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We establish a definite parametrization of R-matrix theory, which is complete and invariant. Compared to
the traditional parametrization of Wigner and Eisenbud, our parametrization has the major advantage of having
no arbitrary boundary condition Bc, and of being constituted of scattering matrix poles Eλ, which are physical
quantities and hence invariant with the choice of arbitrary channel radii ac. Moreover, being the poles of the
scattering matrix, the definite levels Eλ correspond exactly to the nuclear resonances. Our definite parametrization
is also global and complete, meaning a finite number of definite parameters—the same number as the Wigner and
Eisenbud ones, minus the boundary conditions—can fully describe the scattering matrix on the whole complex
plane [it is thus not a local description restricted to an energy window as the previous Windowed Multipole
Representation of Ducru et al., Phys. Rev. C 103, 064610 (2021)]. These benefits come at the cost of requiring
all parameters to now be complex numbers without an explicit set of constraints, which significantly complicates
their direct nuclear data evaluation. We show that our parametrization also gives rise to shadow poles, though
we prove they can be ignored and still completely reconstruct the scattering matrix with all its poles, and thus
describe nuclear cross sections exactly. This means our parametrization only requires as many scattering matrix
poles Eλ as there are Wigner-Eisenbud resonance levels Eλ, thereby establishing a one-to-one correspondence
between the traditional Wigner-Eisenbud and our definite parametrization of R-matrix theory. Remarkably,
we show these same cross sections can also be obtained using the shadow poles instead of the principal poles.
We observe evidence of these phenomena in the spin-parity group Jπ = 1/2(−) of xenon isotope 134Xe.
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I. INTRODUCTION

When two bodies collide and interact, several outcomes
are possible, and cross sections quantify the relative likeli-
hood that any one of these outcomes occurs. As such, cross
sections are a central pillar of our collective nuclear physics
knowledge.

Since nuclear cross sections vary with the energy and
momentum of the collision, a convenient and compact way
to describe this energy dependence is desirable in order to
document all these nuclear reactions.

R-matrix theory—a two-body-in–two-body-out quantum
model of nuclear interactions—has provided such convenient
means for documentation, by establishing a set of resonance
parameters which can fully characterize nuclear cross sec-
tions [1–4].

Our knowledge of nuclear cross sections is thus captured
in the form of these resonance parameters, fitted from an
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extensive body of experimental measurements (evaluation
process), and compiled into our standard evaluated nuclear
data libraries (ENDF [5], JEFF [6], BROND [7], JENDL [8],
CENDL [9], TENDL [10,11]).

These nuclear data libraries are all based on traditional
Wigner-Eisenbud R-matrix resonance parameters, which have
many advantages, chief amongst which is the fact that these
parameters are real numbers with explicit constraints, greatly
simplifying both their evaluation and the format with which
they are reported. Perhaps the major drawback of the Wigner-
Eisenbud parametrization of R-matrix theory is that it requires
prescribing two arbitrary parameters: the boundary conditions
Bc and the channel radii ac. This means that, from the same
experimental data, carrying out two evaluations with differ-
ent prescriptions of arbitrary parameters will yield different
resonance parameter values, even though they are describing
the same physical cross section. Moreover, there is no simple
way of converting the resonance parameters obtained from
one arbitrary prescription to another.

To address this problem, physicists have proposed alterna-
tive ways of parametrizing cross sections, based on the same
R-matrix model of nuclear interactions, hoping to constitute
new improved nuclear data libraries.
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One such alternative parametrization was proposed by
Brune in [12] (building on Barker’s work [13]), and we
established new properties of this parametrization and gener-
alized it to the Reich-Moore formalism in [14]. Originally, the
Brune parametrization had the major advantage of being con-
stituted of real parameters that are independent of the arbitrary
boundary condition Bc, thus removing the need to specify any
arbitrary boundary condition Bc at all. Also, the Brune alter-
native resonance energies are closer to the resonances than
the traditional Wigner-Eisenbud resonance energies. These
two advantages have led some people to adopt the Brune
parametrization for evaluations of light nuclides [15].

And yet, the Brune parameters also have drawbacks. They
are all dependent on the arbitrary choice of channel radii
ac. Moreover, we also showed that when generalizing the
Brune parametrization to the Reich-Moore formalism (of
great practical importance for heavy nuclides [16]), the Brune
parameters become complex, and suffer from several compli-
cations [14]. Furthermore, though close to them, the Brune
alternative resonance energies do not correspond exactly to
the resonances.

This is because the natural physical quantities describing
the resonances of the interaction are the poles Eλ of the scatter-
ing matrix, which is why an entire field has been dedicated to
pole expansions of nuclear reactions (Humblet and Rosenfeld
theory of nuclear reactions [17–25], and general mathematical
theory of scattering processes [26]). While the bridge between
R-matrix theory and pole expansions was recently established
in the windowed multipole representation of R-matrix cross
sections [27,28], the major drawback of pole expansions is
that there are in general an infinity of poles Eλ to the scattering
matrix. Even in the case of a finite number of poles, there are
no explicit formulas for the nonresonant background contribu-
tions (holomorphic part of the scattering matrix Mittag-Leffler
expansion). Pole expansions are therefore bound to be lo-
cal parametrizations: limited to approximating the scattering
matrix in a certain energy region (this is the essence of the
windowed multipole representation [27]).

R-matrix theory, and in particular the Wigner-Eisenbud
parameters, were introduced for calculability reasons: to
establish a global parametrization encompassing the entire
energy range, and completely describe the scattering matrix
with a small number of parameters.

In this article, after recalling the Wigner-Eisenbud
parametrization in Sec. II, we establish in Sec. III a new defi-
nite, complete, invariant parametrization of R-matrix theory.

By completely parametrizing the scattering matrix using
only as many of its poles Eλ as there are Wigner-Eisenbud res-
onance levels Eλ (that is Nλ levels), our definite parametriza-
tion seeks to combine the best aspects of both natural pole
expansions and R-matrix complete parametrizations. Our def-
inite parametrization is complete and global (requiring neither
local expansions nor approximations), with a one-to-one cor-
respondence to the traditional Wigner-Eisenbud resonance
parameters. Not only does our parametrization not have any
arbitrary boundary condition Bc, but because our new defi-
nite resonance energies Eλ are poles of the scattering matrix,
these physical quantities are also independent of the channel
radius ac (though the other introduced parameters, the Ducru

definite resonance widths αλ,c, are not). Moreover, the real
and imaginary parts of these definite levels Eλ are thus the
natural variables with which to describe the physical reso-
nances. The main drawback of our parametrization is that all
the parameters are now complex numbers (somewhat com-
plicating the documentation), constrained to a hypersurface
with no known explicit description to date, thereby compro-
mising the direct evaluation of these parameters. Just as we
did for the Brune parametrization in [14], we also establish the
existence of shadow poles in this definite parametrization of
R-matrix theory, and show that these can be ignored and still
exactly parametrize nuclear cross sections. We concomitantly
show that, somewhat peculiarly, one can also fully reconstruct
nuclear cross sections using the shadow poles instead of the
principal poles.

Evidence of all these properties is observed in xenon iso-
tope 134Xe spin-parity group Jπ = 1/2(−), and is presented in
Sec. IV.

II. WIGNER-EISENBUD AND REICH-MOORE
PARAMETRIZATIONS OF R-MATRIX CROSS SECTIONS

We here summarize the Wigner-Eisenbud parametrization
of R-matrix theory, as well as its Reich-Moore extension,
which underpin modern nuclear data libraries.

A. Scattering theory and cross sections

General scattering theory expresses the incoming channel c
and outgoing channel c′ angle-integrated partial cross section
σc,c′ (E ) at energy E as a function of the probability transition
matrix Tcc′ (E ), according to Eq. (3.2d), Sec. VIII 3. p. 293 of
[2]:

σcc′ (E ) = 4πgJπ
c

∣∣∣∣Tcc′ (E )

kc(E )

∣∣∣∣2

, (1)

where kc is the wave number of the channel, and gJπ
c

the spin
statistical factor defined as (Eq. (3.2c), Sec. VIII 3, p. 293 of
[2])

gJπ
c

� 2Jc + 1

(2I1 + 1)(2I2 + 1)
, (2)

where Jπ
c is the total angular momentum of the channel (with

its parity π ), and I1, I2 the spins of the two interacting bodies.
The transition matrix is itself derived from the scattering
matrix U of the interaction (cf. Eq (7) of [27]),

T � I − e−iωUe−iω

2
(3)

where ω � diag(ωc) is the diagonal matrix composed of ωc �
σ�c (ηc) − σ0(ηc), that is the differences in Coulomb phase
shift, σ�c (ηc), which are linked to the phases (argument) of
the gamma function as defined by Thompson in Eq. (33.2.10)
of [29] for angular momentum �c:

σ�c (ηc) � arg(	(1 + �c + iηc)) (4)

and the dimensionless Coulomb field parameter,

ηc � Z1Z2e2Mαrc

h̄2ρc
, (5)

where rc is the radial distance coordinate of channel c, e the
elementary charge, h̄ the Planck constant, Z1 and Z2 the charge
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numbers in the two interacting bodies, Mα the reduced mass
of the system, and ρc the dimensionless wave number,

ρc � kc rc, (6)

product of the wave number kc and the channel radial co-
ordinate rc. Note that transition matrix (3) definition Tcc′ �
δcc′−e−iωcUcc′ e

−iωc′
2 is a scaled rotation of the one defined by

Lane and Thomas, T L&T
cc′ � δcc′e2iωc − Ucc′ (cf. Eq. (2.3),

Sec. VIII 2, p. 292 and Eq.(3.2d), Sec. VIII 3, p. 293 of [2]),
that we introduce for better physical interpretability, algebraic
simplicity, and numerical stability.

Unitarity of the scattering matrix entails that the total cross
section of a given channel is then

σc(E ) �
∑

c′
σcc′ (E ) = 4πgJπ

c

Re [Tcc(E )]

|kc(E )|2 . (7)

B. Scattering matrix Wigner-Eisenbud and Reich-Moore
R-matrix parametrizations

R-matrix theory, as best described by Bloch in [1] (see
Kapur and Peierls [3], and Wigner and Eisenbud [4] seminal
works, as well as the Lane and Thomas review [2]), is a way of
parametrizing the energy dependence of the scattering matrix
U (E ) in order to easily compute the cross sections using
expressions (1), (3), and (7).

For each channel, an arbitrary channel radius ac is set to
separate the space into two regions: an outer region (rc > ac)
where the Hamiltonian of the system is well known (say
Coulomb repulsion or free particle), and an inner region
(rc < ac) where the forces interacting are considered an in-
tractable “black box.” Using Green’s theorem and projecting
upon the rc = ac surface allows one to formally solve for and
parametrize the scattering matrix (cf. Bloch’s Eqs. (31), (34),
(43), and (50) in [1]). We therefore perform such projection,
and shall henceforth have rc = ac in all subsequent expres-
sions.

For calculability reasons, Wigner and Eisenbud completely
parametrized the scattering matrix by introducing an arbitrary,
real, fixed boundary condition Bc for each channel (cf. Eqs.
(55) and (60) of [1]), whereupon the Wigner-Eisenbud reso-
nance parameters consist of a set of boundary conditions Bc,
resonance energies Eλ, and resonance widths γλ,c (also known
as reduced width amplitudes), which are documented in stan-
dard nuclear data libraries (ENDF [5], JEFF [6], BROND [7],
JENDL [8], CENDL [9], TENDL [10,11]), and are a keystone
of our knowledge of nuclear physics.

R-matrix theory then parametrizes the scattering matrix
with these resonance parameters as follows:

U = O−1I + 2iρ1/2O−1γTAγO−1ρ1/2, (8)

where the level matrix A (cf. Eqs. (17) and (18) of Sec. II C of
[14]) is defined as

A−1 � e − EI − γ (L − B)γT, (9)

where B = diag(Bc) is the diagonal matrix of real arbitrary
boundary conditions Bc, and where we built the diagonal
matrix of resonance energies e � diag(Eλ) [of size Nλ, the

number of levels (resonances)] and the rectangular matrix of
resonance widths γ = mat(γλ,c) (of size Nλ × Nc, where Nc is
the number of channels). Except for these parameter matrices
e, γ , and B, all other matrices in (8) and (9) are functions of
energy E (cf. Sec. II D).

In exact R-matrix theory, these resonance parameters
{Eλ, γλ,c} are real, but they can become complex in the Reich-
Moore formalism. Indeed, the Reich-Moore approximation
[16] focuses on a subset of all possible outcomes (channels
c) of a given nuclear reaction (such as neutron fission, scat-
tering, photon emissions, etc.), which it describes explicitly,
and “eliminates” all other channels (usually “gamma capture”
photon channels denoted γ )—cf. the Teichmann and Wigner
[30] channel elimination method, Chap. X in [2]—modeling
their effects on the explicitly treated channels by adding to
every level’s resonance energy Eλ a shift into the complex
plane called eliminated capture width 	λ,γ :

eR.M. � diagλ

(
Eλ − i

	λ,γ

2

)
. (10)

From this, the Reich-Moore formalism inverse level matrix
(9), where all the eliminated capture channels have been col-
lapsed into one γ channel, is now defined as

A−1
R.M. � eR.M. − E I − γ (L − B)γT (11)

Since the other R-matrix expressions linking these operators
to the scattering matrix (8), and thereby the cross section
(1), remain unchanged, the only practical effect of the Reich-
Moore formalism is that it allows for complex resonance
energies (10). In this sense, we can see the Reich-Moore for-
malism as a generalization of the exact R-matrix formalism,
even though it initially came from an approximation to elimi-
nate intractable channels. However, because this Reich-Moore
approximation breaks the unitarity of the scattering matrix,
summing the partial cross sections (1) over the noneliminated
channels no longer adds-up to the total cross section (7)—now
defined as the right-hand expression of (7)—and the differ-
ence defines the eliminated γ -capture cross section.

The Reich-Moore formalism is of particular importance for
heavy nuclides (which are large many-body problems), where
we are often unable to track the vast number of all possible
channels (say every single individual photon interaction).

Henceforth, we shall thus treat R-matrix theory in this
generalized framework, where the scattering matrix (8) is ex-
pressed as a function of the level matrix (9), with real channel
widths γλ,c, but complex resonance energies as in (10).

C. Outer region R-matrix wave functions

The last operators remaining to fully describe the scattering
matrix in (8) and (9) are the dimensionless reduced logarith-
mic derivatives of the outgoing wave function at the channel
surface, L = diag(Lc), where Lc(ρc) are defined as

Lc(ρc) � ρc

Oc

∂Oc

∂ρc
, (12)

and the incoming and outgoing waves, I = diag(Ic) and O =
diag(Oc)—functions of the dimensionless wave number ρc �
ackc and subject to the Wronksian condition for all channels
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c, wc � O(1)
c Ic − I (1)

c Oc = 2i—which are linked to the regular
and irregular Coulomb wave functions (or Bessel functions in
the case of neutral particle channels), defined in Eqs. (2.13a)–
(2.13b), Sec. III 2 b, p. 269 of [2]:

Oc = H+ce−iωc = (Gc + iFc)e−iωc ,

Ic = H−ceiωc = (Gc − iFc)eiωc , (13)

and for properties of which we refer to Ian J. Thompson’s
Chap. 33, Eq. (33.2.11) in [29], or Abramowitz and Stegun,
Chap. 14, p. 537 [31]. In [14], we established the Mittag-
Leffler expansions of both Oc and Lc (cf. Theorem 1, Eqs. (13)
and (16) of [14]), which may be another way of effectively
computing these operators.

D. Energy–wave-number mapping

The total energy of the system, E , is the eigenvalue of
the Hamiltonian in the reduced center-of-mass frame. Each
channel c has its own kinetic energy Ec, and energy con-
servation can be expressed by means of the relativistic and
channel invariant Mandelstam variable s, which is the square
of the relativistic center-of-mass energy of the two bodies
composing any channel c, with respective masses mc,1 and
mc,2 (null for photons),

s = (Ec + (mc,1 + mc,2) c2)2

= (Ec′ + (mc′,1 + mc′,2) c2)2 = · · · , ∀ c. (14)

Each channel also has its wave number kc, which is related
to the energy E according to an energy–wave-number map-
ping,

kc(E ) ←→ E , (15)

which can be generally described for all channels using the
special relativity expression

kc =
√

[s − (mc,1 + mc,2)2c4][s − (mc,1 − mc,2)2c4]

4h̄2c2 s
. (16)

In the semiclassical limit of (16), energy conservation can-
not be respected below a certain threshold energy ETc [cf. Eq.
(5.12), p. 557 of [17]), where ETc = 0 for reactions without
threshold. A channel composed of two massive particles (i.e.,
not photons), of respective masses mc,1 and mc,2 will then have
a wave number kc tending to

kc(E ) =
√

2mc,1mc,2

(mc,1 + mc,2)h̄2 (E − ETc ). (17)

In the same semiclassical limit, for a photon particle inter-
acting with a massive body of mass mc,1, the center-of-mass
wave number kc is linked to the total center-of-mass energy E
according to

kc(E ) =
(
E − ETc

)
2h̄c

[
1 + mc,1c2(

E − ETc

) + mc,1c2

]
. (18)

Regardless of the approach taken, all these energy–wave-
number mappings (15) require choosing the sign of the square
root ±√· in (16), whence these kc(E ) relations engender a

complex multisheeted Riemann surface with branch points
at (or close to) the threshold energies ETc , as discussed in
Sec. II A, p. 2 of [14].

The outgoing Oc and incoming Ic wave functions, and thus
also Lc, are defined as variables of ρc, and careful consider-
ation must therefore be applied in specifying the ± branch
chosen when mapping E to kc(E ), as discussed in detail in
both [14] and [28].

III. DEFINITE PARAMETRIZATION OF R-MATRIX
THEORY

We here establish our definite parametrization of R-matrix
theory, showing it is complete and invariant, and further dis-
cuss some of its salient properties.

A. Defining the definite parametrization of R-matrix theory

In the Wigner-Eisenbud parametrization, the scattering ma-
trix U is expressed with the level matrix A according to (8).
Similarly, in our definite parametrization of R-matrix theory,
the scattering matrix is expressed with the Ducru definite level
matrix D as

U = O−1I + 2iρ1/2O−1αTDαO−1ρ1/2, (19)

where [ · ]T designates the transpose (not the Hermitian con-
jugate), and α � mat(αλ,c) is the matrix of Ducru definite
resonance widths, which, together with the Sigert-Humblet
radioactive state energies (or definite levels) Eλ, are complex
numbers constituting the new definite resonance parameters.
These definite resonance parameters themselves parametrize
the definite level matrix D through its Moore-Penrose pseudo
inverse [32,33] (denoted [ · ]+) as

D+ = Q − E (I + W ) − αL(E )αT (20)

with I designating the identity matrix,

Wλμ �
{∑Nc

c=1 αλ,c
( Lc (Eμ )−Lc (Eλ )

Eλ−Eμ

)
αμ,c, ∀ λ �= μ,

0, ∀ λ = μ,
(21)

and

Qλμ �

⎧⎨⎩
∑Nc

c=1 αλ,c
( Lc (Eμ )Eλ−Lc (Eλ )Eμ

Eλ−Eμ

)
αμ,c, ∀ λ �= μ,

Eλ + ∑Nc
c=1 αλ,cLc(Eλ)αλ,c, ∀ λ = μ.

(22)
Note that the Qλμ matrix elements can equivalently be ex-
pressed as

Qλμ = Eλ + Eμ

2
(δλ,μ + Wλμ)

+
Nc∑

c=1

αλ,c

(
Lc(Eλ) + Lc(Eμ)

2

)
αμ,c. (23)

Thought complex, the definite parameters are therefore
analogous to the traditional Wigner-Eisenbud R-matrix pa-
rameters in that to each real level Eλ there corresponds
a complex definite level Eλ, and to each real resonance
width γλ,c there corresponds a complex definite resonance
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width αλ,c. From this perspective, our definite parametriza-
tion (19)—constituted of the (20) definite level matrix D, the
definite levels Eλ (which are poles of the scattering matrix
U ), and the definite resonance widths αλ,c—is complete (see
Sec. III C), and equivalent to the traditional Wigner-Eisenbud
parametrization (8). As we will show in Sec. III D, the definite
level matrix (20) is invariant to boundary parameters Bc, but
not to channel radii ac (and thus nor are the widths αλ,c),
though its poles Eλ are.

B. Constructing the definite parameters from the
Wigner-Eisenbud R matrix

In order to guarantee this equivalence with the traditional
Wigner-Eisenbud parametrization (8), we construct the defi-
nite resonance widths αλ,c and the definite level matrix D such
that the following equality stands:

αTDα = γTAγ (24)

whence the scattering matrix U is left unchanged in (19). For
this, we define the Ducru definite level matrix D from the
Wigner-Eisenbud level matrix A as the pseudoinverse:

D(E ) � [V TA−1(E )V ]+, (25)

where the V matrix is composed of the size-Nc column eigen-
vectors, V � [v1, . . . , vλ, . . . , vNL ], which are the solutions
to the following definite (or radioactive) states generalized
eigenproblem:

[eR.M. − γ (L(Eλ) − B)γT]vλ = Eλvλ, (26)

where we assume we can pseudonormalize the eigenvectors
as

vT
λvλ = 1. (27)

Note that because the vectors are now complex, the latter
is not a norm and this pseudonormalization is not always
possible (for instance [i, 1] · [i, 1]T = 0). In practice, however,
the probability of this happening is almost always null (see
Sec. IV C of [28] for further discussion).

We then define the definite parameters as

(i) the definite levels Eλ: these are the Siegert-Humblet ra-
dioactive state resonance energies, which are complex
and we proved to exactly be the poles of the scattering
matrix U (E ) (cf. theorem 3 in [28]);

(ii) the Ducru definite resonance widths αλ,c (which are
also complex), which we define as

α � V Tγ . (28)

Injecting definition (28), radioactive states relation (26),
and the pseudonormalization condition (27) into the definite
level matrix definition (25) yields explicit expressions (20),
(21), (22), and (23).

Given a set of Wigner-Eisenbud resonance parameters
{Eλ, γλ,c}, the key to constructing the definite parameters
{Eλ, αλ,c} is therefore solving the definite states eigenproblem
(26), and we will see in Sec. III C we only need Nλ out of its
total number NL of solutions. The definite states eigenproblem
(26) is a type of generalized nonlinear eigenproblem, com-
posed of complex symmetric matrices. Numerical algorithms

to solve this type of problem can be found in The Handbook
of Linear Algebra (Chap. 115 of [34]), and can be enhanced
with complex-symmetric features such as the Lanczos method
[35]. To solve the definite states eigenproblem (26), some
authors have also sometimes found it more convenient to first
solve the corresponding determinant null-space problem (see
[36], Eqs. (200) and (204) of [37], or the last paragraphs of
Sec. V of [12]):

det(eR.M. − E I − γ[L(E ) − B]γT )|E=Eλ
= 0, (29)

which can be simpler to solve when the number of levels is
much smaller than the number of channels (Nλ � Nc). Con-
versely, if there are many more channels than levels (Nc 	
Nλ), it can be simpler to find the definite levels Eλ by solving

det(I − RR.M.(E )[L(E ) − B])|E=Eλ
= 0, (30)

where RR.M.(E ) � γT(eR.M. − E I)−1γ is the Wigner-
Eisenbud R matrix, with Reich-Moore complex resonance
energies (10). Determinant problem (30) yields equivalent
Eλ results to (29) due to Woodbury identity (see Eq. (21)
in [14]). We refer the reader to Sec. II C. of [28] for more
ample discussion as to how to solve the definite levels state
eigenproblem (26).

C. Completeness and choice of parameters

By construction, the definite parameters {Eλ, αλ,c} are com-
plete in the sense that they suffice to fully reconstruct the
scattering matrix (19), and therefore the cross sections (1) and
(7). This is because the properties of the Moore-Penrose pseu-
doinverse guarantee (24) will be satisfied through definitions
(25) and (28), as long as V has more linearly independent
columns than rows [32,33], which is always satisfied in prac-
tice with NL � Nλ.

This has important consequences. Indeed, we showed in
Theorem 1 of [28] there are more than Nλ definite levels
Eλ (poles of the scattering matrix U ) that will solve the ra-
dioactive states generalized eigenproblem (26), necessary to
construct the definite resonance widths (28). In fact, on every
sheet of the energy–wave-number mapping (15), each reso-
nance energy Eλ generates two solutions to (26) (one on each
±√· branch), and each pole ωn of the outgoing wave function
reduced logarithmic derivative operator Lc(ρc) (documented
in Tables I and II of [14]) adds another solution to (26), so
that the total number NL of solutions to (26) is a (countable)
infinity NL = ∞ for charged particles, and

NL =
(

2Nλ +
Nc∑

c=1

�c

)
× 2

(NETc �=ETc′
−1)

(31)

for neutral particles, where NETc �=ETc′
is the number of channels

with different thresholds (cf. Eq. (34) of [28]). As explained
in Theorem 1 of [28], this entails that one must specify on
which ± sheet of the energy–wave-number mapping (15) each
of the definite levels Eλ resides. For each energy—invariant
Mandelstam variable s in (14)—there are two wave numbers
kc based on the choice of ±√· sign in the branches of mapping
(15): one in the physical sheet (as defined as Im[kc] > 0) and
one in the unphysical sheet (for Im[kc] < 0). The scattering
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TABLE I. Definite parameters—definite levels Eλ (Siegert-
Humblet radioactive state resonance energies, poles of the scattering
matrix) and Ducru definite resonance widths αλ,c of the definite
parametrization (20) of R-matrix theory (19)—of the two p-wave res-
onances of 134Xe, spin-parity group Jπ = 1/2(−), converted from the
Wigner-Eisenbud R-matrix parameters reported in ENDF/B-VIII.0
(MLBW evaluation) using the Reich-Moore level matrix (11) in
R-matrix parametrization (8).

z = √
E (with E in eV)

A = 132.7600
ac = 5.80: channel radius (fermis)

ρ0 = Aac

√
2mn

h
A+1 (

√
eV

−1
), so that ρ(z) � ρ0z

with
√

2mn
h = 0.002 196 807 122 623 [1/(10−14 m

√
eV)]

Definite parameters (rounded to 5 digits)

Definite levels Definite resonance widths
{Eλ, ±} from (26) αλ,c from (28)
(eV), sheet of (15) (

√
eV)

{−6.2694 × 10+5

−i1.0238 × 10−4, +
}

2.8122 × 10+1

+i2.7436 × 10−9{
2.1838 × 10+3

+i9.0757 × 10−2, −
}

2.5126 × 10+1

−i2.4846 × 10−4{
2.1838 × 10+3

−i1.6868 × 10−1, +
}

2.5126 × 10+1

+i2.4831 × 10−4{
6.3130 × 10+3

+i1.6025 × 10−1, −
}

1.4087 × 10+1

+i2.1627 × 10−3{
6.3130 × 10+3

−i2.3822 × 10−1, +
}

1.4087 × 10+1

−i2.1625 × 10−3

Wigner-Eisenbud R-matrix parameters

E1 = 2186.0: first resonance energy (eV)
	1,n = 0.2600: neutron width of first resonance

(not reduced width), i.e., 	λ,c = 2Pc(Eλ)γ 2
λ,c

	1,γ = 0.0780: eliminated capture width (eV)
E2 = 6315.0: second resonance energy (eV)
	2,n = 0.4000 (eV)
	2,γ = 0.0780 (eV)
gJπ = 1/3: spin statistical factor
Bc = −1

matrix poles Eλ on the negative sheet of mapping (15) are
named “shadow poles” [38], whereas the poles on the positive
sheet are called “principal poles.”

A remarkable result deriving from our definition (28), guar-
anteed by construction through (25), is that one can choose
any subset of the NL solutions to (26) to fully and exactly
reconstruct the scattering matrix U (E ), as long as we choose
at least Nλ of them.

This means we can always choose only Nλ solutions to
(26), and construct the corresponding definite parameters.
This choice is not a priori unique, though it can be prescribed
as such through convention, for instance by always choosing
the scattering matrix pole Eλ which is closest to the real
resonance energy Eλ on the +√· sheet of the energy–wave-
number mapping (15). But one can also choose more solutions
NL � Nλ to reproduce the same results, or only choose Nλ

FIG. 1. Scattering matrix of 134Xe two p-wave resonances in
spin-parity group Jπ = 1/2(−). (a) Scattering matrix modulus sur-
face. (b) Two principal resonant poles, two shadow poles, and one
outer pole. (c) Principal and shadow poles along the real z axis.
Dimensionless |U |(z) is computed using nuclear data parameters
from Table I, using either the Wigner-Eisenbud parametrization (8)
with Reich-Moore level matrix (11), or the definite parametrization
(19), yielding identical complex values. The surface presents two
principal resonant poles near the resonances on the positive z axis,
where z2 = E , and each of these presents a shadow pole on the
negative z axis. A fifth, very large, principal outer “angular momenta
scattering pole” is present along the imaginary z axis, far off the real
z axis. The modulus of the scattering matrix along the real z axis is
here depicted as a red line on the surface.

solutions that correspond to shadow poles and not principal
poles. Evidence of this somewhat surprising phenomenon is
observed in the spin-parity group Jπ = 1/2(−) of xenon iso-
tope 134Xe and documented in Sec. IV, where one can pick
any two of the five possible definite parameters in Table I to
exactly compute the scattering matrix using (19), complete
with its five poles as shown in Fig. 1.

This result is due to the fact that the pseudoinverse in
expression (20) will collapse the linearly dependent solutions

024601-6



DEFINITE COMPLETE INVARIANT PARAMETRIZATION … PHYSICAL REVIEW C 105, 024601 (2022)

of (26) to yield the same scattering matrix. In this sense, our
definite parametrization is complete, but not unique (though it
can be made unique by convention).

D. Invariance of parameters

We proved in Theorem 3 of [28] that the Siegert-Humblet
radioactive states resonance energies Eλ (definite levels) are
exactly the poles of the scattering matrix U (E ), and, as such,
they are invariant with respect to both the arbitrary boundary
conditions Bc and channel radii ac (cf. Eq. (47), Theorem 2 in
[28]):

∂Eλ

∂Bc
= 0,

∂Eλ

∂ac
= 0. (32)

In this sense, our definite parametrization of R-matrix theory
is composed of invariant (complex) resonance energies Eλ

with strong physical properties.
To keep the scattering matrix unchanged by a change of

boundary condition from B to B′, the resonance energies
e and resonance levels γ must be changed in such a way
that R−1

B + B = R−1
B′ + B′, where R(E ) � γT(e − EI)−1γ is

Wigner’s R matrix (cf. Eq. (4) of [13]). Using the Woodbury
identity twice, this translates into the following relation link-
ing the R matrices of two different boundary conditions:

RB′ = γT
B

[
eB − EI + γB(B − B′)γT

B

]−1
γB. (33)

Barker showed in [13] that this leads to a resonance pa-
rameters transformation under change of boundary condition
B → B′ which can be performed by diagonalizing,

C � eB + γB(B − B′)γT
B = KTeB′ K, (34)

where KTK = I, and defining the transformed Wigner-
Eisenbud resonance widths under boundary condition change
B → B′ as

γB′ � KγB. (35)

In the original Wigner-Eisenbud R-matrix formalism, all the
resonance parameters and the boundary condition are real, so
that C is a real symmetric matrix whose orthogonal diagonal-
ization (34) is therefore guaranteed by the spectral theorem.
However, when we seek to generalize this transformation (35)
to the Reich-Moore formalism, the fact the the resonance
energies (10) are now complex (shifted into the complex plane
by the eliminated capture widths) entails that C is a complex
symmetric matrix (not Hermitian), and its diagonalization
(34) is therefore no longer guaranteed, but must instead be
assumed. Since diagonalizable matrices are dense in the space
of complex matrices, this assumption is unlikely to be a limit-
ing factor in practice, but it is nonetheless an assumption. To
generalize the transformation to the Reich-Moore formalism,
we thus assume that complex symmetric C is diagonalizable
(34) but no longer by real matrices nor with a real spectrum,
from which it follows that K must satisfy K−1 = KT.

To establish the invariance of the definite resonance widths
αλ,c with respect to a change of boundary conditions B → B′,
it then suffices to consider the left-hand side of the radioac-
tive states generalized eigenproblem (26), define the matrix
�B(E ) � eB − γB[L(E ) − B]γT

B which is being diagonalized,

and note that under a change of boundary conditions B →
B′ it satisfies �B′ (E ) = K�B(E )KT. Whence, the radioac-
tive eigenvectors satisfy vB′

λ = KvB
λ , which guarantees the

invariance of definite resonance widths to a change of bound-
ary parameters, according to αB′

λ = vB′T
λ γB′ = vBT

λ KTγB′ =
vBT

λ γB = αB
λ .

Therewith, the definite resonance widths αλ,c are invariant
to a change of boundary conditions (like Brune’s in the case of
R-matrix formalism without Reich-Moore eliminated capture
widths; see Sec. III H for further discussion), and furthermore
the definite levels Eλ are also invariant with respect to changes
in channel radii (Brune’s alternative resonance energies are
not).

E. Definite parameters implicit constraints

What about the definite resonance widths αλ,c transforma-
tion under change of channel radii ac? We were unable to
derive an explicit formulation for such transformation, though
an implicit one is possible.

Indeed, in Theorem 2 of [28], we established the differ-
ential equation (48) to which the widths of the residues rλ

of the Kapur-Peierls operator, γTAγ , are subject (assuming
semisimplicity and nondegenerate states; see Eq. (57) of [28]
for degenerate states, and Sec. IV C of [28] for further dis-
cussion). We can here take a similar approach, and adapt
the Gohberg-Sigal theory to complex-symmetric matrices by
assuming—on physical quasi-null likelihood of occurrence
arguments—nondefective eigenvectors, semisimplicity, and
nondegenerate poles (see article [28], Sec. II A, Eq. (10) and
the discussion immediately preceding Eq. (13), as well as
Secs. IV C and IV D, Lemma 1, Eqs. (62) and (64) for
further discussion), so as to write the definite level matrix
Mittag-Leffler expansion with simple poles of Laurent order
1 and rank-1 residues in a neighborhood W (E ) of the definite
levels:

D(E ) =
W (E )

NL∑
λ�1

dλdT
λ

E − Eλ

+ HolD(E ), (36)

where HolD(E ) is a holomorphic (entire) part, and the definite
residue widths dλ are linked to the radioactive eigenvectors vλ

as

dλ = vλ√
vT

λ

(
∂D+
∂E

∣∣
E=Eλ

)
vλ

, (37)

where

∂D+

∂E
= −I + W − α

∂L
∂E

αT. (38)

Conservation (24) thereupon entails the following link
between the definite resonance widths αλ,c and the residue
widths of the Kapur-Peierls operator:

rλ = αTdλ. (39)

This links our definite parametrization to the windowed mul-
tipole representation of R-matrix cross section established in
[27], since one can construct the poles and residues expansion
of analytically continued nuclear cross sections using these
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Kapur-Peierls residue widths, by equating them in Eq. (39) of
[27] to rλ = γTaλ = αTdλ.

Yet, because in the windowed multipole expansion we do
not know the holomorphic parts explicitly—just as in Mittag-
Leffler expansion (36)—and because we need to account for
an infinity of poles in the Coulomb case, we say these ex-
pansions are local and incomplete. In contrast, our definite
parametrization is global and complete: Nλ pairs of definite
parameters {Eλ, αλ,c} will suffice to completely describe the
scattering matrix (19) everywhere in the complex plane.

Applying differential equation (48) from Theorem 2 of [28]
thereupon yields the following partial differential equation for
the definite resonance widths:

a
∂ αTdλ

∂a
+

(
1

2
I − L

)
αTdλ = 0, (40)

where a � diag(ac) is the diagonal matrix of channel radii,
and a ∂ αTdλ

∂a designates the channel-by-channel partial differ-

ential operator ac
∂[αTdλ]λ,c

∂ac
.

Expression (40) dictates the transformation of the definite
resonance widths αλ,c under a change of channel radii ac →
a′

c. Though we know these parameters, the definite levels Eλ,
as well as L, and therefore the definite level matrix D and its
derivatives from (20), as well as its residue widths dλ from
(37), transformation (40) nonetheless remains implicit, as it is
essentially of the form

f

(
α,

∂α

∂a
, vλ,

∂vλ

∂a

)
= 0

and the vλ nullspace eigenvectors are subject to
pseudonormalization (27) as well as their implicit constraint
D+(Eλ)vλ = 0.

F. Definite levels and nuclear resonances

Being the poles of the scattering matrix bestows upon the
definite levels Eλ (or Siegert-Humblet radioactive states pa-
rameters) the important physical property that their real part
Re[Eλ] corresponds exactly to the resonances along the real
energy line, and their imaginary part Im[Eλ] to their widths.

Cross sections exhibit their resonance behavior as a
linear combination of symmetric and antisymmetric Cauchy-
Lorentz distributions:

ψ (x) � 1

1 + x2
, χ (x) � x

1 + x2
. (41)

These single-level Breit-Wigner profiles appear in the total
cross section (7) through the Mittag-Leffler pole expansion of
the transition matrix (akin to that of the definite level matrix
(36) in Sec. III E, and we refer to articles [27,28] for further
discussion of scattering matrix pole expansions):

T (E ) =
W (E )

NL∑
λ�1

τλτ
T
λ

E − Eλ

+ HolT (E ), (42)

where the transition matrix residue widths τλ are linked to
those rλ of the Kapur-Peierls operator (39) according to
Eq. (44) of [27]. Separating the definite levels in their real

and imaginary parts,

Eλ = ελ − i
	λ

2
, (43)

and splitting the transition matrix residues into real and imag-
inary parts,

τλτ
T
λ = (aλ + ibλ)

	λ

2i
, (44)

entails that the total cross section (7) can be expressed as
the following linear combination of Cauchy-Lorentzian res-
onance profiles:

σc(E ) =
W (E )

4πgJπ
c

|kc(E )|2 Re

[
NL∑

λ�1

acc
λ ψ (xλ) + bcc

λ χ (xλ)

+ Holcc
T (E )

]
, (45)

where the dimensionless variable xλ is centered around the
real part of definite energy ελ � Re[Eλ] with a width of size
	λ � −2 Im[Eλ] as

xλ � E − ελ

	λ/2
. (46)

At each resonance, the symmetric profile ψ (xλ) peaks at ελ,
while the antisymmetric profile χ (xλ) is zero at ελ and has a
peak and a dip at xλ = 1 and xλ = −1 (so that 	λ is the width
of the resonance). Therefore, the definite levels Eλ describe
exactly these resonances, with their real part corresponding to
the resonance peak region (but not the exact value at which the
peak occurs), and their imaginary part corresponding to the
resonance width [thought the linear combination of symmetric
and antisymmetric profiles (45) does not in general present
peaks or zeros exactly at the ελ values, due to the linear
combinations, or to the 1

|k(E )|2 general modulation factor of the
cross sections]. The definite levels Eλ are therefore the natural
physical quantities to describe the resonances.

Note that expansion (45) is but the windowed multipole
representation established in [27], and the same approach can
thereupon be taken to write the elastic scattering matrix (1)
using the conjugate continuation described in Sec. II D of [27]
(see Sec. II E for more explanations), yielding a similar form:

σcc′ (E ) =
W (E )

4πgJπ
c

|kc(E )|2 Re

[
NL∑

λ�1

ãcc′
λ ψ (xλ) + b̃cc′

λ χ (xλ)

+ Holcc
T (E )

]
, (47)

where ãcc′
λ and b̃cc′

λ are real and imaginary parts of the matrix
elements of (with ◦ designating the elementwise Hadamard
matrix product)

τλτλ
T ◦ [T (E∗

λ )]∗ = (ãλ + ib̃λ)
	λ

2i
. (48)

We just showed how the poles of the scattering matrix
are natural variables to describe the resonance profiles, even
though we do not know the explicit set of constraints on
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the definite parameters. However, some general properties are
known, since fundamental physics principles constrain the
poles of the scattering matrix to specific symmetries. Unitarity
imposes specular symmetry along the imaginary wave number
axis: if kc is a pole of the scattering matrix, then so is −kc∗,
and Eden and Taylor’s generalized such relations to all chan-
nels and sheets of mappings (15) (cf. the generalized unitarity
relation (2.16) of [38]). Moreover, causality entails that the
scattering matrix poles are usually either radioactive states
(or resonance states), when they dwell on the unphysical sheet
(defined as Im[kc] < 0), or bound states when they dwell on
the physical sheet (defined as Im[kc] > 0), in which case they
are restricted to the positive imaginary axis (i.e., Re[kc] = 0)
(cf. Sec. IX 2 d in [2]).

In the Wigner-Eisenbud R-matrix parametrization, real res-
onance energies Eλ and boundary conditions Bc preserve
unitarity. However, the Reich-Moore approximation in effect
introduces complex resonance energies (10), which can vi-
olate the unitarity of the scattering matrix. We observe this
breaking of symmetry in the case of xenon isotope 134Xe,
spin-parity group Jπ = 1/2(−), where the scattering matrix
poles (definite levels documented in Table I) do not exactly
respect specular symmetry, and the bound state is close to but
not exactly on the imaginary axis.

G. Nuclear data evaluations in definite parametrization

We showed how the definite levels Eλ are the physically
natural variables for describing the resonances. However, their
constraints are implicit (as discussed in Sec. III E), which
entails one cannot perform a nuclear data evaluation directly
with the definite parameters — fitting whichever definite lev-
els Eλ and definite widths αλ,c that best match the observed
data.

This is because we do not know explicitly the set of con-
straints in the complex plane within which it is physically
admissible for the definite parameters to evolve. The tradi-
tional Wigner-Eisenbud R-matrix parameters are admissible
as long as they are real (that is their space of constraints).
In contrast, the definite parameters are only admissible as
long as they satisfy (26) and (28). Therefore, in order to
guarantee the equivalence between the Wigner-Eisenbud and
the definite parametrization, one must first perform the nuclear
data evaluation with Wigner-Eisenbud parameters, and then
transform the latter into definite parameters as specified in
Sec. III B. Only then will the definite parametrization defined
in Sec. III A be correct.

Despite this major drawback, there are nonetheless clear
benefits to specifying the definite parameters of a nuclear
data evaluation, as their invariance properties guarantee a
physics-based unified framework within which to compare
evaluations performed with different boundary conditions or
channel radii. In other words, if two evaluations of the same
nuclear cross section are done with different boundary con-
ditions Bc and channel radii ac, they will yield different
Wigner-Eisenbud R-matrix parameters {Eλ, γλ,c}. Yet, both
can then be transformed into our definite R-matrix parameters
{Eλ, αλ,c}, which are now all boundary conditions Bc indepen-
dent, and—though the set of definite resonance widths αλ,c

will depend on the choice of channel radii ac according to
implicit relation (40)—both evaluations will yield the same
set of definite levels Eλ, independent of the choice of channel
radii ac. This invariance makes of the definite parameters
{Eλ, αλ,c} the most natural and convenient—they are universal
(invariant physical quantities) and have no boundary condi-
tions Bc, which entails fewer parameters—set of R-matrix
parameters with which to completely describe and document
nuclear cross sections in future standard evaluated nuclear
data libraries (ENDF [5], JEFF [6], BROND [7], JENDL [8],
CENDL [9], TENDL [10,11]).

Concerning evaluations, we end with a note on how to
account for the tail contributions of negative energy bound
states, or high-energy resonances, sometimes called “back-
ground cross section terms.” As tail effects, these can be
difficult to fit, which is why evaluators have traditionally
resorted to either (a) adding so-called ‘dummy resonances’
away from the energy region (far-off bound or resonance
states) (see SAMMY format LRF = 3 [39]), or (b) recently
introducing a somewhat ad hoc functional fit (in SAMMY
format LRF = 7, Sec. II B 1 d of manual [39]). Though we
appreciate the honesty of approach (b), which acknowledges
where we are curve-fitting versus where we are evaluating
(resolving resonances and thresholds), we nonetheless believe
that approach (a) is more physically appropriate in that these
tail effects are the result of true resonances or bound states,
of which there may be an infinite number, sometimes very
far away from the energy region being evaluated. Though we
may not be able to (nor seek to) accurately resolve all these
resonances and bound states, fitting them with pseudoreso-
nances that account well enough for their tail effects is just as
universal an approximation (see Runge’s theorem) as fitting
these tails with other ad hoc functional forms, which do not
fall within the existing framework of R-matrix theory. More-
over, the Mittag-Leffler expansions of R-matrix cross sections,
established in the windowed multipole representation [27],
equivalent to herein established Eqs. (45) and (47), in fact
show that the holomorphic part of R-matrix cross sections
(as well as the infinity of poles and residues) are exactly and
completely described by both the Wigner-Eisenbud R-matrix
parametrization (8), or equivalently our definite parametriza-
tion of R-matrix theory (19), using only Nλ definite levels Eλ.
Though the number Nλ is a priori unknown by the evaluator,
one can continue to add resonances until the fit is sufficiently
accurate for our measurements’ uncertainty. If the difficulty
lies in numerically fitting the tails from the experimental
data, we point to advanced new methods and algorithms—for
instance [40–45]—that could help directly find the definite
levels Eλ, poles of the scattering matrix. Some of these meth-
ods have been recently used with some success to establish the
Windowed Multipole Library (see the last paragraph of Sec.
II E 3 in [27], or [46,47]).

This points to an additional major advantage of our definite
parametrization of R-matrix theory: documenting the definite
parameters (Eλ levels and αλ,c widths) in future standard
nuclear data libraries would somewhat greatly simplify the
recording of and conversion to the windowed multipole repre-
sentation established in [27]. This is because the Nλ principal
definite levels Eλ provide a unified set of multipoles p j across
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all windows (through their square root, as of Eq. (47) in
[27]). One can then compute their residues using the contour
integrals Eq. (83) and Eq. (84) in [27], so that the Windowed
Multipole Library [27,48,49] can consist of a unified global
list of principal poles and residues, and then a set of energy
windows. For each window, we can then document: a subset
of indices indicating which of the Nλ principal definite levels
Eλ (and their corresponding residues) are used in the win-
dow; and a set of Laurent expansion coefficients (background
terms).

H. Remarks on an alternative, non-invariant, definite
parameterization

Our definite parametrization, defined in Sec. III A, rested
upon the assumption that the vλ radioactive eigenvectors of
(26) are pseudonormalizable as in (27). Though we argued
that making this assumption is unlikely to pose a problem in
practice, it is nonetheless possible to define another, similar
parametrization which does not require this assumption. This
can be achieved in a similar fashion by defining an alternative
definite level matrix D̃ as the pseudoinverse:

D̃(E ) � [Ṽ
†
A−1(E )Ṽ ]+,

where the Ṽ matrix is now composed of the size-Nc col-
umn eigenvectors, Ṽ � [ṽ1, . . . , ṽλ, . . . , ṽNL ], solutions to the
radioactive states generalized eigenproblem (26), but now
properly normalized with their Hermitian conjugate [ · ]† as

ṽλ
†
ṽλ = 1.

We can then define the alternative definite parameters as

α̃ � Ṽ
†
γ, β̃ � Ṽ

†√

γ ,

where
√


γ � diagλ(
√

	λ,γ ) is the diagonal matrix of the
eliminated capture widths in the Reich-Moore formalism (10).

Through this construction, the alternative definite level ma-
trix D̃ now is explicitly parametrized as

D̃+ = Q̃ − EW̃ − α̃L(E )α̃†

with

Q̃λμ =
Nc∑

c=1

α̃λ,c(Lc(Eμ)E∗
λ − Lc(Eλ)∗Eμ )̃α∗

μ,c

E∗
λ − Eμ

+ i Eμ

Nλ∑
η=1

β̃λ,ηβ̃
∗
μ,η

E∗
λ − Eμ

and

W̃λμ =
Nc∑

c=1

α̃λ,c(Lc(Eμ) − Lc(Eλ)∗ )̃α∗
μ,c

E∗
λ − Eμ

+ i
Nλ∑

η=1

β̃λ,ηβ̃
∗
μ,η

E∗
λ − Eμ

.

This alternative parametrization guarantees

α̃
†D̃α̃ = γTAγ

so that the scattering matrix expression

U = O−1I + 2iρ1/2O−1α̃
†D̃α̃O−1ρ1/2

is also a complete alternative parametrization of R-matrix
theory.

Though similar to our definite parametrization of
Sec. III A, there are three major differences in this alternative
parametrization:

(i) It does not require assuming that pseudonormal-
ization (27) is possible (Hermitian normalization
ṽλ

†
ṽλ = 1 is always possible).

(ii) It presents additional alternative definite capture
widths β̃λ,μ for each pair of levels.

(iii) It is no longer invariant with a change of arbitrary
boundary condition B → B′, because the Hermitian
conjugates in Sec. III H entail that the proof of invari-
ance of Sec. III D is no longer valid.

While the presence of a new nondiagonal matrix of al-
ternative eliminated capture widths β̃ is interesting in that it
can be interpreted as an analog of the diagonal matrix

√

γ

of eliminated capture widths in the Reich-Moore formalism
(10), and that the β̃λ,μ are therefore null in the absence
of these Reich-Moore parameters, it is nonetheless rela-
tively cumbersome and would induce a heavy increase in the
number of evaluated parameters needed to parametrize the
same cross section. Moreover, the fact that this alternative
parametrization is not invariant under a change of bound-
ary parameters B → B′ defeats the purpose of a definite
parametrization, and is therefore prohibitive. Hence we do
not propose this parametrization as our definite, complete,
invariant, parametrization of R-matrix theory.

However, we still expanded on it for two reasons: (1) In a
general way, this is a clear example of how complex symmetry
(and not Hermitian conjugacy) is the physically and mathe-
matically natural form of symmetry for scattering problems.
(2) In a more particular fashion, this Hermitian approach is
the one we took in Sec. IV A of article [14], which is therefore
not invariant under a change of boundary conditions B → B′.
Though we did not explicitly claim that such generalization
to the Reich-Moore formalism of the Brune parametrization
was invariant to a change of boundary condition B → B′, we
now believe that it is not, so that a more proper generalization
of the Brune parameters ought not be made as in Sec. IV A
of article [14], but rather as we here did in Sec. III A, by
replacing the L(E ) operator with the shift operator S(E ),
which would guarantee invariance to a change of boundary
parameters B → B′ (but not to a change of channel radii), as
per Sec. III D.

IV. EVIDENCE ON XENON 134

In the wake of our xenon trilogy on R-matrix pole
parametrizations [14,27,28], we here present evidence of the
definite parametrization in xenon isotope 134Xe, spin-parity
group Jπ = 1/2(−), which presents two p-waves resonances.
There, we observe the different physical phenomena and prop-
erties described in Sec. III.

The 134Xe evaluation in the ENDF/B-VIII.0 [5] nuclear
data library uses the Reich-Moore formalism in that there is
only one explicitly treated channel (neutron elastic scattering
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(a)

(b)

FIG. 2. Partial cross sections of 134Xe, spin-parity group Jπ =
1/2(−). (a) First p-wave resonance. (b) Second p-wave resonance.
The two p-wave resonances are computed from the scattering matrix
U (E ) using either the definite parameters from Table I in expression
(19) or the Wigner-Eisenbud R-matrix parameters from Table I in
expression (8) using the Reich-Moore level-matrix (11), both yield-
ing identical results. Total cross section is from (7), elastic scattering
cross section from (1), and eliminated γ -capture cross section from
the difference of the two.

Nc = 1), and the γ -capture channel is eliminated through
capture widths 	λ,γ as in (10). For generality, we thus decide
to use the full Reich-Moore level matrix (11), instead of the
simplified multilevel Breit-Wigner (MLBW) one used for this
specific ENDF evaluation (see Eq. (22) of [27]).

First, we construct all the NL × Nc definite parameters,
converting them from the Wigner-Eisenbud R-matrix ones as
specified in Sec. III B, and document them here in Table I.
The definite levels Eλ—found by solving (26)—are the ra-
dioactive state poles documented in Table I of [28], from
which the definite resonance widths αλ,c are constructed using
(28). As predicted by (31), one can see that the number of
definite levels is here NL = 5, as there are Nλ = 2 resonance
energies for this sole p-wave channel (so that �c = 1), and
zero is the only threshold energy (so that NETc �=ETc′

= 1). To
find the ± sheet of energy–wave-number mapping (17) on
which the definite levels dwell, we unfolded the Riemann
surface through change of variable z2 = E and solved for
the radioactive eigenproblem (26) in z space. The results are

TABLE II. Alternative, noninvariant, definite parameters—
definite levels Eλ (Siegert-Humblet radioactive state resonance
energies, poles of the scattering matrix) from Table I, and alternative
definite resonance α̃λ,c and eliminated capture β̃λ,μ widths of the
alternative definite parametrization of Sec. III H—of the two p-wave
resonances of 134Xe, spin-parity group Jπ = 1/2(−), converted from
the Wigner-Eisenbud R-matrix parameters reported in ENDF/B-
VIII.0 (MLBW evaluation) using the Reich-Moore level matrix (11)
in R-matrix parametrization (8), as per Table I.

Alternative definite, noninvariant parameters (rounded to 5 digits)

Alternative definite resonance Alternative definite eliminated
widths α̃λ,c from Sec. III H widths β̃λ,μ from Sec. III H
(
√

eV) (dimensionless)

2.8812 × 10+1

+i2.7712 × 10−9

⎡⎣ 2.4389 × 10−1

1.3608 × 10−1

+i5.4857 × 10−11

⎤⎦
2.5126 × 10+1

+i2.4873 × 10−4

⎡⎣ 2.7928 × 10−1

8.3405 × 10−5

+i4.9238 × 10−6

⎤⎦
2.5126 × 10+1

−i2.4858 × 10−4

⎡⎣ 2.7928 × 10−1

8.3406 × 10−5

−i4.9208 × 10−6

⎤⎦
1.4087 × 10+1

−i2.1607 × 10−3

⎡⎣ −2.3937 × 10−4

−i2.40207 × 10−5

2.7928 × 10−1

⎤⎦
1.4087 × 10+1

+i2.1604 × 10−3

⎡⎣−2.3937 × 10−4

+i2.4018 × 10−5

2.7928 × 10−1

⎤⎦

documented in Table I. Note that, as a nonlinear generalized
eigenproblem, solving the radioactive states problem (26) can
be numerically arduous, and we refer for further discussion to
the last paragraph of Sec. II C in [28], or to Secs. II E 3 and
II F 1 in [27].

Then, we computed the scattering matrix either with the
traditional Wigner-Eisenbud R-matrix parametrization (8), or
with the definite parametrization (19), verifying they yield
identical results, which confirms our definite parametrization
is indeed an equivalent parametrization of R-matrix theory,
with the benefits of being definite, complete, and invariant.
The surface of the scattering matrix modulus |U |(z) is plotted
in Fig. 1. There, the NL = 5 different poles (definite levels Eλ)
of Table I are clearly visible: two for each resonance energy
Eλ, one “resonant pole” on the physical {+} sheet (on the
positive side of the real z axis), and another “shadow pole”
on the nonphysical {−} sheet (on the negative side of the real
z axis) of mapping (17). The fifth pole (on the first line of
Table I), which is introduced by the outer region L(ρ) operator
of the p wave (angular momentum � = 1), is also clearly
visible: this pole is far away from all the resonances, and is
much farther from the real z axis (or much closer to the real
E axis) than the other poles, as well as being considerably
wider (larger residue). This “outer pole” is not the shadow of
a resonant pole (and dwells on the physical {+} sheet), but
instead is representative of another class of poles, which we
could name “angular momenta scattering poles.”
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Here, we empirically confirm the choice of definite pa-
rameters result of Sec. III C, whereby, out of the five definite
parameters sets {Eλ, αλ,c} in Table I, one can choose any
two, three, four, or five, and use only these to compute the
definite level matrix D through pseudoinverse definition (20),
and hence the scattering matrix U (E ) through (19). Somewhat
remarkably, this will always yield the exact same scattering
matrix, with all five poles visible in Fig. 1, thereby also
guaranteeing that any choice of at least two of the definite pa-
rameters will result in the exact same cross sections of Fig. 2.

Since they are equivalent and yield the same scattering
matrix, the definite and the Wigner-Eisenbud parametriza-
tions of R-matrix theory yield the exact same cross sections.
The 134Xe p-wave spin-parity Jπ = 1/2(−) total cross section
is computed using Eq. (7), and the elastic scattering cross
section using (1), so that the difference of the two yields
the eliminated γ -capture cross section. These three different
partial cross sections have two resonances (circa 2183.8 eV
and 6313.0 eV), which are here reported in Fig. 2. The elastic
scattering cross section (1), depicted as a dotted blue line in
Fig. 2, is linked through (3) to the scattering matrix modulus
along the real z axis, rendered as a red line on the surfaces of
Figs. 1 (see Fig. 1(c) zoom).

For completeness, we end by reporting in Table II the al-
ternative, noninvariant parameters discussed in Sec. III H. As
discussed therein, these alternative parameters are analogous
to the ones we proposed in Table VI of [14], and we here
argue they are not invariant to change of boundary conditions
B → B′. We thus do not recommend using either of these, but
instead recommend the proper definite parameters of Table I,
and define the generalized Brune parameters for Reich-Moore
formalism as we here do in Secs. III A and III B, only replac-
ing the L operator with the shift operator S.

V. CONCLUSION

We here establish a definite parametrization of R-matrix
theory, which completely describes the scattering matrix

(hence also the cross sections), using the physical scattering
matrix poles Eλ, but only as many as there are Wigner-
Eisenbud resonance levels Eλ. This sets a one-to-one corre-
spondence between the traditional Wigner-Eisenbud and our
definite parametrization of R-matrix theory.

As major benefits, our definite parametrization is invariant
to (and does not require the prescription of) arbitrary boundary
conditions Bc (contrary to the traditional Wigner-Eisenbud
parametrization of R-matrix theory). Moreover, being poles of
the scattering matrix, the definite levels Eλ are now complex
and invariant with respect to changes in channel radius ac

(contrary to the alternative Brune parametrization). They also
correspond to nuclear cross sections resonances, describing
their peaks and widths exactly.

In a general framework that encompasses the Reich-
Moore formalism, we show how to convert the traditional
Wigner-Eisenbud R-matrix parameters into our new definite
parameters, composed of the definite levels Eλ and Ducru
definite widths αλ,c (which are now all complex numbers). As
a result, this novel definite parametrization of R-matrix theory
can be equivalently used as a new, complete, and invariant
format for nuclear data evaluations.
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