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Breakup effects in the 16C +p and 16C +d reactions
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We analyze the 16C +p and 16C +d reactions within the four- and five-body continuum discretized coupled
channel method. The 16C nucleus is described by a 14C +n + n configuration in hyperspherical coordinates.
This description reproduces fairly well several 16C low-lying states. First we analyze the 2+ → 0+ E2 transition
amplitude, which confirms that an effective charge must be introduced to reproduce the experimental value.
Then, proton and deuteron elastic and inelastic scattering are investigated by including 16C pseudostates, which
simulate the 14C +n + n continuum. In 16C +d , the deuteron breakup is taken into account with p + n two-body
pseudostates. A fair agreement with experiment is obtained without any fitting parameter. Breakup effects are in
general small, but improve the agreement with experiment.
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I. INTRODUCTION

The structure of light exotic nuclei has been intensively
studied in recent years [1]. Neutron-rich nuclei, located near
the neutron dripline, are expected to present unusual prop-
erties. In particular, the 16C nucleus has attracted much
attention, owing to a small E2 transition probability between
the ground state and the 2+ first excited state (see Ref. [2] for
a review of recent works).

Since exotic nuclei are usually characterized by a short
lifetime, their experimental study requires radioactive beams,
and the theoretical interpretation of the data is based on reac-
tion models. A well-established framework is the continuum
discretized coupled channel (CDCC) method, which is well
suited to exotic nuclei since it includes the continuum of the
projectile. Exotic nuclei being weakly bound, the continuum
plays an important role, even for elastic scattering.

A recent experiment [3] aims at measuring 16C +p and
16C +d elastic scattering, as well as inelastic scattering. These
data complement previous experiments involving heavy tar-
gets [4]. The 16C +p and 16C +d systems can be studied
theoretically within the CDCC method, where 16C is de-
scribed by a three-body 14C +n + n structure. The extension
of the CDCC method to three-body projectiles is recent [5],
and this method has been even extended to two-body targets
such as the deuteron [6]. The calculations are very time-
consuming, but can be performed with modern computing
facilities, and optimized codes.

The text is organized as follows. In Sec. II, we present the
16C description in a 14C +n + n three-body model. We discuss
more specifically the 2+ → 0+ transition probability which
has been measured, and calculated previously [7]. Section III
is devoted to a brief presentation of the CDCC theory, and
of the resolution of the (large) coupled-channel system. In

*shubhchintak@ulb.be
†pierre.descouvemont@ulb.be

Secs. IV and V, we discuss the 16C +p and 16C +d elas-
tic scattering, respectively. Inelastic scattering is analyzed in
Sec. VI. Concluding remarks and outlook are presented in
Sec. VII.

II. THREE-BODY MODEL OF 16C

A. Hyperspherical method

We use the hyperspherical coordinates to describe the
three-body structure of 16C which we consider as made up of
a 14C core and of two valence neutrons, i.e., as a 14C +n + n
system. Here, we give an outline of the hyperspherical method
and the reader is referred to Refs. [8–10] for more detail.

In our approach, we neglect the internal structure of 14C
and interactions among the three two-body systems are con-
sidered. Considering A1 and Z1e as the mass number and
charge of the core, we adopt the Jacobi coordinates (x, y) as

x = 1√
2

(r3 − r2)

y =
√

2A1

A1 + 2

(
r1 − r2 + r3

2

)
, (1)

which represent one of the three possible sets of Jacobi coor-
dinates (see for example Refs. [8,9]). This choice also ensures
the symmetry of the wave functions with respect to the two-
neutron exchange. In Eq. (1), ri are the coordinates of the core
and of the neutrons, respectively.

The hyper-radius ρ and the hyperangle α are then defined
as

ρ =
√

x2 + y2, α = arctan

(
y

x

)
, (2)

where α varies from 0 to π/2. In these coordinates, the Hamil-
tonian of 16C can be written as

H0 = Tρ +
∑
i< j

Vi j (xk ), (3)
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where Vi j represent two-body potentials (14C +n and n + n)
and the kinetic energy Tρ is given by

Tρ = − h̄2

2mN

(
∂2

∂ρ2
+ 5

ρ

∂

∂ρ
− K2(�5ρ )

ρ2

)
(4)

with �5ρ = (�x,�y, α). In this definition, mN is the nucleon
mass and K2 is the five-dimension angular momentum which
has eigenvalues K (K + 4) and eigenfunctions

Y�x�y

KLML
(�5ρ ) = φ

�x�y

K (α)
[
Y�x (�x ) ⊗ Y�y (�y)

]LML
, (5)

where �x and �y are the orbital momenta associated with x and

y. The hyper-radial function φ
�x�y

K (α) is given by

φ
�x�y

K (α) = N
�x�y

K (cos α)�x (sin α)�y P
�y+ 1

2 ,�x+ 1
2

n (cos 2α), (6)

where N
�x�y

K is a normalization factor (see for example

Ref. [10]) and P
�y+ 1

2 ,�x+ 1
2

n (x) is a Jacobi polynomial with the
positive integer n given by

n = (K − �x − �y)/2. (7)

Equation (5) can be extended by introducing the spinor
χSMS (S = 0 or 1) to take into account the spin of the exter-
nal neutrons. A spin mixing is possible when the two-body
interactions contain a spin-orbit term. We define

Y jm
γ K (�5ρ ) = [Y�x�y

KL (�5ρ ) ⊗ χS
] jm

, (8)

where index γ is defined as γ = (�x, �y, L, S) and j is the total
angular momentum.

The three-body wave functions corresponding to Hamilto-
nian (3) can be written as

� jmπ = ρ−5/2
∞∑

K=0

∑
γ

χ
jπ
γ K (ρ)Y jm

γ K (�5ρ ), (9)

where π stands for the parity. In practice, the summation over
K is truncated at some value Kmax. In Eq. (9), the hyper-radial
functions χ

jπ
γ K (ρ) are obtained by solving the set of coupled

differential equations(
− h̄2

2mN

[
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

]
− E jπ

)
χ

jπ
γ K (ρ)

+
∑
γ ′K ′

V jπ
γ ′K ′,γ K (ρ)χ jπ

γ ′K ′ (ρ) = 0, (10)

where the coupling potentials V jπ
γ ′K ′,γ K (ρ) represent the matrix

elements of the two-body potentials in Eq. (3) between hy-
perspherical functions (8) (see Refs. [8,10]). The three-body
energies E jπ are defined from the 14C +n + n threshold.

We solve Eq. (10) by using the Lagrange-mesh method
[11–13], which permits fast and accurate numerical computa-
tions. The square-integrable solutions of Eq. (10) are obtained
by expanding the hyper-radial functions over N Lagrange
basis functions [11] ui(ρ) as

χ
jπ
γ K (ρ) =

N∑
i=1

c jπ
γ Kiui(ρ), (11)
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FIG. 1. Energy spectrum of 16C [E jπ values in Eq. (10)]. The
experimental data are taken from Ref. [16].

where c jπ
γ Ki are the expansion coefficients. For more detail, we

refer to Refs. [10,12].

B. Energy levels of 16C

As it is clear from the previous discussion, the n + n and
14C +n two-body potentials are important inputs in our cal-
culations. For the former, we adopt the central part of the
Minnesota potential with the exchange parameter u = 1 [14].
The 14C +n potential is taken from Ref. [7] (set B), which
also reproduces the low-lying energy spectrum of 15C. This
potential contains forbidden states in the s1/2, p1/2, and p3/2

partial waves. We remove these forbidden states by using
a supersymmetric (SS) transformation [15]. We use N = 20
Gauss-Laguerre basis functions and Kmax = 20. Numerical
tests indicate that these values are sufficient to achieve an
excellent convergence.

In Fig. 1, we compare the calculated energies of the first
low-lying states of 16C with their experimental value. Apart
from slight differences for the 0+ states, one can see that the
calculated energies are quite close to the experimental values.
In particular, the 2+

1 state is well reproduced by the three-body
model. As the ground state is deeply bound, its precise energy
is not expected to be important in scattering calculations.
We therefore do not include a phenomenological three-body
force to compensate for the slight difference between theory
and experiment. The three-body bound and pseudostate wave
functions of 16C obtained in this way are then used as an input
of the CDCC calculations.

C. E2 transition

The B(E2, 2+ → 0+) transition probability has been mea-
sured in several experiments [3,4,17–21], with results ranging
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FIG. 2. E2 transition probability for the B(E2, 2+ → 0+) tran-
sition in 16C. The horizontal lines represent the latest experimental
value [3] (with the dashed lines as lower and upper limits).

from 0.63 e2fm4 to 4.34 e2fm4. A small value is consistent
with the shell-model picture, where four protons are in a
closed 0p3/2 subshell, and two neutrons in the 0d5/2 subshell.
Large values, however, suggest core-polarization effects. Cal-
culations in the shell-model [22,23] and in the 14C +n + n
three-body model [7] require significant effective charges to
reproduce the experimental B(E2, 2+ → 0+) value. A re-
view of recent experiments and calculations can be found in
Ref. [2].

The three-body wave function (9) can be used to determine
the E2 transition probability. The B(E2) between an initial
state Jiπi and a final state Jf π f is defined as

B(E2, Jiπi → Jf π f ) = 2Jf + 1

2Ji + 1
|(e + δe)Mp + δeMn|2,

(12)

where δe is the effective charge. For the system considered
here (a core surrounded by two neutrons), the proton and
neutron matrix elements are given by

Mp = Z1

(
2

A

)2

〈�Jf π f ‖M2(y)‖�Jiπi〉,

Mn = 〈�Jf π f ‖1

2
M2(x) + 4N1 + 2A2

1

A2
M2(y)‖�Jiπi〉 (13)

with the multipole operators

M2μ(x) = 2x2Y μ
2 (�x ),

M2μ(y) = A

2A1
y2Y μ

2 (�y). (14)

The model provides Mp = 0.173 fm2 and Mn = 14.93 fm2.
The B(E2) is displayed in Fig. 2 as a function of the effective
charge δe/e. This curve is similar to the results obtained
by Horiuchi and Suzuki [7]. The latest experimental value
4.34+2.27

−1.85 [3] is represented as horizontal lines. Without ef-
fective charge, the theoretical B(E2) value is close to zero.
Reproducing the experimental value requires δe/e ≈ 0.3 ±
0.1.
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FIG. 3. Coordinates for the 16C +p system (a) and for the 16C +d
system (b).

III. OUTLINE OF THE CDCC THEORY

The CDCC method is well adapted to investigate reactions
involving weakly bound nuclei [24–27]. It was originally
developed to study d+nucleus scattering [24] and has been
found successful in explaining the data of many reactions
involving the deuteron. Actually, due to the low breakup
threshold of the exotic nuclei, it becomes important to take
into account their breakup effects. In the CDCC method, these
effects are simulated by approximating the continuum by
pseudostates (PS) which correspond to positive eigenvalues of
the Schrödinger equation associated with the projectile or/and
with the target.

Earlier applications of this method were mainly dealing
with typical two-body projectiles such as d , 7Li, 11Be on
structureless targets [25,26]. However, it is now possible to
study the scattering of three-body projectiles such as 6He, 9Be,
11Li [5,6,13] and also systems involving a two-body projectile
and a two-body target such as 11Be + d [28,29]. Recently, in
Ref. [6], the CDCC method has been used to study the 11Li +d
scattering within a 3+2 body model. In the present paper, we
follow the same formalism to study the 16C +p and 16C +d
scattering considering them as 3+1 and 3+2 body systems,
respectively.

Figure 3 gives a schematic representation of the 16C +p
and 16C +d systems. We define ξi as the internal coordinates
of the two interacting nuclei (ξi = ri, (x, y) for the two and
three-body systems, respectively). Their internal Hamiltonian
are denoted as Hi, and the relative coordinate as R.

Considering TR as the relative kinetic energy, the Hamilto-
nian for the projectile + target system is written as

H = H1(ξ1) + H2(ξ2) + TR +
∑

i j

Vi j (ξ1, ξ2, R), (15)
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where Vi j represent two-body optical potentials between the
fragments. In the present work, Vi j contains 14C +p and n + p
potentials for the 16C +p scattering whereas for the 16C +d
case it also contains 14C +n and n + n interactions.

In the CDCC method, the total wave function of the system
is expanded as

�JMπ =
∑
βLI

uJπ
βLI (R) ϕJMπ

βLI (ξ1, ξ2,�R), (16)

where L and I represent the relative angular momentum and
the channel spin, respectively. The index β is defined as β =
( j1, k1, j2, k2), where ji and ki are the spins and excitation
levels of nucleus i (the parity is understood). In practice,
the summation over j1, j2 and k1, k2 are truncated at some
limiting values jmax and kmax, which could be different for the
projectile and for the target. The channel functions ϕJMπ

βLI are
defined as

ϕJMπ
βLI (ξ1, ξ2,�R) = [[

�
j1
k1

(ξi ) ⊗ �
j2
k2

(ξ2)
]I ⊗ YL(�R)

]JM
,

(17)

where �
ji
ki

is the wave function of the colliding nucleus i and
can be obtained by solving the Schrödinger equation

Hi�
jimiπi

ki
= E jiπi

ki
�

jimiπi

ki
. (18)

E jπ
k < 0 correspond to physical states, whereas E jπ

k > 0 cor-
respond to PS. For the proton, the internal wave function is of
course unity, and the internal energy is zero.

The radial wave functions uJπ
βLI (R) in Eq. (16) are solutions

of the coupled differential equations(
− h̄2

2μ

[
d2

dR2
− L(L + 1)

R2

]
+ E j1

k1
+ E j2

k2
− E

)
uJπ

βLI (R)

+
∑
β ′L′I ′

V Jπ
βLI,β ′L′I ′ (R)uJπ

β ′L′I ′ (R) = 0, (19)

where the coupling potentials V Jπ
βLI,β ′L′I ′ (R) are given by

V Jπ
βLI,β ′L′I ′ (R) = 〈

ϕJMπ
βLI

∣∣∑
i j

Vi j

∣∣ϕJMπ
β ′L′I ′

〉
, (20)

which involves integrations over ξ1, ξ2 and �R. The calcula-
tions of these coupling potentials are given in the Appendix of
Ref. [6] for the 3 + 1 and 3 + 2 body systems.

In practice, Eq. (19) may involve several thousands of
coupled equations for each Jπ and this represents the most
challenging part of the CDCC calculations. However, the use
of R-matrix along with the Lagrange-mesh method [30,31]
provides fast numerical computations and makes them feasi-
ble. With this approach we calculate the scattering matrices,
which then provide the elastic, inelastic and breakup cross
sections.

IV. 16C +p SCATTERING

A. Conditions of the calculations

We calculate the 16C +p and 16C +d elastic and inelastic
scattering cross sections at a 16C energy of 24 MeV/nucleon,
which corresponds to Ec.m. = 22.59 MeV for 16C +p and to

Ec.m. = 42.67 MeV for 16C +d . Experimental data for these
reactions have been recently published in Ref. [3]. We first
discuss the case of 16C +p which is simpler than the 16C +d
scattering since breakup effects are present in 16C only.

Before presenting the cross sections, it is important to men-
tion the conditions of calculations, which include R-matrix
and Lagrange-mesh [30,31] parameters, various potentials
and parameter Kmax for various J values. For the R-matrix
method, we use a channel radius a = 25 fm and 50 La-
grange basis functions which guarantee a good convergence
of the calculations. Small changes in these parameters do
not bring any significant modification in the cross sections.
Large channel radii need more basis functions which increases
the computation times. Optimizing the choice of the channel
radius is therefore an important issue.

For 16C +p, we need two optical potentials: we use
the Minnesota interaction [14] for n + p and the Koning-
Delaroche (KD) global potential [32] for 14C +p. Addition-
ally, we also perform the calculations using the Chapel Hill
(CH) parametrization [33] for the 14C +p interaction, which
allows us to assess the sensitivity of the cross sections to this
optical potential.

We have considered j = 0+, 1−, 2+, and 3− PS of 16C up
to a maximum energy Emax = 20 MeV, which are calculated
using the procedure described in Sec. II. In fact, a good con-
vergence is already achieved with Emax = 10 MeV. For these
calculations, we use Kmax = 16, which provides converged
16C energies and keeps the number of PS within reasonable
limits. A maximum angular momentum of Jmax = 25 is used
to compute the cross sections. We have performed various
tests against all these parameters to ensure the convergence
of the calculations. In particular, we ensure that the cross
sections does not vary by more than 1–2 % while changing
these parameters beyond a certain value.

B. 16C +p elastic cross section

In Fig. 4, we plot the ratio of the elastic scattering to the
Rutherford cross sections for 16C +p at Ec.m. = 22.59 MeV
and compare them with the experimental data of Ref. [3]. In
Fig. 4(a), we check the convergence of the cross sections with
respect to jmax. It is clear from the figure that the contribution
of j = 1− pseudostates is small, whereas j = 2+ PS are the
most important. This is explained by the presence of the 2+

1
first excited state. Calculations with only 0+

1 and 2+
1 states

of 16C are not very different than the full calculations (with
jmax = 2) from 0◦ to 60◦, although some difference can be
seen at larger angles which indicates the importance of non-
resonant continuum at larger angles. Also it can be seen that
cross sections for jmax = 3 are not much different than for
jmax = 2 which confirms the convergence of the calculations.
Another important information one can collect from this fig-
ure is that at this energy, breakup effects are insignificant for
θ < 25◦.

In Fig. 4(b), we compare the CDCC cross sections with
the data. The calculations involving the 16C ground state only
overestimate the experimental cross section for θ > 40◦ with
both potentials. On the other hand, the solid line which cor-
responds to the full CDCC calculation with the KD potential
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FIG. 4. 16C +p elastic scattering cross sections divided by the
Rutherford cross sections, at Elab = 24 MeV/nucleon energy of 16C
(Ec.m. = 22.59 MeV). (a) Convergence with respect to jmax. (b) Com-
parison with the experimental data of Ref. [3] using the KD (solid
lines) and CH (dashed lines) 14C +p potentials.

nicely agrees with the data, except in the range θ ∼ 30◦–40◦,
where the model slightly underestimates the experimental
data. This shows that breakup effects are important for θ >

40◦. The cross section computed with the CH parametrization
for 14C +p which are less good than with the KD potential.
This shows that a proper knowledge of 14C +p potential is
important for these calculations.

We also apply the CDCC model to predict cross sections
at other energies. In Fig. 5, we plot the elastic cross sections
at three different beam energies of 16C which are 5, 15, and
40 MeV/nucleon (Ec.m. = 4.71, 14.12, 37.65 MeV, respec-
tively) using KD potentials. Keeping all the other conditions
and parameters unchanged, we have performed the CDCC
calculations and compare them with the single channel case.
We conclude that going from low to higher energies, the
difference between the two calculations shift from higher to
lower angles. Furthermore, this difference itself decreases as
one moves to higher energies.

V. 16C +d SCATTERING

A. Conditions of the calculations

Now we discuss the 16C +d scattering for which the cal-
culations are more complex and time consuming than in the
16C +p scattering. This is due to the larger number of channels
involved in 16C +d . We take the breakup channels of deuteron
also into account due to its low breakup threshold. Further-
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FIG. 5. 16C +p elastic scattering cross sections divided by the
Rutherford cross sections at four 16C energies. Dashed and solid lines
represent calculations performed with only the g.s. of 16C and with
the full CDCC model, respectively.

more, as discussed in Ref. [6], the coupling potentials (20)
for the 3 + 2 body systems are more complex and involve
multidimensional integrals. Therefore it is quite difficult to
achieve the full convergence of the cross sections over a wide
angular range.

For the feasibility of the full calculations we take jmax = 2
for 16C and deuteron partial waves are considered up to jmax =
4. In these calculations, most of the conditions are the same as
for the proton target but to decrease the number of channels,
Kmax = 12 and N = 15 Gauss-Laguerre basis functions are
used [in Eq. (11)]. This decrease does not bring any noticeable
change in the cross sections. Furthermore, PS up to Emax =
8 MeV are considered for the 16C as these are enough to
achieve the satisfactory convergence whereas for the deuteron
we considered PS up to Emax = 20. In fact, increasing Emax

from 20 to 30 MeV for the deuteron slightly decreases the
cross sections in the angular range from 60◦ to 120◦ and
almost no change at other angles, which again ensures the con-
vergence of the calculations. To calculate the PS in deuteron
we use 20 Lagrange basis functions (Gauss-Laguerre) with a
scaling parameter h = 0.3 fm (see for example Ref. [11] for
more detail).

For the 14C +n interaction, we use the KD potentials and as
we did in the previous case. Here, also we test the sensitivity
of the calculations by using the CH interaction. For the n + n
and n + p, we use the Minnesota potential [14].
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double-dashed-dotted lines in (a) and (c) are calculations performed
with only the 0+

1 and 2+
1 states of 16C. Experimental data are taken

from Ref. [3].

B. 16C +d elastic cross section

In Fig. 6, we plot the 16C +d elastic cross sections. We
first consider the breakup in one particle at a time before per-
forming the full 3 + 2 body CDCC calculations. In Fig. 6(a),
we consider the breakup of 16C, whereas the deuteron is in the
ground state. For a comparison we also plot the single-channel
cross sections (dotted line), where only the g.s. of 16C and of
d are included. It is evident that single channel calculations
are unable to explain the data for θ > 30◦. Including the
continuum in 16C reduces the magnitude of the cross sections,
as in 16C +p case. One can see that j = 2+ PS significantly
change the cross sections whereas those with j = 1− have a
small influence.

In Fig. 6(b), we consider breakup channels in the deuteron,
whereas 16C is in its ground state. The convergence with
respect to jmax is clear. Again, increasing jmax decreases
the magnitude of the cross section. However, neglecting 16C
breakup leads to small differences in the peaks near θ ≈ 30◦
and θ ≈ 50◦.

In Fig. 6(c) we plot the full five-body calculations when
breakup effects are included in 16C as well as in d (solid
line). For comparison, we also plot the other two possibilities
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FIG. 7. 16C +d elastic scattering cross sections as a ratio to the
Rutherford cross sections at different energies of 16C. Dashed lines in
each panel represent single channel calculations performed with only
the g.s. of 16C and d whereas solid lines represent five-body CDCC
calculations.

considered in Figs. 6(a) and 6(b). As mentioned earlier, full
calculations are quite challenging. We deal with a total of 504
channels. It is clear from the figure that although the shape of
the data is reasonably well reproduced, the magnitude of the
cross sections is underestimated in the angular range 30◦–60◦.
In Fig. 6(c) we also compare the five-body calculations per-
formed by using the CH optical potentials for 16C +p and
14C +n. One can see a difference especially at larger angles
(>60◦), but this difference is smaller than breakup effects.

We also investigate the importance of 2+
1 state of 16C in

these calculations. Double-dashed-dotted lines in Figs. 6(a)
and 6(c) are calculations performed with only the 0+

1 and 2+
1

states of 16C. It is clear that these calculations are not very
different than the full calculations (solid lines) in both these
figures, especially in the angular range of the available data
(as in 16C +p system) although at larger angles nonresonant
continuum plays some role. We further found that other bound
states (0+

2 and 2+
2 ) of 16C have negligible influence on the

cross sections. This can be seen in the context of deeply bound
nature of 16C.

As for the 16C +p system, we also perform the calcula-
tions to predict cross sections at some other energies of 16C
which again we consider as 5, 15, and 40 MeV/nucleon and
they correspond to Ec.m. of 8.89, 26.67, 71.11 MeV, respec-
tively. We have kept all the conditions unchanged. In Fig. 7,
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FIG. 8. Angular distributions of inelastic scattering to the 2+
1

state of 16C on a (a) proton and (b) deuteron target at Elab =
24 MeV/nucleon. Experimental data are taken from Ref. [3]. Dotted
lines in both panels represent calculations when we take only the 0+

1

and 2+
1 states of 16C, whereas solid and dashed lines correspond to

the full CDCC calculations performed with the KD and CH optical
potentials for 14C + nucleon.

we plot these cross sections (solid lines) and compare them
with single channel case (dashed lines). Again, we can see
that with increase in energy, the amplitude of the difference
between CDCC and single channel calculations shift to the
lower angles. Furthermore, it shows that the breakup effects
are relatively more stronger at medium energies. This can be
expected as at higher energies the interaction time will be rela-
tively small than at medium energies, whereas at low energies
particles may not come close enough to interact strongly.

VI. INELASTIC CROSS SECTIONS

Various methods have been used in the literature to deter-
mine the E2 transition probability, and there is still a large
uncertainty. The inelastic cross sections to the first 2+ state
of 16C has been measured in Ref. [3], and used to deter-
mine the E2 transition probability from an optical-model
analysis involving a deformation parameter δ. The fitted
value δ = 1.07 ± 0.26 fm was then converted to B(E2) =
4.34+2.27

−1.85 e2fm4.
Core +n + n three-body models, however, are known

to underestimate this transition probability since core-
deformation effects are in general absent. As shown in
Sec. II C, this value can be reproduced by the 14C +n + n
model provided that an effective charge δe ≈ 0.3e is used.
Notice that, owing to the small charge of the target (Z = 1),
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FIG. 9. Angular distributions of inelastic scattering to the 2+
1

state of 16C on a proton target at Elab = 33 MeV/nucleon. Exper-
imental data are taken from Ref. [34]. Solid and dot-dashed lines
are full CDCC calculations performed with the KD and CH optical
potentials, whereas dashed and dotted lines represent correspond-
ing calculations performed with only the 0+

1 and 2+
1 states of 16C.

Calculations are converted to the laboratory frame in order to be
consistent with the data but due to the reaction kinematics θlab is
confined between 0◦–3.6◦.

the nonmonopole Coulomb interaction (proportional to the
E2 transition amplitude) plays a minor role, and has been
neglected in the analysis [3].

In Fig. 8, we plot the angular distributions of inelastic
scattering on proton (a) and deuteron (b) targets, and compare
them with the data from Ref. [3]. Calculations are performed
in the CDCC framework considering 3 + 1 and 3 + 2 body
configurations, respectively, with the KD (solid lines) and
CH (dashed lines) potentials. It can be seen that calculations
performed with these two different potentials, give nearly
the same results in both cases over the considered angular
range.

For a comparison, we also perform calculations using just
the 0+

1 and 2+
1 states of 16C and for the deuteron target we

also consider the ground state only. These calculations show
that, for the proton target, breakup effects in 16C does not
have much influence on the inelastic cross sections, although
they slightly improve the shape of the angular distribution
in the angular range 40◦–50◦. On the other hand, for the
deuteron target, the inclusion of breakup effects improves the
calculations. They are important to explain the data especially
for θ > 50◦.

Additionally, we also perform 3 + 1 body calculations to
calculate the inelastic cross sections to the first 2+ state of
16C at 33 MeV/nucleon. We plot these cross sections in the
laboratory frame in Fig. 9, using both the KD (solid line) and
CH (dot-dashed line) potentials and compare them with the
data of Ref. [34]. Dashed and dotted lines are corresponding
calculations when we consider only the ground and 2+

1 states
of 16C. Reaction kinematics limits our calculations within
θlab = 3.6◦ and full CDCC calculations are not very different
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than those with only the 0+
1 and 2+

1 states of 16C, which
is consistent with Ref. [35]. However, our calculated cross
sections up to around 2◦ are nearly double to those reported in
Ref. [35] where p- 16C potential was microscopically derived
by folding the Melbourne g-matrix NN interaction with the
target densities obtained from the antisymmetrized molecular
dynamics. This again indicates a need for proper potential at
this energy.

VII. CONCLUSION

The goal of the present work is the study of 16C +p and
16C +d scattering, by including breakup effects. The 16C nu-
cleus is described by a 14C +n + n three-body configuration
and its breakup is simulated by pseudostates. In 16C +d , the
target d is defined by a p + n structure, and pseudostates
are also included. This leads to very demanding calculations,
since the total number of channels are the product of 16C
and of d states. This can be achieved, however, with modern
computer facilities.

In 16C +p, we have shown that a fair agreement with the
recent data of Ref. [3] can be obtained. Breakup effects are
not strong, but improve the agreement with experiment for
θ > 40◦. As a general statement, the availability of data at
large angles would be extremely helpful to assess the models.
We have shown that the sensitivity to breakup effects increases
at large angles.

The 16C +d elastic scattering is reasonably well repro-
duced by the five-body CDCC model, considering that there
is no adjustable parameter. Our results suggest that both the
16C and deuteron breakups have an influence on the elastic
scattering cross section. This confirms a previous conclusion
on 11Li +d scattering [6]. However, due to the deeply bound
nature of 16C as compared to 11Li, nonelastic effects below
60◦ are mainly contributed by the 2+

1 state of 16C.
Although the B(E2) value in 16C is small in the three-body

model without effective charge, the inelastic cross sections are
in reasonable agreement with experiment. This stems from
the low influence of the Coulomb interaction for light targets.
The inelastic cross sections are therefore mainly sensitive to
nuclear effects.
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