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Coulomb sum rule in the quasielastic region using various nuclear models
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We calculate the Coulomb sum rule of inclusive (e, e′) reactions from 12C, 40Ca, 56Fe, and 208Pb
in the quasielastic region using various relativistic single-particle models, which include the relativistic
Hartree, the nonlinear sigma, the quark-meson-coupling, and the chiral quark-meson-coupling models. We
investigate the cross sections calculated in these nuclear models by comparing them with Bates, Saclay, and
SLAC data for three-momentum transfer q ranging from 300 to 500 MeV/c. We find that the extracted
longitudinal structure functions are not so sensitive to the nuclear model but the transverse structure functions
strongly depend on the model. We report that, for three-momentum transfer q > 400 MeV/c, the values of the
Coulomb sum rule from various nuclear models except the Hartree model are greater than 1.
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I. INTRODUCTION

Medium and high energy electron scattering has long been
acknowledged as a useful tool to study not only nuclear struc-
ture and properties but also nucleon properties inside nuclei in
the quasielastic (QE) region where individual nucleons have
Fermi motion. In this paper we concentrate on the inclusive
(e, e′) reaction that probes all of the nucleons in the nucleus
and is not so sensitive to individual orbits and energy levels.
There is considerable experimental and theoretical interest in
extracting longitudinal and transverse structure functions as a
function of energy transfer at fixed three-momentum transfer
because the two structure functions represent the electric and
magnetic responses of the target nucleus, respectively.

The Coulomb sum rule (CSR) was proposed as a tool to
study short-range correlations between nucleons. The corre-
lations occur strongly at large energy transfer, and at large
momentum transfer these go to zero in the CSR. The Fermi
gas model, which is a simple nuclear model, furnishes a rough
description of the inclusive (e, e′) cross sections in the impulse
approximation but fails in describing the structure functions.
In particular, there appears to be a large suppression (about
40–50%) of the longitudinal structure function, corresponding
to missing strength in the CSR [1]. In early works [2,3], this
suppression has been interpreted as a nuclear medium effect
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which increases the charge radius and quenches the anoma-
lous moments.

There were many attempts [1,4–8] to explain the miss-
ing strength of the longitudinal structure function by
improving the nuclear bound states, modifying the nucleon
form factors in the nuclear medium, including final state in-
teractions, relativistic dynamics effects, and so on. In Ref. [9],
the CSR was analyzed based on scaling and superscaling
methods for 12C, 40Ca, and 56Fe by using various descrip-
tions of the final state interaction in the relativistic impulse
approximation, and then the value of the CSR saturates to
0.9 at three-momentum transfer q � 500 MeV/c. Using quan-
tum chromodynamics, the CSR was calculated for momentum
transfer q � 500 GeV/c and it was found to be suppressed
significantly [10]. The cross sections were calculated in the
superscaling (SuSAv2) model that includes two-particle two-
hole meson-exchange currents to describe the dip region.
These show good agreement with experimental data over
the full energy spectrum [11]. The roles of the real part
for various relativistic optical potentials were investigated by
calculating QE cross sections with the SuSAv2 model for
three-momentum transfer 50 < q < 1500 MeV/c [12].

On the other hand, on the experimental side, there have
been two measurements showing suppression of the CSR: One
is that the suppression was about 30% for three-momentum
transfer 300 � q � 450 MeV/c on 40Ca, measured by Bates
[5,6]. The other one is that the suppressions appeared to be
about 50% in effective three-momentum transfer values from
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350 to 550 MeV/c on 208Pb at Saclay [7]. While the sup-
pression of the CSR depends on the nucleus [13], Jourdan
[14] had analyzed the experimental data for 12C, 40Ca, and
56Fe and found that there is no A-dependent quenching for the
Coulomb sum and the suppression of the longitudinal struc-
ture function is about 30%, similar to the results of Bates [5,6].
Furthermore, Morgenstern and Meziani [15] reanalyzed the
experimental data of 40Ca, 48Ca, 56Fe, 197Au, 208Pb, and 238U
at the effective three-momentum transfer 500 MeV/c and they
found that the longitudinal structure function is suppressed by
about 40% at that value. However, Kim and et al . [16] claimed
that the suppression of the CSR was not found to be near 50%
as obtained from Saclay group [7,15], by using the relativistic
nuclear model based on the σ -ω model [17].

Recently, the Mainz group [18] calculated the CSR for 4He
and 16O from coupled-cluster theory by using chiral effective
field theory with various potentials up to three-momentum
transfer q = 500 MeV/c. At JLab [19], the experiment of the
CSR was performed with energies from 0.4 to 4 GeV for 4He,
12C, 56Fe, and 208Pb nuclei at four different scattering angles,
15◦, 60◦, 90◦, and 120◦. In the range 0.55 � q � 1.0 GeV/c,
the CSR was measured in testing the Coulomb corrections.

There are two issues in comparing theoretical (e, e′) results
with experimental data. One is the treatment of the incident
and outgoing electrons for the Coulomb distortion from target
nucleus. In the early 1990s, the Ohio group [20] calculated the
(e, e′) reaction by using partial wave expansion of the electron
wave functions. Although this method handles exactly the
Coulomb distortion of the electrons, the calculated cross sec-
tion cannot be separated into various response functions and
the computational time increases rapidly with higher electron
energies. To avoid these difficulties, Kim and Wright [21]
developed an approximate Coulomb distortion based on the
works of Knoll [22] and of Lenz and Rosenfelder [23].

The second issue is how to describe the target nucleus.
There are various nuclear models constructed in either a
nonrelativistic or relativistic manner. The most simple and
economical one is the relativistic Hartree single-particle
model (quantum hadrodynamics, QHD) [17,24] used in the
mean field level. This relativistic single-particle model has
been widely used for studying nuclear structure, nuclear re-
actions, and so on. The nonlinear (NL) sigma model is also
one of the relativistic single-particle models but it includes
nonlinear scalar self-coupling among the σ mesons [25]. The
quark-meson-coupling (QMC) model [26] is somewhat differ-
ent in that the nucleon in nuclear medium is described to be
a nonoverlapping MIT bag bound by the self-consistent ex-
change of σ , ω, and ρ mesons, and the chiral QMC (CQMC)
model [27] improves the QMC model by including the effect
of gluon exchange as well as the pion cloud effect using
volume coupling of the cloudy bag model. Recently, we cal-
culated the exclusive (e, e′ p) reactions [28] in the QE region
by using four different nuclear models, QHD, NL, QMC, and
CQMC, and reported that the dependence on these nuclear
models is not so evident.

On the other hand, in our previous works [29–31], the QHD
model has been used for properly explaining the inclusive QE
electron scattering data, and also successfully applied to many
neutrino QE scattering data accumulated from MiniBooNE

and Minerva. In particular, these days both structure functions
are now intensively discussed in the neutrino scattering off
finite nuclei in the QE region because the response functions
play important roles in understanding the cross sections with
an additional structure function, the transverse interference
structure function, coming from the neutrino helicity [29].
For example, the asymmetry data from neutrino (ν) and an-
tineutrino (ν̄) scattering for neutral-current (NC) reactions off
12C [30] and the double differential cross section for charged-
current ν̄μ- 12C scattering are well explained within the QHD
model with the standard axial mass in the axial form factor
including the strangeness contribution to the NC scattering
[31]. The authors of Ref. [32] studied the relationship be-
tween elastic electron scattering and neutrino scattering for
even-even nuclei by using the Hartree-Fock mean field. The
longitudinal, transverse, and transverse-interference structure
functions were extracted by using the Rosenbluth separation
with the QHD model and then the axial and pseudoscalar
terms played an important role in the QE neutrino-nucleus
scattering [33]. The structure functions were compared from
QE electron and neutrino scattering within an asymmetric and
relativistic Fermi gas model, which takes into account the dif-
ference between proton and neutron densities in asymmetric
(N > Z) nuclei [34].

In this work, we investigate the CSR by comparing with
Bates and Saclay data for three-momentum transfer ranging
from 300 to 500 MeV/c in the QE region. For the Coulomb
distortion of the electrons, we use the same approximation
exploited by the Ohio group [35]. To avoid the violation of
current conservation and gauge invariance we use the same
potentials for the bound state and continuum state of nucleons.
In Sec. II the formalism of the (e, e′) reaction in QE region is
briefly discussed and in Sec. III we present the cross sections
and the CSR. Finally, a summary and conclusions are given in
Sec. IV.

II. FORMALISM

In the plane wave Born approximation (PWBA) in which
the electrons are described as Dirac plane waves, the cross
section for the inclusive (e, e′) reaction can be written as

d2σ

dωd�e
= σM

[
Q4

q4
SL(q, ω) +

(
tan2 θe

2
+ Q2

2q2

)
ST (q, ω)

]
,

(1)

where Q2 = q2 − ω2 = −q2
μ is the four-momentum trans-

fer squared, σM is the Mott cross section given by σM =
( α

2Ei
)2 cos2 ( θe

2 )/ sin4 ( θe
2 ), and SL and ST are the longitudinal

and transverse structure functions which depend only on the
three-momentum transfer q and the energy transfer ω. By
keeping the three-momentum and energy transfers fixed while
varying the electron incident energy Ei and scattering angle
θe, it is possible to extract the two structure functions with
two measurements. The longitudinal and transverse structure
functions in Eq. (1) are squares of the Fourier transform
of the components of the nuclear transition current density
integrated over outgoing nucleon angles, �p. Explicitly, the
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structure functions for a given bound state with angular mo-
mentum jb are given by

SL(q, ω) =
∑
μbsp

ρp

2(2 jb + 1)

∫
|N0|2d�p, (2)

ST (q, ω) =
∑
μbsp

ρp

2(2 jb + 1)

∫
(|Nx|2 + |Ny|2)d�p (3)

with the outgoing nucleon density of states ρp = pEp

(2π )3 . The ẑ
axis is taken to be along the momentum transfer q and the z
components of the angular momentum of the bound and con-
tinuum state nucleons are denoted as μb and sp, respectively.
The Fourier transform of the nuclear current Jμ(r) is simply
given by

Nμ =
∫

Jμ(r)eiq·rd3r, (4)

where Jμ(r) denotes the nucleon transition current. The con-
tinuity equation could be used to eliminate the z component
(Nz) via the equation Nz = −ω

q N0 if the current is conserved.
The nucleon transition current in the relativistic single particle
model is given by

Jμ(r) = eψ̄p(r)Ĵμψb(r), (5)

where Ĵμ is a free nucleon current operator, and ψp and ψb

are the wave functions of the knocked-out nucleon and the
bound state, respectively. For a free nucleon, the operator
comprises the Dirac contribution and the contribution of an
anomalous magnetic moment μT given by Ĵμ = F1(q2

μ)γ μ +
F2(q2

μ) iμT

2MN
σμνqν , where MN is the mass of a nucleon. The

form factors F1 and F2 are related to the electric and magnetic
Sachs form factors given by GE = F1 + μT Q2

4M2
N

F2 and GM =
F1 + μT F2, which are assumed to take the following standard
form:

GE = 1

(1 + Q2

�2 )2
= GM

(μT + 1)
, (6)

where the standard value for �2 is 0.71 (GeV/c)2.
From the measured cross section in Eq. (1), the total struc-

ture function can be defined as

Stot (q, ω, θe) =
(

ε(θe)

σM

)(
q4

Q4

)
d2σ

dω d�e
, (7)

where the ε(θe) is the virtual photon polarization given by
ε(θe) = [1 + ( 2q2

Q2 ) tan2(θe/2)]−1. Therefore, the total struc-
ture function in Eq. (7) becomes

Stot (q, ω, θe) = ε(θe)SL(q, ω) +
(

q2

2Q2

)
ST (q, ω). (8)

Stot is described as a straight line in terms of the independent
variable ε(θe) with slope SL(q, ω) and intercept proportional
to ST (q, ω) by keeping the momentum transfer q and the
energy transfer ω fixed. This is called Rosenbluth separation.

The CSR is defined as the integration of the longitudinal
structure function in Eq. (8) by de Forest [36],

C(q) = 1

Z

∫ ∞

ωmin

SL(q, ω)

G̃2
E (Q2)

dω, (9)

with the modified electric form factor given by

G̃2
E (Q2) =

[
G2

E p(Q2) + N

Z
G2

En(Q2)
] (1 + τ )

(1 + 2τ )
, (10)

where Z and N denote numbers of protons and neutrons of the
target, respectively. GE p and GEn represent the Sachs electric
form factors for the protons and neutrons, respectively. The
last factor corresponds to the relativistic correction factor, in
which τ is given by τ = Q2/4M2

N . The lower limit ωmin in the
integration includes all inelastic contributions but excludes the
elastic process. For ω > q, one has to neglect the longitudinal
structure function on integrating over the infinite range of
the ω because it cannot be accessible with the QE electron
scattering.

Neglecting the small contribution from the neutron charge
form factor, the integral over the longitudinal structure func-
tion can be regarded as the number of protons times the
square of the proton charge form factor G2

E p. When the nuclear
elastic charge form factor falls rapidly with increasing three-
momentum transfer q, the CSR becomes C(q) = 1 in the limit
q → ∞.

In addition, at low q below twice the Fermi momentum
(kF ), the longitudinal structure function is affected by Pauli
blocking [37]. This low momentum transfer is not sufficient
to send some initial nucleons to unoccupied states above
the Fermi level. Therefore, both longitudinal and transverse
structure functions are moved to the lower ω of the peak,
and the ω dependence is almost linear in this blocked region.
For q > 2kF the Pauli blocking between nucleons does not
occur for all nucleons momenta. The ω dependence is roughly
parabolic, with the width of the peak being proportional to
kF , and the position of the peak is shifted toward the higher
ω. For example, at large q, typically above 0.8 GeV/c, the
transverse structure function dominates the cross section and
the inelastic processes like the � contribution increase, so that
an exact measurement of the longitudinal structure function is
very difficult.

III. RESULTS

With four different nuclear models, we calculate the in-
clusive (e, e′) cross sections and also study the CSR by
comparing with Bates and Saclay data in the q range from
300 to 500 MeV/c in the QE region. To include the final
state interaction, the wave functions of the final nucleons are
generated by using the same potential as the bound state of nu-
cleons. This method is taken to avoid the violation of current
conservation and to guarantee the gauge invariance. Notice
that we use the same lepton part and the same current operator
of the hadron to compare with these different nuclear models.
In all calculations, the four-momentum transfer squared Q2 is
in the range 0.1–0.3 (GeV/c)2. The scattering angles for 40Ca
are used 45.5◦, 90◦, 140◦ in Ref. [6], and those for 208Pb are
used 35◦, 60◦, 90◦, and 143◦ in Ref. [7].

Figure 1 shows the inclusive QE cross sections on 40Ca
obtained from four different nuclear models. The solid curves
(red) are the results for the relativistic Hartree model (labeled
QHD), the dotted lines (blue) are for the non-linear sigma
model (labeled NL), the dash-dotted curves (sky blue) are
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FIG. 1. The cross sections on 40Ca from four different nuclear
models. The solid curves (red) are the results for the Hartree model,
the dotted lines (blue) are for the nonlinear sigma model, the dash-
dotted curves (sky blue) are for the QMC model, and the dashed
curves are for the chiral QMC model. The experimental data were
measured by Bates [5,6].

for the QMC model (labeled QMC), and the dashed curves
(black) are for the chiral QMC model (labeled CQMC). The
kinematics of the left (right) panel are the incident electron
energies Ei = 545 MeV (290 MeV) and the scattering angles
θe = 45.5◦ (140◦). The experimental data were measured by
Bates [5,6]. The cross sections from the other models except
the QHD overestimate the experimental data and the positions
of the peak shift toward lower energy transfer. The largest
difference between the red and the blue curves at forward
angle is about 20% and at backward angle it amounts to about
30%. Note that the theoretical cross sections at large energy
transfer region do not describe the data at all because the
inelastic processes like pion production or delta resonance are
excluded.

In Fig. 2, the inclusive QE cross sections on 208Pb are
calculated from four different nuclear models. The explana-
tions for the curves are the same as those in Fig. 1. The
kinematics of the left (right) panel are the incident electron
energies Ei = 485 MeV (262 MeV) and the scattering angles
θe = 60◦ (143◦). The experimental data were measured from
Saclay [7]. The cross sections from the other models except
QHD overestimate the experimental data and the positions of
the peak shift toward lower energy transfer like the previous
results for 40Ca in Fig. 1. The magnitude of the cross section
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FIG. 2. The cross sections on 208Pb from four different nuclear
models. The explanations for the curves are the same as those in
Fig. 1. The experimental data were measured by Saclay [7].
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FIG. 3. The inclusive QE cross sections on 56Fe and 12C are
presented from four different nuclear models. The explanations for
the curves are the same as those in Fig. 1. The experimental data
were measured by SLAC [8].

for the QMC model is largest on 208Pb around the peak while
the magnitude of the cross section for NL model is largest
around the peak on 40Ca. The largest difference between the
red and the sky blue curves at forward and backward angles is
similar to the previous one in Fig. 1.

On the other hand, there are other experimental data mea-
sured from SLAC [8] and JLab [38] for high electron energies.
In our previous works [39], our model could not describe the
data for such high energies except for a few cases of 2 GeV
and very forward angle because the nuclear model basically
adopts the partial wave expansion, although the lepton part is
the approximation without the expansion.

In Fig. 3, the inclusive QE cross sections on 56Fe and
12C are presented from four different nuclear models. The
explanations for the curves are the same as those in Fig. 1.
The kinematics of both panels are the incident electron ener-
gies Ei = 2.02 GeV and the scattering angles θe = 15◦. The
experimental data were measured from SLAC [8]. The cross
sections from the other models except QHD overestimate the
experimental data, and the positions of the peak shift toward
lower energy transfer like the previous results in Figs. 1 and
2. In this case, the magnitude of the cross section for the
NL model is largest around the peak as in the case of 40Ca.
The largest difference between the red and the blue curves is
similar to the previous results in Figs. 1 and 2. From these
results, we do not find any regular pattern. In particular, the
calculations of the QHD model describe the SLAC experi-
mental very well.

In our previous paper [28], the exclusive (e, e′ p) cross sec-
tions were calculated at the 2s1/2 and 1d3/2 shells of 40Ca for
both parallel and perpendicular kinematics with four different
relativistic single-particle nuclear models: QHD, nonlinear
sigma, QMC, and CQMC, as this work. According to this
paper, it is not easy to distinguish a difference between the
models although they include effectively the influence of nu-
cleon structure in nuclear medium. However, in the (e, e′)
reaction, it is necessary to sum over all nucleons inside the
target nucleus to calculate the cross section in Eqs. (2) and
(3). For this reason, the difference between the relativistic
nuclear models is accumulated to about 20%–30% even if the
difference among the models is small.
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FIG. 4. The extracted longitudinal and transverse structure func-
tions at q = 450 MeV/c off 40Ca from four different nuclear models.
The experimental data were measured by Bates [5,6].

In Figs. 4 and 5, the extracted longitudinal and transverse
structure functions in Eq. (8) are presented for 40Ca and 208Pb
at three-momentum transfer q = 450 MeV/c. Like the cross
sections in Fig. 1, the magnitude of the longitudinal and trans-
verse structure functions for NL model is largest around the
peak on 40Ca and the positions of the peak shift toward lower
energy transfer. In Fig. 4, the longitudinal structure functions
from the models describe the Bates data relatively well but the
all transverse structure functions overestimate the data around
the peak.

In Fig. 5, the shapes and positions extracted from longi-
tudinal structure functions for 208Pb are different from those
in the cross sections in Fig. 2, though those of the transverse
structure functions are similar to the cross section. The reason
is that the magnitude of the longitudinal functions is about
55% compared to that of the transverse functions. It means
that the contribution of the longitudinal functions turns out
to be about 30%. Furthermore, the theoretical longitudinal
functions do not describe the Saclay data at all, even including
the shape, but the theoretical transverse functions except the
QMC model describe the data well.

To calculate the CSR, it is necessary to determine the
lower and upper limits of the integration in Eq. (9). We
choose ωmin = 10 MeV to exclude the elastic process in
all calculations, but the exact values of ωmin in the Bates
[6] and Saclay [7] papers were not shown. In the case of
the upper limit ωmax, we use different values from 190 to
250 MeV like the Bates and Saclay papers. In particular,
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FIG. 5. The extracted longitudinal and transverse structure func-
tions at q = 450 MeV/c off 208Pb from four different nuclear models.
The experimental data were measured by Saclay [7].
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FIG. 6. The CSR from four different nuclear models for 40Ca and
208Pb.

according to Ref. [1], the value of ωmax is the experimental
limit beyond which data are unreliable because of electron-
pair contamination and detector inefficiency. The values of
ωmax were chosen from 175 to 310 MeV in the range of
three-momentum transfer 330 < q < 550 MeV/c for 40Ca
and 48Ca.

In Fig. 6, we present the CSR C(q) values using these
upper limits within four different nuclear models. While the
shapes are similar to each other in the cross sections and
the structure functions, the shapes of C(q) are not similar at
all; in particular, the NL model has minimum value around
q = 400 MeV/c. In comparison with Bates experimental data
in Fig. 19 of Ref. [6], the QHD model has similar tendency
but other models have totally different shape. The theoretical
values of C(q) for 208Pb show different tendency compared to
Saclay data in Fig. 21 of Ref. [7]. The values of C(q) obtained
from the three models except the QHD model are greater than
1 above the q = 400 MeV/c region, implying violation of the
CSR.

IV. SUMMARY AND CONCLUSION

In the present work, we calculate the inclusive (e, e′) cross
sections and extract the longitudinal and transverse struc-
ture functions by using the Rosenbluth separation with four
different nuclear models, which are the relativistic Hartree
model (QHD), the nonlinear sigma model, the QMC model,
and the CQMC model. Furthermore, the cross sections are
compared with SLAC experimental data for high electron
energy. Except for the QHD model which has been success-
fully applied to neutrino-nucleus scattering, the magnitudes
of the theoretical cross sections overestimate the experimental
data and the positions of the peak shift toward lower energy
loss. The extracted longitudinal structure functions of 40Ca
describe the Bates data relatively well but for 208Pb overes-
timate the Saclay data, and the transverse structure functions
of 40Ca overestimate the Bate data but for 208Pb describe
the Saclay data except in the QMC model. Finally, the only
calculated CSR from the QHD on 40Ca has a pattern simi-
lar to the Bates data and the others have different tendency
from the experimental data; in particular, the CSR from the
NL model has a minimum around q = 400 MeV/c. In the
q > 400 MeV/c region, the values of the CSR are greater
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than ones obtained from other nuclear models except the QHD
model.

In conclusion, it will be necessary to provide a good de-
scription with experimental data, such as Bates, Saclay, and
SLAC data, by improving the present nuclear models, for
example, including the pairing correlation effect beyond the
relativistic mean field theory. But it should be remembered
that the present calculation exploited the same form factors
for each model because we want to compare the differences
due to the wave functions among the nuclear models. More
deliberate form factors, such as a form factor including the
nuclear matter effect [10], may help to properly interpret the

CSR quenching with additional effects from collective mo-
tions, as in the random phase approximation (RPA).
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