effect of symmetry energy in nuclear medium are investigated
in inclusive (e, e′) reactions in the quasielastic region. The effective masses are varied in the range (0.7–1.0)M
with free nucleon mass M, and the symmetry energy is varied within the uncertainty allowed by nuclear data
and neutron star observation. The wave functions of nucleons inside the target nucleus are generated by solving
the Hartree-Fock equation with adjustment of the equation of state, binding energy, and radius of various stable
nuclei, and the effective masses of nucleons in the KIDS model. With the obtained wave functions, we calculate
the differential cross section for the inclusive (e, e′) reaction and compare the theoretical results with Bates,
Saclay, and SLAC experimental data. Our model describes better the experimental data at SLAC-type high
incident electron energy than those measured from Bates and Saclay. The influence of the effective mass and
symmetry energy on the longitudinal cross section appears to be precise.
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I. INTRODUCTION

Electron scattering has long been acknowledged as one
of the useful tools in exploring the structure of the nucleus
and the dynamics of nucleons in nuclear medium. In a recent
work on the exclusive quasielastic scattering of electrons off
nuclei from light to heavy nuclei, we observed that the cross
sections and response functions have systematic dependence
on the effective mass of the nucleons in nuclear medium [1].
In particular, the dependence appears evident in 208Pb, in
which effective mass close to free mass reproduces well the
experimental data of the single-particle levels of the knocked
out protons and their cross sections.

While the exclusive (e, e′ p) reaction is concerned with
the distribution of energy levels close to the Fermi surface,
the inclusive (e, e′) reaction subsumes the participation of
all the nucleons in a nucleus. The shape and width of the
peak in the inclusive cross section depends on the average
momentum and the distribution of energies of nucleons bound
in nuclei. Therefore the inclusive (e, e′) reaction provides a
unique chance to probe microscopic properties of nuclei not
limited to a few specific and individual states, but contributed
from all nucleons inside a nucleus.

From the viewpoint of theory, the inclusive (e, e′) reaction
provides opportunities to test the performance and validity
of models employed in the description of nuclear structure
and modification of hadronic properties in nuclear medium.
Nuclear structure models are good at reproducing the static
bulk properties of nuclei such as binding energy and charge
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radius. Although single-particle levels are summed up to pro-
duce correct binding energies, their distributions are strongly
dependent on the nuclear structure model. For example, it
has been shown that the distribution of single-particle levels
depends on the effective mass of nucleons in the nuclear
medium. A survey over the 240 Skyrme force models [2]
shows that the effective mass of the nucleon varies in the range
(0.58–1.12)M, where M is the free mass of the nucleon. Since
it receives contributions from all the single particle levels
in a nucleus, the inclusive (e, e′) reaction can shed light on
reducing uncertainties of the effective mass.

Another topic under hot debate is the density dependence
on the symmetry energy [3]. It is quite certain that the exces-
sive spatial occupation of the neutron in neutron-rich nuclei
is strongly correlated to the slope of symmetry energy [4].
Since electron scattering is a qualified method to examine
the spatial structure of nuclei, the inclusive (e, e′) reaction
provides a non-nucleonic probe to explore the uncertainty
of the density dependence of nuclear symmetry energy. Two
dominant uncertainties in the nuclear many-body physics, in-
medium effective mass of the nucleon and correct form of
the symmetry energy as a function of density, have not been
studied systematically in inclusive electron scattering.

The main interest of the work is twofold: First, we test a
recently developed model for nuclear structure and nuclear
matter by calculating the cross section in the inclusive elec-
tron quasielastic scattering from nuclei and by comparing
the model results with experimental data. We focus on the
kinematics available from Bates [5], Saclay [6], and SLAC
[7] experiments, in which target nuclei are 12C, 40Ca, 56Fe,
197Au, and 208Pb and cross sections can be extracted for in-
cident electron energies up to 2.02 GeV and compared with
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experimental data. Second, the issue of uncertainties pertinent
to the effective mass and symmetry energy is investigated by
calculating the scattering observables with different values of
the effective mass and the symmetry energy. We observed a
manifest dependence on the effective mass that is critical to
determination of observables from the consideration of the
exclusive (e, e′ p) reaction. For the sake of consistency, and
to understand the role of effective mass clearly, we use the
effective mass values from [1], i.e., 0.7M and 0.9M for both
isoscalar and isovector effective masses. Density dependence
of the symmetry energy has been explored extensively by
using both nuclear and neutron star data [8,9]. In Ref. [9],
compression modulus of the symmetric nuclear matter and
symmetry energy parameters are constrained, and the final
results are summarized in four sets, in which the slope pa-
rameter varies in the range 45–65 MeV. In order to highlight
the dependence on the value of slope parameter, we employ
models KIDS-A and KIDS-C (where KIDS denotes Korea-
IBS-Daegu-SKKU) in this work.

The paper is organized in the following order. Section II
introduces the model and Sec. III presents the basic formalism
for the scattering cross section. Section IV gives the results
and discussion, and we summarize the work in Sec. V.

II. MODEL

A great advantage of the KIDS formalism is that the equa-
tion of state (EoS) of infinite nuclear matter, bulk properties of
nuclei, and dynamical properties such as in-medium effective
mass of the nucleon can be treated independently of each
other. For example, it has been shown that the effective mass
of the nucleon can take different values even if the binding
energy and charge radius of nuclei are reproduced at a similar
accuracy [10]. In Ref. [1], the role of the effective mass is in-
vestigated in the exclusive (e, e′ p) reaction in the quasielastic
region. Considered models predict the cross section, agreeing
well with experiment on average. However, detailed compar-
ison shows that the cross section depends on the effective
mass in a well defined manner: models with similar effective
masses predict very similar cross sections, and the results
with different effective masses can be clearly distinguished
from one another. Large effective mass models predict results
agreeing with data better than the small effective mass models.

In the exclusive (e, e′ p) reaction nucleons participating in
the process are concentrated in the energy levels and orbital
states close to the Fermi surface. In the inclusive (e, e′) pro-
cess, on the other hand, the contribution of all the nucleons
in a nucleus is accounted for, so it provides a more thorough
examination of the nuclear structure and nuclear models. In
this work we probe the uncertainty due to the effective mass
of nucleons, and the density dependence of the nuclear sym-
metry energy. Isoscalar and isovector effective mass ratios are
defined as

μS = m∗
S

M
, μV = m∗

V

M
, (1)

where m∗
S and m∗

V are the isoscalar and isovector effective
masses, respectively. With respect to the effective mass, we
use three models: KIDS0, KIDS0-m*77, and KIDS0-m*99 in

TABLE I. Effective mass, compression modulus K0 values, and
the symmetry energy coefficients of the considered models. Dimen-
sion of K0, J , L, and Ksym is MeV.

Model μS μV K0 J L Ksym

KIDS0 0.99 0.81 240 33 49 −156.2
KIDS0-m*77 0.70 0.70 240 33 49 −156.2
KIDS0-m*99 0.90 0.90 240 33 49 −156.2
KIDS-A 1.01 0.81 230 33 66 −139.5
KIDS-C 0.98 0.80 250 31 58 −91.5
SLy4 0.70 0.80 230 32 48 −119.7

Ref. [1]. As one can see in Table I, models labeled KIDS0
share the same nuclear EoS specified by K0, J , L, Ksym,
and they differ only in the effective mass. The other sets
of models named KIDS-A and KIDS-C, which are rooted
in Ref. [9], explore the effect of nuclear matter properties.
KIDS0, KIDS-A, and KIDS-C models have different values of
the compression modulus, and symmetry energy parameters
J , L, and Ksym which are defined in the conventional expansion
of the symmetry energy S(ρ) around the saturation density ρ0:

S(ρ) = J + Lx + 1

2
Ksymx2 + · · ·

with x = (ρ − ρ0)/3ρ0. Since there is no adjustment of the
effective mass in the KIDS0, KIDS-A, and KIDS-C models,
the models have similar values for the effective mass.

Nuclear contribution to the cross section is evaluated with
the initial bound and final scattering states. In order to pre-
serve the gauge invariance (i.e., orthonormality of the initial
and final state wave functions), the same scalar and vector
nuclear potential for the initial bound and final nucleon wave
functions should be used. For the nucleon wave functions, we
start from the Dirac equation

[γμ pμ − M − S(r) − γ 0V (r)]�(r) = 0, (2)

where S(r) is the scalar potential and V (r) is the time compo-
nent of the vector potential. We assume spherical symmetry.
Redefining the wave function as

�′(r) = exp

[
−1

2
γ 0 ln D(r)

]
�(r), (3)

where D(r) is the Darwin nonlocality factor, the Dirac equa-
tion is rewritten as[

γμ pμ − M − 1

2
U (r) − 1

2
γ 0U (r) + iα · r̂ T (r)

]
�′(r) = 0,

(4)
where

U = S + V + M − E + S + V

M + E
(S − V ), (5)

T = −1

2

d

dr
ln D(r). (6)

Since the KIDS formalism is based on nonrelativistic phe-
nomenology, the potentials we obtain as a result of the
solution of Hartree-Fock equation are nonrelativistic poten-
tials. We have to obtain relativistic potentials S(r) and V (r)
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FIG. 1. S + V as a function of r for the denoted nuclei. Line types noted in the panel of 12C apply to all the curves in 56Fe and 197Au.

from the obtained nonrelativistic ones. Given the nonrelativis-
tic central potential Vcen(r), Coulomb potential VCoul(r), and
spin-orbit one Vso(r), we calculate the relativistic potentials
from relations given in [11],

S(r) = 1

2

{
1

D
[U − (M − E )(D − 1)] + (M + E )(D − 1)

}
,

(7)

V (r) = 1

2

{
1

D
[U − (M − E )(D − 1)] − (M + E )(D − 1)

}
,

(8)

where

D(r) = exp

[
−2

∫ ∞

r
MrVso(r)dr

]
, (9)

U (r) = Unc(r) + Uc(r),

Unc(r) = 2M

E + M

[
Vcen + 1

2M
T 2 + 2T

r
+ dT

dr

]
, (10)

Uc(r) = 2M

E + M
VCoul, (11)

T (r) = MrVso. (12)
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FIG. 2. Differential cross section for the incident electron energy 2.02 GeV and at the scattering angle θ = 15◦. SLAC data are from [7].

Figure 1 shows the resulting S(r) + V (r) for light (12C),
medium (56Fe), and heavy (197Au) nuclei with models consid-
ered in this work. In all the cases, KIDS0-m*77 and SLy4 are
very similar, and their potentials are always deeper than the
other four models KIDS0, KIDS0-m*99, KIDS-A, and KIDS-
C. Interestingly, isoscalar effective mass of KIDS-m*77 and
SLy4 are the same, and it is similar in the other four models.

III. FORMALISM

In the plane wave Born approximation in which the elec-
trons are described as a Dirac plane wave, the inclusive (e, e′)
cross section in the rest frame of the target nucleus can be
written as

d2σ

dω d�e
= σM

[
Q4

q4
SL(q, ω) +

(
tan2 θe

2
+ Q2

2q2

)
ST (q, ω)

]
,

(13)

where Q2 = q2 − ω2 is the four-momentum transfer squared,
σM represents the Mott cross section given by σM =
( α

2E )2 cos2( θe
2 )/ sin4( θe

2 ), and SL and ST are the longitudinal
and transverse structure functions which depend only on the
three-momentum transfer q(= |q|) and the energy transfer ω.
By keeping the three-momentum and energy transfers fixed
while varying the electron incident energy E and scattering
angle θe, it is experimentally possible to extract the two struc-
ture functions with two measurements.

The longitudinal and transverse structure functions in
Eq. (13) are squares of the Fourier transform of the compo-
nents of the nuclear transition current density integrated over

outgoing nucleon angles, �p. Explicitly, the structure func-
tions for a given bound state with total angular momentum jb
are given by

SL(q, ω) =
∑
μb, sp

ρp

2(2 jb + 1)

∫
|N0|2d�p, (14)

ST (q, ω) =
∑
μb, sp

ρp

2(2 jb + 1)

∫
(|Nx|2 + |Ny|2)d�p, (15)

where the density of states for the outgoing nucleon is defined
as ρp = pEp

(2π )3 . The ẑ axis is taken to be along the three-
momentum transfer q and the z components of the angular
momentum of the bound and continuum state nucleons are
μb and sp, respectively. The Fourier transform of the nucleon
transition current Jμ(r) is simply given by

Nμ =
∫

Jμ(r)eiq·rd3r. (16)

The continuity equation could be used to eliminate the z
component (Nz) via the equation Nz = −ω

q N0 if the current
is conserved by using the relation qμNμ = 0.

The nucleon transition current in the relativistic single par-
ticle model is given by

Jμ(r) = eψ̄p(r)Ĵμψb(r), (17)

where Ĵμ is a free nucleon current operator, and ψp and
ψb are the wave functions of the outgoing nucleon and the
bound state, respectively. For a free nucleon, the operator
comprises the Dirac contribution and the contribution of an
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FIG. 3. Longitudinal and transverse cross sections for the incident electron energy 2.02 GeV and at the scattering angle θ = 15◦. The upper
and lower panels are the results for the longitudinal and transverse cross sections, respectively.

anomalous magnetic moment μT given by Ĵμ = F1(q2
μ)γ μ +

iF2(q2
μ) μT

2M σμνqν with q2
μ = −Q2 = ω2 − q2. The form fac-

tors F1 and F2 are related to the electric and magnetic Sachs
form factors given by GE = F1 + μT

4M2 Q2F2 and GM = F1 +
μT F2 which are assumed to take the following standard form:

GE = 1(
1 + Q2

�2

)2 = GM

(μT + 1)
, (18)

where the standard value for �2 is 0.71 (GeV/c)2 and the
anomalous magnetic moment μT used is 1.793 for proton and
−1.91 for neutron.

IV. RESULT

A. Cross sections from SLAC data

SLAC data provide the differential cross sections with 12C,
56Fe, and 197Au for the incident electron energy 2.02 GeV,
and at the scattering angle θ = 15◦ [7]. The value of the
four-momentum transfer square is about Q2 = 0.25 (GeV/c)2

around the peak. Figure 2 shows the data and theoretical
results. There are several features insensitive to the mass of
nuclei. KIDS0-m*77 and SLy4 models behave almost the
same, and they are worst in the agreement with experiment.
They always underestimate compared to the other models
KIDS0, KIDS0-m*99, KIDS-A, and KIDS-C. KIDS0 and
KIDS0-m*99 models are best at reproducing the data. KIDS-
A and KIDS-C models predict the cross section larger than the

KIDS0 and KIDS0-m*99 models, but the difference is not as
significant as the difference from the KIDS0-m*77 and SLy4
models.

One may have already noticed easily that the two groups,
one with KIDS0-m*77 and SLy4 (GroupI) and the other with
the remaining four models (Group II) are distinguished in
terms of the effective mass. Group I models have the effective
mass in the range (0.7–0.8)M, while the Group II models
have isoscalar effective masses (0.9–1.0)M and isovector ones
(0.8–0.9)M. The results indicate that large effective mass is
favored over the effective masses smaller than 0.8M in the
comparison with data. A similar result has also been obtained
in the exclusive (e, e′ p) reaction [1]. In the scattering with
208Pb, results for the 3s1/2 and 2d3/2 states show evident de-
pendence on the effective mass and better agreement with data
with larger effective masses. Response functions in the 1p1/2

and 1p3/2 states of 16O also show clear and better agreement
with data with KIDS0 and KIDS0-m*99 models than the
KIDS-m*77 and SLy4.

Effect of the symmetry energy can be extracted by
comparing KIDS0, KIDS-A, and KIDS-C. Around peaks
(ω ≈ 150 MeV), difference among the three models is 5%
at most, and the difference decreases as the mass number
increases. Three models have distinct values of K0, J , L, and
Kτ , but the result of KIDS-A is very similar to that of KIDS-C.
These similarities demonstrate that the cross section is insen-
sitive to the density dependence of the symmetry energy at
least within the range where nuclear data and neutron star
properties are reproduced accurately.
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FIG. 4. Cross sections of the 40Ca(e, e′) reaction. Experimental data are taken from [5].

It is worthwhile to compare the result of KIDS0 and SLy4.
Both models are partially fitted to the pure neutron matter EoS
of [12], so they have similar values of J and L, which deter-
mine the behavior of the symmetry energy most dominantly
at densities relevant to nuclei. Even though the symmetry
energy is similar in the two models, cross sections are very
different. This comparison confirms that the dependence on
the symmetry energy is insignificant compared to that of the
effective mass.

In Fig. 3, we show the longitudinal and transverse cross
sections using Eq. (13),

σL = σM
Q4

q4
SL(q, ω),

σT = σM

(
tan2 θe

2
+ Q2

2q2

)
ST (q, ω). (19)

The upper and lower panels are the results for the longitudinal
and transverse cross sections, respectively. The kinematics
are the same as the ones in Fig. 2. The difference between
Group I and Group II is shown clearly in all the results.
While in the case of transverse part the effects of effective
masses and the symmetry energy are very small in Group II,
in the longitudinal part, the role of the symmetry energy in
Group II enhances the magnitude of the cross section. Peak
positions in Fig. 2 are similar between Group I and Group
II for 12C and 197Au, but clearly distinguished for 56Fe. The
reason could be understood from the behavior σL and σT . The
peak position of Group I is to the left of Group II by about 50
MeV for σT of 12C, σL and σT of 56Fe, and σL of 197Au, but
for the case of σL for 12C and σT for 197Au, peaks of Group

I are located on the right side of the peaks of Group II. The
portion of the longitudinal part in the total differential cross
section in Eq. (13) is about 45% due to very forward scattering
angle.

B. Cross sections from Bates and Saclay data

Figure 4 shows the cross section of the 40Ca(e, e′) reaction
for the incident electron energies E and at the scattering
angle θ denoted in each panel. The values of the four-
momentum transfer squared around the peak are about Q2 =
0.22 (GeV/c)2 for 330 MeV and about Q2 = 0.19 (GeV/c)2

for 628 and 375 MeV. Results are compared with experimental
data from Bates [5].

For E = 330 MeV and θ = 140◦, the overall shape of data
coincides better with Group II than Group I. The position
of the peak also agrees well with the models in Group II.
For E = 375 MeV and θ = 90◦, data around the peak agree
well with Group I, and the Group II models predict cross sec-
tions slightly above the error bars. Overall behavior before and
after the peak is reproduced better by Group II. For E = 628
MeV and θ = 45.5◦, the number of data is not sufficient to
pin down the location of the peak. Both Group I and Group
II predict similar positions of peak. For a few data below and
above the peak, Group II models show good agreement with
experiment.

Figure 5 shows the cross section of the 208Pb(e, e′) reaction
at the incident energies and the scattering angles specified
in each panel. Theoretical results are compared with ex-
perimental data taken from Saclay [6]. The values of the
four-momentum transfer squared around the peak are about
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FIG. 5. Cross sections of the 208Pb(e, e′) reaction. Experimental data are taken from [6].

Q2 = 0.19 (GeV/c)2 for 310 MeV and about Q2 = 0.17
(GeV/c)2 for 485 and 354 MeV. Agreement with data depends
heavily on the energy.

For E = 310 MeV and θ = 143◦, all the models reproduce
data up to the peak, and the difference is negligible between
the models. The shape of the peak is flat and wide over the
energy transfer range ω = 150–200 MeV. Such a behavior
is unusual compared to the data in the reactions with 12C
and 56Fe, but the Group I models reproduce the data almost
perfectly in this energy transfer range. On the other hand, the
Group II models go down quickly and monotonically right
after the peak. For E = 354 MeV and θ = 90◦, the models
predict similar results and agree with data up to ω = 100
MeV. Group II models do not agree with the data at all above
100 MeV, but the Group I models reproduce the flat and
wide behavior in ω = 130–170 MeV. For E = 485 MeV and
θ = 60◦, Group I models give the result agreeing with data in
ω = 170–190 MeV. At the other transfer energies, theory fails
to reproduce the data.

In Figs. 6 and 7, the longitudinal and transverse cross
sections are shown for the reactions of 40Ca and 208Pb, respec-
tively. For the longitudinal cross sections, similarly to Fig. 3,
dependence on the symmetry energy is transparent, and the
peak positions of Group II are shifted to the right side of
Group I by about 20–30 MeV. The differences for the peak
positions decrease with larger scattering angle between Group
I and II. The reason for the suppression of σL is because the
term tan2 θe/2 in the σT cross section is dominated by σT as θe

increases. In the transverse cross section, the influence of the
effective mass and symmetry energy is seldom distinguish-
able within each group. Flat and wide peaks in Pb originate

from the behavior of σT in the Group I models. Group II
models do not show such a behavior at all. Interestingly, flat
peaks also appear in σL of Ca for the Group I models. A flat
shape becomes evident in σL for Ca at θe = 140◦. However,
because of the suppression by σT , the effect is not observed in
Fig. 4.

Summarizing the results for the electron energies below
1 GeV, it is hard to conclude definitively what values of the
effective mass are more desirable for consistency with exper-
iment. However, it is evidently certain that, irrespective of the
target nuclei, incident energy, and scattering angle, models in
a group predict very similar results, and the results of Group I
are manifestly discriminated from those of Group II.

V. SUMMARY

In the present work, we calculated the cross sections for
the inclusive (e, e′) reaction from 12C, 40Ca, 56Fe, 197Au, and
208Pb in the quasielastic region by using the KIDS nuclear
density functional model. To conserve the nuclear current and
guarantee gauge invariance, wave functions of the bound- and
continuum-state nucleons are generated by solving the Dirac
equation with the scalar and vector potentials identical in the
intital and final states. Scalar and vector potentials in the
Dirac equation are obtained from the transformation of non-
relativistic potentials that are determined from well-defined
properties of finite nuclei and infinite nuclear matter, and there
is no artificial adjustment of the potential to the scattering
data.

The precise value of the effective mass has not been de-
termined in experiment or theory. By using the KIDS density
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FIG. 6. Longitudinal and transverse cross sections for 40Ca. The explanations for the curves are the same as those in Fig. 4.

FIG. 7. Longitudinal and transverse cross sections for 208Pb. The explanations for the curves are the same as those in Fig. 5.
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functional formalism, effective mass values can be fixed to
assumed values independent of the input data. Consequently,
they are not coupled to static properties of nuclei and the EoS
of nuclear matter. Inclusive scattering supports the isoscalar
effective mass in the range (0.9–1.0)M. In particular, the
effect of the masses in the range (0.7–0.9)M moves the peak
positions and suppresses the magnitude of cross sections.

Uncertainty arising from the symmetry energy was also
probed. Density dependence of the symmetry energy was
adjusted to both nuclear data and neutron star observations.
Even though the coefficients of the symmetry energy vary
over a wide range, the effect of the symmetry energy is weak
and makes only a few percent difference in the cross section.
However, the effect of the symmetry energy appears clearly in

the longitudinal cross section though it is very small compared
to the transverse cross section.

In conclusion, the inclusive (e, e′) reaction suggests a cri-
terion to pin down the nucleon’s effective mass in nuclear
medium. Effect of the symmetry energy is not as manifest as
that of the effective mass, but longitudinal cross sections, if
measured precisely, could provide complementary constraints
to the density dependence of the symmetry energy.
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