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Coulomb-nuclear dynamics in the breakup of the weakly bound 8Li nucleus

B. Mukeru,1,* J. Lubian ,2,† and Lauro Tomio 3,‡

1Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa
2Instituto de Física, Universidade Federal Fluminense, Avenida Litoranea s/n, Gragoatá, Niterói, RJ, 24210-340, Brazil

3Instituto de Física Teórica, Universidade Estadual Paulista, 01140-070 São Paulo, SP, Brazil

(Received 1 May 2021; revised 6 December 2021; accepted 25 January 2022; published 4 February 2022)

A detailed study of total, Coulomb, and nuclear breakup cross sections dependence on the projectile ground-
state binding energy εb is presented by considering the 8Li + 12C and 8Li + 208Pb breakup reactions. To this end,
apart from the experimental one-neutron separation energy of 8Li nucleus (εb = 2.03 MeV), lower values of εb

down to εb = 0.01 MeV, are also being considered. It is shown that all breakup processes become peripheral as
εb → 0.01 MeV, which is understood as due to the well-known large spacial extension of ground-state wave
functions associated to weakly bound projectiles. The Coulomb breakup cross section is found to be more
strongly dependent on εb than the nuclear breakup cross section, such that the Coulomb breakup becomes more
significant as εb decreases, even in a naturally nuclear-dominated reaction. This is mainly due to the long-range
nature of the Coulomb forces, leading to a direct dependence of the Coulomb breakup on the electromagnetic
transition matrix. It is also highlighted the fact that the nuclear absorption plays a minor role for small binding
when the breakup becomes more peripheral.
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I. INTRODUCTION

In the breakup of weakly bound projectiles against heavy
nuclei targets, a relevant phenomenon which has been
investigated is the Coulomb-nuclear dynamics, such that con-
siderable efforts have been made to understand the role of
Coulomb-nuclear interference and the dynamics of fragments
absorption in the breakup process. The established studies in
this matter with the corresponding most relevant works can
be found in Refs. [1–3]. For other complementary studies
done in past two decades on the Coulomb-nuclear dynamics
involving weakly bound projectiles, with particular interest to
our present investigation, we select Refs. [4–12], as well as
more recent works (among which we include contributions by
some of us) in Refs. [13–22]. Despite the advances verified by
these studies, the question on how both Coulomb and nuclear
forces interfere to produce a total breakup remains far from
being fully established. Some of the challenges emanate from
the fact that, in a Coulomb-dominated reaction, small contri-
bution of the nuclear breakup does not automatically imply
insignificant Coulomb-nuclear interference [23–27]. It could
be interesting to verify what happens in nuclear-dominated
reactions.

In view of the long-range nature of Coulomb forces, a
low breakup threshold is expected to lead to peripheral col-
lisions, where the Coulomb breakup prevails over the nuclear
breakup. In this peripheral region, the Coulomb breakup cross
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section depends on the projectile structure through the elec-
tromagnetic matrix elements of the projectile. Although not a
general rule, according to the Coulomb dissociation method
[28–31], the breakup cross section is simply the product
of the reaction parameters and the projectile dipole electric
transition probability. As the binding energy decreases, the
reaction becomes more peripheral, with the ratio between
the Coulomb breakup cross section to the nuclear counter-
part being expected to rise significantly, regardless the target
mass. Intuitively, in this case, one would expect that the total
breakup cross section becomes comparable to the Coulomb
one, owing to both dynamic and static breakup effects. From
the fact that lower is the ground-state binding, longer is the tail
of the associated wave function, the nuclear forces are fairly
stretched beyond the projectile-target radius. Therefore, for a
projectile with very weak binding energy, even the nuclear
breakup can be assumed to be a peripheral phenomenon, with
the Coulomb-nuclear interference becoming stronger in the
peripheral region.

The dependence of various reaction observables on the
projectile ground-state binding energy has being studied re-
cently in Refs. [32–37], in which different projectiles with
different binding energies have been considered. One of
the drawbacks being that all the projectiles do not have
the same ground-state structure, mass, and charge. Among
other ways to circumvent such shortcomings, at least the-
oretically, one could artificially consider different binding
energies for the same projectile (i.e., with nucleon-number
A and charge Z unchanged), within an approach that has
been adopted for instance in Refs. [34–37]. Even though a
given nucleus has fixed ground-state energy, this is a con-
venient theoretical approach to unambiguously establish the
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dependence of the reaction observables on the projectile bind-
ing energy.

Another important aspect in breakup dynamics, relies on
possible effects on other reaction observables, such as on
fusion cross sections. While it is widely understood that the
complete fusion suppression strongly depends on the pro-
jectile breakup threshold (see Ref. [38], for recent related
studies), strong charge clustering has recently been identi-
fied as the main factor responsible for such suppression, in
the breakup of 8Li on a heavy target [39]. Some behavior
in the breakup of this nucleus, has also been reported in
Refs. [40,41]. Unlike several other loosely bound nuclei (such
as 8B, 6,7Li, and 11Be), not much has been reported on the
breakup dynamics of the 8Li nucleus.

In view of the above discussion, we are motivated to
study the breakup of 8Li nucleus, within a model in which
a valence neutron (n) is loosely bound to the 7Li nucleus
by a binding energy εb = 2.03 MeV [42], by considering the
light and heavy targets 12C and 208Pb. The present study on
the 8Li + 208Pb breakup reaction is also extending a previous
recent analysis for this reaction done in Ref. [37], where
a critical angular momentum for complete fusion was also
considered. We are particularly interested in analyzing the de-
pendence of the resulting total, Coulomb, and nuclear breakup
cross sections, as well as the Coulomb-nuclear interference,
on the projectile ground-state binding energy, in order to
test the validity of the assumptions presented in the previous
paragraphs. Within a more detailed investigation, we expect
to show that for a much weaker projectile binding energy,
the Coulomb breakup becomes dominant regardless the target
mass, and the nuclear breakup becomes relatively peripheral,
leading to a peripheral Coulomb-nuclear interference. Since
both Coulomb and nuclear breakup cross sections increase
with the decrease of the binding energy, a clear separation
of their effects is not a simple task. The choice of 12C and
208Pb as the targets is motivated by the fact that, in the former
case, the reaction should be dominated by the nuclear breakup,
whereas it is dominated by Coulomb breakup in the latter case.
If fact, 12C was also used in Ref. [26], as a reference target
when studying the 11Be Coulomb dissociation on 208Pb target.
In our approach to obtain the corresponding total, Coulomb
and nuclear breakup cross sections, we adopt the continuum
discretized coupled channels (CDCC) formalism [43], with
the FRESCO code [44] being used for the numerical solutions.

The next sections are organized as follows. Section II pro-
vides some details on the model approach with a summary of
the CDCC formalism. Section III contains the main results for
elastic and breakup cross sections, together with our analysis
on the Coulomb-nuclear interference and possible absorption
contributions. Finally, Sec. IV presents a summary with our
conclusions.

II. FORMALISM AND COMPUTATIONAL APPROACH

A. Brief description of the CDCC formalism

As mentioned in the Introduction, in our numerical ap-
proach we use the CDCC formalism, in which we model the
projectile 8Li as 7Li core nucleus, to which a neutron is loosely

bound with ground-state energy εb = 2.03 MeV. This state is
defined in the core-neutron center-of-mass (c.m.) by n = 1,
�0 = 1, ȷ̃π

0 = 2+ quantum numbers, where n stands for the
radial state, �0 the orbital angular momentum, and ȷ̃π

0 the pro-
jectile total angular momentum with parity π . It is obtained
by applying the usual spin-orbit coupling j0 = �0 + 1/2; ȷ̃0 =
j0 + Ic with the core spin Ic = 3/2. In addition to the ground
state, an excited bound state with energy εex = 0.98 MeV
(located in the ȷ̃π

0 = 1+ state [42]) was also considered in our
coupling scheme. We would like to emphasize that we are not
considering possible core excitations in our calculations.

In this formalism, we first consider the expansion of the
three-body wave function on the projectile internal states.
After that, by introducing the three-body expansion into the
corresponding Schrödinger equation, a one-dimensional ra-
dial set of coupled differential equations can be derived for
the radial wave-function components χLJ

α (R), in terms of the
projectile-target c.m. coordinate R, which is given by

[
− h̄2

2μpt

(
d2

dR2
− L(L + 1)

R2

)
+ U LLJ

αα (R)

]
χLJ

α (R)

+
∑

α′L′(α′ �=α)

U LL′J
αα′ (R)χL′J

α′ = (E − εα )χLJ
α , (1)

where L is the orbital angular momentum associated with R,
J is the total angular momentum, and μpt the projectile-target
(pt) reduced mass. The total energy is given by E with εα

being the projectile bin energies. The index α appearing in
the equation is representing a set of quantum numbers de-
scribing the projectile states, as given by α ≡ (i, �, s, j, Ic, ȷ̃ ),
i = 0, 1, 2, . . . , Nb (Nb = number of bins).

With the projectile-target potential given as a sum of the
core-target (ct) and neutron-target (nt) terms, i.e., Upt (r, R) =
Uct (Rct ) + Unt (Rnt ), where Rct ≡ R + 1

8 r and Rnt ≡ R − 7
8 r

(with r being the projectile internal coordinate), the potential
matrix elements U LL′J

αα′ (R) in Eq. (1) are given by its Coulomb
and nuclear parts, such that

U LL′J
αα′ (R) = 〈YαL(r,�R)|V Coul

ct (Rct )|Yα′L′ (r,�R)〉
+ 〈YαL(r,�R)|U nucl

ct (Rct )|Yα′L′ (r,�R)〉,
+〈YαL(r,�R)|U nucl

nt (Rnt )|Yα′L′ (r,�R)〉 (2)

where YαL(r,�R) ≡ [�̂α (r) ⊗ iLY 	
L (�R)]JM is the direct

product of the angular part of R with the projectile channel
wave function, �̂α (r), which contains the square integrable
discretized bin wave functions. The nuclear terms express
the sums of real and imaginary parts. The former are re-
sponsible for the nuclear dissociation, whereas the latter
accounts for the nuclear absorption. These nuclear terms are
respectively given by U nucl

ct (Rct ) = V nucl
ct (Rct ) + iW nucl

ct (Rct )
and U nucl

nt (Rnt ) = V nucl
nt (Rnt ) + iW nucl

nt (Rnt ), with the Woods-
Saxon shape being adopted for both components. The
diagonal coupling matrix elements U LLJ

αα (R), contain the
monopole nuclear term in the projectile-target c.m., which we
denote by V LJ

β0β0
(R) = 〈�β0 (r)|U nucl

ct + U nucl
nt |�β0 (r)〉, where

β0 represents the set of ground-state projectile quantum num-
bers, β0 ≡ (k0, �0, s, j0, Ic, ȷ̃0). The imaginary part accounts
for the absorption in the projectile-target c.m. motion.
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The separation of the Coulomb and nuclear interactions to
obtain the Coulomb and nuclear breakup cross sections (σCoul

and σnucl, respectively) remains a challenge in present theo-
ries, making an accurate description of the Coulomb-nuclear
interference a more tricky task. For that, in this work we resort
to an approximate approach, as follows: The nuclear breakup
cross sections, defined as σnucl, are obtained by including
in the coupling matrix elements, the nuclear components of
Uct and Uvt potentials, plus the diagonal monopole Coulomb
potential. On the other hand, the Coulomb breakup cross
sections, defined as σCoul, are obtained by including in the ma-
trix elements the Coulomb component of the projectile-target
potential, i.e., V Coul

ct (Rct ) (as V Coul
nt = 0), plus the monopole

nuclear potential. The total breakup cross sections σtot are
obtained by including the full Upt potential in the calculations.

Since the early works on Coulomb and nuclear breakup
studies [4,5], this approach has been widely adopted to study
Coulomb and nuclear breakup cross sections, as one can fol-
low from the review [45] (and references therein). In Ref. [20],
where different methods are considered in order to decompose
the total breakup into its Coulomb and nuclear components,
this approach is also referred as weak-coupling approxima-
tion. Two methods emerged from their discussion, which they
refer to as method 1 and method 2. The weak-coupling ap-
proximation is very close to method 1 for nuclear breakup, and
close to method 2 for Coulomb breakup. While this approxi-
mate procedure will not completely eliminate the ambiguities
surrounding the separation of the total breakup cross section
into its Coulomb and nuclear components (as also outlined
in Ref. [20]), we believe that it is particularly justified in
the present work, since by using the 12C target, the breakup
is naturally dominated by nuclear dissociation, whereas by
using the 208Pb target the breakup is dominated by Coulomb
dissociation.

Once the matrix elements (2) are computed, the coupled
equation (1) is solved with the usual asymptotic conditions,
which for kα ≡

√
(2μpt/h̄2)(E − εα ) is given by

χLJ
α (R)

R→∞−→ i

2

[
H−

α (kαR)δαα′ − H+
α (kαR)SLL′J

αα′
]
, (3)

where H∓
α (kαR) are the usual incoming (−) and outgoing

(+) Coulomb Hankel functions [46] with Sαα′ (kα ) being the
scattering S-matrix elements. Due to the short-range nature
of nuclear forces, the matrix elements corresponding to the
nuclear interaction in Eq. (2) will vanish at large distances,
R � Rn, where

Rn ≡ r0
(
A1/3

p + A1/3
t

) + δR(εb) ≡ R0 + δR(εb) (4)

determines the range of the nuclear forces (r0 being the nu-
cleon size, with r0A1/3

p and r0A1/3
t the projectile and target

sizes, respectively). The function δR(εb) is introduced to take
into account the well-known effect which occurs in weakly
bound systems (low breakup thresholds), as in halo nuclei,
in which the nuclear forces can be stretched beyond R0 =
r0(A1/3

p + A1/3
t ). The various breakup cross sections are ob-

tained by using the relevant S matrix, as outlined for example
in Ref. [2].

At large distance (R → ∞), Eq. (2) contains only the
Coulomb interaction, which can be expanded as [47]

V Coul(r, R)
R→∞−→ 4πZt e

λmax∑
λ=0

√
2λ + 1

Rλ+1

[Oε
λ(r) ⊗ Yλ(�R)

]0
,

(5)

where Zt e is the target charge with λ the multipole order
truncated by λmax. Oε

λ(r) is the projectile electric operator
given by

Oε
λμ(r) =

[
Zce

(
−An

Ap

)λ]
rλY μ

λ (�r ) = ZλrλY μ
λ (�r ), (6)

where Zce is the charge of the projectile core, with Zλ be-
ing defined as the effective charge. The projectile electric
transition probability for the transition from the projectile
ground-state to the continuum states can be obtained through
Oε

λ(r) [48]. For excitation energies ε, the corresponding vari-
ation of the electric transition probability B(Eλ) can be
written as

dB(Eλ)

dε
= μcn

h̄2k

∑
ȷ̃

(2ȷ̃ + 1)
∣∣〈�β0 (r)

∣∣Oε
λ(r)|�β (r)〉∣∣2

, (7)

where (β) refers to the set of quantum numbers in the
continuum states β ≡ (k, �, s, j, Ic, ȷ̃ )], k =

√
2μcnε/h̄2, k0 =√

2μcn|ε0|/h̄2 with μcn the core-neutron reduced mass. By
defining l̂ ≡ √

2l + 1 for general angular quantum numbers,
from the above we obtain

dB(Eλ)

dε
= μcn

h̄2k

∑
ȷ̃

(2ȷ̃ + 1)|Fλ,ȷ̃ |2 with

Fλ, j ≡ 1

4π
Zλ�̂0�̂λ̂

2 ĵ0 ĵ(−1)�0+�+s+ j+ j0+Ic+ȷ̃

×
(

� λ �0

0 0 0

)(
j λ j0
0 0 0

){
s �0 j0
λ j �

}

×
{

Ic j0 ȷ̃0
λ ȷ̃ j

} ∫ ∞

0
dr uȷ̃0

k0�0
(r)rλuȷ̃

k�
(r), (8)

where uȷ̃0
k0�0

(r) and uȷ̃
k�

(r) are the ground-state and contin-
uum radial wave functions. Equations (5)–(8) are indicating
how the Coulomb breakup is being affected by the projectile
structure.

B. Computational details

The energies and corresponding wave functions which ap-
pear in the set of coupled differential Eqs. (1), for the bound
and continuum states of the 7Li +n system, are obtained
by considering a two-body Woods-Saxon potential as input,
whose parameters are the same as in Ref. [49]. The depth V0 of
the central part of the potential was adjusted to reproduce the
ground and excited bound-state energies. These parameters
are summarized in Table I.

Similarly, the other binding energies considered in this
work are obtained by adjusting V0. The same ground-state po-
tential parameters are adopted to calculate the corresponding
continuum wave functions. With these potential parameters,
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TABLE I. Woods-Saxon potential parameters for the projectile
(n − 7Li) ground and excited bound-state energies.

V0 r0 a0 VSO rSO aSO

ȷ̃π (MeV) (fm) (fm) (MeV/fm2) (fm) (fm)

2+ 37.22 1.25 0.52 4.89 1.25 0.52
1+ 46.65 1.25 0.52 4.89 1.25 0.52

we first calculate the electric transition probability B(E1)
variation with the excitation energy ε, given by Eq. (8),
corresponding to the transition from the ground-state to
continuum s plus d states, for the binding energies εb =
0.01 MeV, 1.0 MeV, and 2.03 MeV. The results are shown
in the upper panel of Fig. 1. One notices that B(E1) varies
substantially for εb = 0.01 MeV as compared with values
obtained for larger εb. These results highlight the strong
dependence of the Coulomb breakup on the projectile inter-
nal structure, particularly in the asymptotic region. In this
regard, it is also instructive to verify how the projectile
root-mean-square radii

√
〈r2〉 vary with the projectile ground-

state binding energies. For that, we add the lower panel of
Fig. 1, with the corresponding root-mean-square radii, ob-
tained for the projectile ground state �β0 (r). As expected,

FIG. 1. In (a), considering three different 7Li -n ground-state
binding energies εb, it is shown how the derivative of the electric
transition probability, given by Eq. (8), varies with the excitation
energy ε, for transitions from ground to continuum s plus d states. In
(b), the root-mean-square radii is shown as a function of the binding
energy εb.

TABLE II. Maximum model space parameters, for optimal nu-
merical convergence of Eq. (1) for both 12C and 208Pb targets. The
main reported values are for εb � 0.4 MeV, with the corresponding
ones within parenthesis for εb � 0.08 MeV.

�max εmax rmax Lmax Rmax �R
Target (h̄) λmax (MeV) (fm) (h̄) (fm) (fm)

12C 3 3 6 80 300 300 0.08
(100) (1000) (500)

208Pb 4 4 10 80 1000 600 0.03
(100) (10000) (1000)

the root-mean-square radii behavior is reflecting the large
increasing of the wave function as the binding energy comes
close to zero. Also, for εb = 2.033 MeV, we note that we
obtain

√
〈r2〉 = 2.39 fm, in very close agreement with the

corresponding values reported in Refs. [50,51] (respectively,√
〈r2〉 = 2.39 ± 0.05 fm and

√
〈r2〉 = 2.37 ± 0.02 fm).

In order to evaluate the coupling matrix elements of
Eq. (1), fragments-target optical potentials are needed. The
7Li + 12C optical potential parameters were taken from
Ref. [52], whereas the 7Li + 208Pb optical potential parame-
ters were obtained from the 7Li global potential of Ref. [53]
with the depth of the real part slightly modified to fit the
elastic scattering experimental data. For the n-target optical
potentials, we adopted the global potential of Ref. [54]. The
CDCC limiting values of the model space parameters, used
for the numerical solution of Eq. (1), are listed in Table II,
for the two targets we are considering, 12C and 208Pb, where
�max is the maximum angular momentum between 7Li and the
neutron, λmax is the maximum order of the potential multi-
pole expansion, εmax is the maximum bin energies, rmax is
the maximum matching radius for bin potential integration,
Lmax is the maximum angular momentum of the relative c.m.
motion, and Rmax is the maximum matching radius of the
integration for the coupled differential equations, with �R
the corresponding R-step size. The reported main values are
found to give enough converged results for εb � 0.4 MeV.
However, as we decrease the projectile binding energy, for
εb � 0.08 MeV, to guarantee enough good convergence and
precision of the results we found necessary to increase the
maximum values for the projectile matching radius rmax, for
the matching radius Rmax, and for the relative angular mo-
mentum of the c.m. motion, Lmax, corresponding to each of
the targets. These values for smaller εb are shown within
parentheses below the respective values obtained for larger
εb. The adopted bin widths were �ε = 0.5 MeV, for s and p
states, �ε = 1.0 MeV, for f and d states and �ε = 1.5 MeV
for g states.

III. RESULTS AND DISCUSSION

A. Elastic scattering cross sections

We start the first part of this section by analyzing the
dependence of the elastic scattering cross sections on the
projectile ground-state binding energy. These cross sections
are displayed in Fig. 2 for the 12C target and in Fig. 3 for
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FIG. 2. 8Li + 12C elastic scattering cross sections for the incident
energies, Elab = 14 MeV and Elab = 23.9 MeV. The model results
are for different 8Li binding energies εb (in MeV units), as indicated
inside (a) for both panels. The available experimental data, converted
to Rutherford σR units, are from Refs. [55] (a) and [52] (b), as
indicated in the database reported in Ref. [56].

the 208Pb target, considering two incident energies. In both
the cases, we assume different values of εb, from the exper-
imental one down to 0.01 MeV. In the case of 12C target,
which is a nuclear-dominated reaction, from the results shown
in Fig. 2 one can observe a weak dependence on εb in the
range 0.4 MeV � εb � 2.03 MeV, for both incident energies,
Elab = 14 MeV [panel (a)] and 24 MeV [panel (b)]. However,
it becomes relatively significant for εb � 0.08 MeV [see panel
(a)]. Also shown in Fig. 2 is that the experimental data are well
reproduced by the model for both incident energies.

For the Coulomb-dominated reaction with 208Pb, the re-
sults given in Fig. 3 for Elab = 36 MeV (a) and 60 MeV (b)]
are indicating strong dependence of the elastic scattering cross
sections on all binding energies at forward angles (asymptotic
region), where the Coulomb breakup is particularly domi-
nant. However, at backward angles (short distance), where the
nuclear breakup is expected to provide meaningful effects,
the elastic cross sections become almost independent of the
binding energy.

These results lead to a conclusion that, when the nuclear
breakup is dominant or relatively significant, the effect of the
binding energy on the elastic scattering cross section is rather
small, whereas it is more pronounced when the Coulomb
breakup is dominant. Therefore, since a relatively signifi-
cant effect for the 8Li + 12C reaction is observed when εb �
0.08 MeV, it is possible that the 8Li + 12C reaction is already
dominated by the Coulomb breakup for εb � 0.08 MeV. As
the binding energy decreases, the Coulomb breakup becomes
dominant over its nuclear counterpart, as anticipated. It also
follows that the probability of the projectile to fly on the

FIG. 3. 8Li + 208Pb elastic scattering cross sections (in units of
the Rutherford σR), obtained for the incident energies Elab = 36 MeV
(a) and Elab = 60 MeV (b). As in Fig. 2, the results are for the
same set of εb (in MeV). From Ref. [57], we included in (a) the
closest available experimental data, which are for Elab = 30.6 MeV,
as indicated in the database reported in Ref. [56].

outgoing trajectory unbroken decreases, diminishing the cor-
responding elastic scattering cross section. In the next section,
we will look into this observation in more detail.

B. Breakup cross sections

The differential total, Coulomb, and nuclear breakup cross
sections, for the 12C target, are depicted in Fig. 4, for
Elab = 14 MeV [(a)–(e) panels] and Elab = 24 MeV [(f)–(j)
panels]. As anticipated, in the case of nuclear-dominated reac-
tions, for both incident energies, dσnucl/d� 
 dσtot/d� �
dσCoul/d� as εb → 2.03 MeV with dσCoul/d� → 0. How-
ever, it is interesting to notice that as εb decreases, the
Coulomb breakup increases rapidly, such that for εb →
0.01 MeV, dσnucl/d� � dσCoul/d� 
 dσtot/d� at forward
angles, for both incident energies. On the light of these results
it follows that as the binding energy further decreases, the
Coulomb breakup becomes more relevant, and comparable
with the total breakup even in such a naturally nuclear-
dominated reaction. This can be attributed to the fact that the
breakup becomes more peripheral as εb decreases, where only
Coulomb forces are available. Hence, the importance of the
Coulomb breakup in this case relies mainly on the long-range
behavior of the Coulomb forces, and on its direct dependence
on the electromagnetic transition matrix elements, in agree-
ment with our assessment in Sec. III A. Furthermore, these

024603-5



B. MUKERU, J. LUBIAN, AND LAURO TOMIO PHYSICAL REVIEW C 105, 024603 (2022)

FIG. 4. For incident energies E lab = 14 MeV (left) and Elab =
24 MeV (right) with fixed different εb (shown inside the panels), the
8Li + 12C angular distributions for the total, Coulomb and nuclear
differential breakup cross sections dσ/d� (identified inside the up-
per panels) are shown as functions of the c.m. angle θ .

results show that the “nuclear-dominated reaction” concept
may be relative to the projectile binding energy.

As the projectile binding energy varies from 2.03 MeV
down to 0.01 MeV, one may wonder how relevant higher-
order partial waves (�) are in the breakup process for such
very low binding energy, particularly for heavy targets. In
order to verify the importance of higher-order partial-waves
in this case, we performed a convergence test of the total,
Coulomb, and nuclear differential breakup cross sections for
208Pb target at Elab = 36 MeV. The different breakup cross
sections are shown in Fig. 5, as functions of the c.m. angle
θ , for different maximum projectile internal angular momenta
�max, and only for εb = 0.01 MeV and 2.03 MeV binding
energies. As evidenced by the results in this figure, there is
no meaningful difference between �max = 4 and �max = 7,

FIG. 5. Convergence sample results for the 8Li + 208Pb, total (up-
per frames), Coulomb (middle frames), and nuclear (bottom frames)
breakup angular distributions, dσ/d�, at Elab = 36 MeV, consid-
ering different maximum projectile internal angular momenta �max

(indicated in the upper-left frame). The left set [(a)–(c)] is for εb =
0.01 MeV with the right set [(d)–(f)] for εb = 2.03 MeV.

regardless the binding energy. This implies that, by reduc-
ing the ground-state binding energy, the convergence of the
breakup cross sections is not affected, in respect to the maxi-
mum core-neutron orbital angular momentum �max.

In Fig. 6, displays, the total, Coulomb, and nuclear breakup
angular cross-section distributions as functions of the c.m.
angle θ , for the different binding energies εb, for 8Li + 208Pb
reaction. We first observe that as εb decreases, the peaks of
dσtot/d� and dσCoul/d� are shifted to forward angles. In fact,
for εb � 0.08 MeV, the peaks are located close to zero degree.
This is a clear display of the peripheral nature of the breakup
process as εb decreases. A careful look at this figure also
indicates that as εb decreases, even the peak of dσnucl/d� is
shifted to forward angles, which may suggest that even the nu-
clear breakup process becomes peripheral as εb → 0.01 MeV.
The peripherality of the nuclear breakup, in this case, can
be understood by considering the function δR(εb), which ap-
pears in Eq. (4). The nuclear breakup dynamics require that
δR(εb) → 0, as εb increases, implying that Rn → R0, due to
the short-range nature of nuclear forces. However, as εb → 0,
δR(εb) increases and so does Rn, leading to a significant nu-
clear effect in the peripheral region. Therefore, the function
δR(εb) is introduced to take into account the well-known effect
which occurs in weakly bound systems, as in halo nuclei, in
which the nuclear forces are stretched beyond the usual range.

Quantitatively, since this 8Li + 208Pb reaction is Coulomb
dominated, we observe that at forward angles both dσtot/d�
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FIG. 6. For incident energies Elab = 36 MeV (left) and Elab =
60 MeV (right) with fixed different εb (shown inside the panels), the
8Li + 208Pb angular distributions for the total, Coulomb, and nuclear
dσ/d� (identified in the upper panels) are shown as functions of the
c.m. angle θ .

and dσCoul/d� are substantially larger than dσnucl/d� (about
three orders of magnitude as εb decreases). A further inspec-
tion of this figure shows that for Elab = 60 MeV, we notice
that the total and Coulomb breakup cross sections are more
similar compared to Elab = 36 MeV with the difference com-
ing from the competition between the nuclear and Coulomb
interactions above the barrier (for a discussion on the role of
the diagonal Coulomb interaction, see also Ref. [22]).

In order to better elucidate the importance of the nuclear
absorption in the breakup process, we present in Fig. 7, for
the 8Li + 208Pb reaction, the integrated total breakup cross
section as well as the total fusion cross sections as functions

FIG. 7. For the 8Li + 208Pb reaction, by considering Elab =
36 MeV (a) and 60 MeV (b), it is shown the integrated breakup
cross sections (BU) (when both W nucl

ct and W nucl
nt are contributing),

the breakup cross section without absorption (NA) (when W nucl
ct =

W nucl
nt = 0), and the total fusion cross section (TF), as functions of

the projectile binding energy εb.

of εb. In this regard, we are extending a previous analysis
done for this reaction in Ref. [37], in which the total fusion
cross sections are shown as functions of the incident energy
for different projectile binding energies. The breakup cross
section obtained in the presence of nuclear absorption (i.e.,
W nucl

ct �= 0, W nucl
nt �= 0), are indicated by the label “BU”. The

breakup cross section obtained in the absence of nuclear ab-
sorption (i.e, Wct = Wnt = 0), are indicated by “NA”. The total
fusion cross section is labeled as “TF”. By observing this fig-
ure, it follows that, as εb → 2.03 MeV, the nuclear absorption
contributes to largely reduce the breakup cross section about
one order magnitude in the log-scale. However, we observe
that the nuclear absorption plays a minor role on the breakup
cross section for smaller binding energies, being negligible for
εb → 0.01 MeV, in particular at Elab = 60 MeV. In this case,
σNA 
 σBU � σTF, (where σBU is the breakup cross section
followed by fragments absorption, and σNA is the breakup
cross section without fragments absorption after breakup). A
larger breakup cross section over the total fusion cross section
can be understood as due to the fact that, when the breakup
occurs where classically the trajectory is far away from the
target, the projectile fragments have no easy access to the
absorption region, thus significantly reducing the flux that
contributes to the fusion cross section. However, as expected,
as εb → 2.03 MeV, where the breakup process occurs closer
to the target, where the probability for the projectile fragments
to survive absorption is significantly reduced, we observe that
σBU � σNA < σTF. A weak dependence of the total fusion
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FIG. 8. For the 8Li + 12C breakup reaction, the angular-
integrated total, Coulomb, and nuclear breakup cross sections are
given as functions of the projectile binding energy εb, for the incident
energies Elab = 14 MeV (a) and 24 MeV (b).

cross section on the binding energy compared to the breakup
cross section is also observed. The energy region well above
the Coulomb barrier is particularly dominated by the complete
fusion process. As shown in Ref. [35], the complete fusion
cross section is insignificantly dependent on the projectile εb

for 7Li + 209Bi reaction. We believe that these observations
would be valid for any loosely bound projectile, and hence
there is nothing unusual in the breakup of the 8Li nucleus.

Concerning our approach to total fusion (TF) and absorp-
tion, let us clarify that: In the standard CDCC method, the
optical potentials are chosen to describe the elastic scattering
of the fragments by the target. So, their imaginary parts ac-
count for the absorption to fusion and other direct channels
(surface reactions). Nevertheless, as direct reaction cross sec-
tions are expected to be small for the interactions between
fragments and targets selected in this work, the TF cross
section provides the major contribution to this absorption.

For a better quantitative assessment of these results, we
consider the integrated total (σtot), Coulomb (σCoul), and nu-
clear (σnucl) breakup cross sections, which are displayed as
functions of εb in Fig. 8 (for the 12C target), and in Fig. 9
(for the 208Pb target). The results in both figures confirm the
conclusions already drawn from Figs. 4 and 6. For example,
both panels of Fig. 8, show that as εb → 0.01 MeV, σCoul >

σnucl (σCoul 
 σtot), whereas σCoul < σnucl 
 σtot (σnucl 
 σtot)
as εb → 2.03 MeV. For 208Pb target, the results are shown
in the presence of nuclear absorption. When the nuclear ab-
sorption is taken into account [panels (a) and (b)], we notice
that σCoul 
 σtot � σnucl and this is independent of εb. In the
absence of the nuclear absorption [panels (c) and (d)], while

FIG. 9. The angular-integrated total, Coulomb, and nuclear
breakup cross sections are given for the 8Li + 208Pb breakup reaction
as functions of εb with nuclear absorption in (a) and (b); and without
absorption in (c) and (d). As indicated, the incident energies are
Elab = 36 MeV [(a) and (c)] and 60 MeV [(b) and (d)].

σCoul 
 σtot � σnucl remains valid for εb → 0.01 MeV, it is
noticed that σtot 
 σnucl > σCoul, for εb → 2.03 MeV, which
further highlights the importance of the nuclear absorption
for large binding energies. The results in this figure further
support the fact that strong nuclear absorption in the inner
region is the main factor that dictates the importance of the
Coulomb breakup cross section over its nuclear counterparts.
In Table III, we provide more quantitative results, given
as fractions from σtot and σnucl, reflecting the competition
between the different cross sections, by selecting the two lim-
iting binding energies we are studying, i.e., εb = 0.01 MeV
and εb = 2.03 MeV. We are also including σint, as defined by

σint = σtot − (σCoul + σnucl ), (9)

which we naively regard as the Coulomb-nuclear interfer-
ence and that will be discussed in the next subsection. From
this table, it becomes evident that, when εb decreases, σCoul

(approaching to σtot) becomes substantially larger than σnucl.
Also, for the light 12C target, at Elab = 14 MeV and 24 MeV,
we note that σCoul/σnucl rapidly grows, when varying εb from
2.03 MeV down to 0.01 MeV. As shown, in this energy in-
terval, σCoul/σnucl increases from 0.03 to 3.12 for 14 MeV,
and from 0.06 to 2.10 for 24 MeV. This indicates that, as
the binding energy decreases, the 8Li + 12C reaction becomes
like a “Coulomb-dominated reaction”, with the emergence
of a long-range behavior. Moreover, with the heavy target
at Elab = 36 MeV, in the presence of nuclear absorption, for
εb = 2.03 MeV, σCoul/σnucl = 12, whereas σCoul/σnucl 
 90
for εb = 0.01 MeV. It is noticed in this case that this ratio
is substantially affected in the absence of nuclear absorp-
tion (NA), becoming σCoul/σnucl 
 0.06 (εb = 2.03 MeV),
and σCoul/σnucl 
 34 (εb = 0.01 MeV).
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TABLE III. Coulomb, nuclear, and interference cross-sections for the 8Li + 12C and 8Li + 208Pb, considering n − 7Li binding energies
εb = 0.01 MeV and 2.03 MeV. For each target, we present our results, in terms of ratios, for two colliding energies. For 208Pb target, with
no-nuclear absorption (NA) the results are shown within parenthesis below the ones with absorption.

Elab εb = 2.03 MeV εb = 0.01 MeV

Target (MeV) σCoul
σtot

σnucl
σtot

σCoul
σnucl

σint
σnucl

σint
σtot

σCoul
σtot

σnucl
σtot

σCoul
σnucl

σint
σnucl

σint
σtot

12C 14 0.024 0.824 0.029 0.186 0.153 0.836 0.268 3.123 −0.387 −0.104
24 0.048 0.808 0.059 0.190 0.154 0.701 0.339 2.069 −0.118 −0.040

208Pb 36 1.800 0.150 12.00 −6.333 −0.950 1.033 0.012 90.16 −3.850 −0.044
(0.344) (1.481) (0.232) (−0.557) (−0.825) (1.032) (0.029) (33.97) (−2.061) (−0.063)

60 1.326 0.087 15.25 −4.750 −0.413 1.015 0.010 104.6 −2.540 −0.025
(0.198) (0.783) (0.253) (0.025) (0.019) (1.000) (0.059) (17.03) (−0.991) (−0.058)

C. Coulomb-nuclear interference

It is well known that the incoherent sum of the Coulomb
and nuclear breakup cross section (σCoul + σnucl ) is always
different from their coherent sum, σtot, due to the Coulomb-
nuclear interference effect. To assess this effect in the context
of very weak ground-state binding energy, we consider σint

as defined in Eq. (9) to estimate the Coulomb-nuclear inter-
ference. Given that, for the two limiting binding energies, the
quantitative results for σint are already furnished in Table III
as ratios with respect to σtot and σnucl. In Figs. 10 and 11
(respectively, for 12C and 208Pb targets), we provide the exact
σint behaviors, together with their respective ratios σint/σtot,
as functions of εb, in a way to clarify that the differences be-
tween σtot and (σCoul + σnucl ) are quite large in both the cases
with the amount varying with Elab (|σint| decreasing with in-
creasing Elab). The Coulomb-nuclear interference is strongly

FIG. 10. The 8Li + 12C integrated Coulomb-nuclear interference
σint (a), given by Eq. (9) with the respective ratio σint/σtot (b), are
shown as functions of εb, for the colliding energies Elab = 14 and
24 MeV.

dependent on εb. As one can notice, it appears to increase as
εb decreases, and becomes quite small as εb → 2.03 MeV.

For the 8Li + 208Pb reaction, nuclear absorption which is
already shown to reduce the breakup cross section (Fig. 7),
is expected to be more relevant on the Coulomb-nuclear in-
terference. The Coulomb-nuclear interference obtained when
the breakup is followed by nuclear absorption (i.e., W nucl

ct �=
0,W nucl

nt �= 0), is denoted by σ WA
int (WA standing for “with

absorption”), and by σ NA
int the Coulomb-nuclear interference

obtained when W nucl
ct = W nucl

nt = 0. Therefore, in order to
assess the relevance of the nuclear absorption on this inter-
ference, we compare σ WA

int with σ NA
int . The results are presented

in Fig. 11. In this figure, panels (a) and (b) are for the exact σint

results, whereas in panels (c) and (d) we have the respective
ratios σint/σtot. The upper panels are for Elab = 36 MeV, and
the lower panels for Elab = 60 MeV. The absorption contribu-
tion to σint is verified by the observed difference |σ NA

int − σ WA
int |,

which are clearly shown for both Elab energies, as εb varies.
Besides the fact that the Coulomb-nuclear interference is

shown to be larger in the very small binding energy lim-
its, such larger values may also be influenced by the large
magnitudes of the total and Coulomb breakup cross sections,

FIG. 11. The 8Li + 208Pb integrated Coulomb-nuclear interfer-
ence σint [(a) and (b)], given by Eq. (9) with their ratios σint/σtot

[(c) and (d)], are shown as functions of εb, for Elab = 36 and 60 MeV
(upper and lower frames, respectively). σ WA

int (solid lines) denotes
the interference when the breakup is followed by nuclear absorption
with σ NA

int (dot-dashed lines) denoting interference with no nuclear
absorption.
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which are shown in Figs. 9 and 10. However, as verified from
Table III, the ratios σCoul/σtot for the smaller binding are
enough deviating from one (when full absorption is consid-
ered, in the 208Pb case). Consistently, we also noticed from
the results given in Table III, that σint/σtot is larger for εb =
2.03 MeV when we have the usual cross section values with
absorption. Further investigation may be required to clarify
the εb dependence of Coulomb-nuclear interference, in sup-
port to the actual results that are shown an overall significant
effect of nuclear absorption.

In the case of such weakly bound projectiles, a bet-
ter understanding of the function δR(εb), which appears in
Eq. (4), could shed more light on the complexity of the
Coulomb-nuclear interference. In such cases, Rn can signifi-
cantly deviate from R0, since the nuclear breakup dynamics
requires that δR(εb) → 0 for larger values of εb. Particu-
larly, the main characteristics of this function could show up
in a study with charged projectiles, considering that strong
Coulomb/nuclear interference has been observed for the re-
action of proton halo 8B with 58Ni target [6,8,11,58], in which
we have a very weakly-bound projectile with breakup thresh-
old of 0.137 MeV.

IV. CONCLUSION

We have presented a study on the breakup of the weakly
bound 8Li (n − 7Li) projectile on light and heavy target
masses, namely, 12C and 208Pb. Our main objective was to
investigate the dependence of the total, Coulomb and nuclear
breakup cross sections, on the 8Li ground-state binding energy
εb, in order to study the peripherality of the total, Coulomb
and nuclear breakup processes, which are associated to the
weaker binding energy of the projectile. To this end, apart
from the experimentally known ground-state binding energy
of the n − 7Li system, we artificially considered four other
binding energies, below the experimental value, down to εb =
0.01 MeV, which is much smaller than the experimental value,
εb = 2.03 MeV. From our analysis it is shown that the total,
Coulomb, and nuclear breakup processes become peripheral
as εb → 0.01 MeV, regardless the target mass. We argue that

the peripherality of the nuclear breakup in this case is pri-
marily related to the spacial extension of the corresponding
ground-state wave function, which is related to weaker bind-
ing energy. The peripheral region is determined by the range
of the nuclear forces R0, and the corresponding extension
of the ground-state wave function, which is associated to a
function δR(εb), expressed by Rn defined in Eq. (4). By taking
into account the fact that close to the n-core εb → 0 limit, a
long-range interaction is expected to emerge between projec-
tile and target (similar as for three-body halo-nuclei systems
[59]), the size of the associated wave function will increase
significantly in this limit. So, a detailed investigation of this
function δR(εb) (which should go to zero by increasing εb)
can shed more light into the dynamics of nuclear breakups
induced by loosely bound projectiles. It is also noticed that the
variation of εb strongly affects the Coulomb breakup, as com-
pared to the nuclear breakup, such that as εb → 0.01 MeV, the
Coulomb breakup becomes dominant even for the 12C target,
which is known to be naturally dominated by nuclear breakup.
Therefore, in view of this binding-energy dependence, one
may infer that the expression “naturally dominated by nuclear
breakup” may be relative to the projectile binding energy. It
is also verified that the nuclear absorption has an insignificant
effect on the total and nuclear breakup cross sections when
decreasing the binding energy to small binding such as εb →
0.01 MeV. In this small binding energy region, we found that
the total breakup cross section is larger than the calculated
total fusion cross section, while as expected, the opposite is
observed as εb → 2.03 MeV.
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