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Evolution of the phenomenologically determined collective potential along the chain of Zr isotopes
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Background: The properties of the collective low-lying states of Zr isotopes which include excitation energies
and E2 reduced transition probabilities indicate that some of these states are mainly spherical and the other are
mainly deformed ones. A consideration of these data in the framework of the geometrical collective model with
β, γ , and rotational degrees of freedom is necessary for 92–102Zr.
Purpose: To investigate the properties of the low-lying collective states of 92–102Zr based on the five-dimensional
geometrical quadrupole collective model, to obtain the collective potentials for the chain of Zr isotopes and to
investigate their evolution with increase of the number of neutrons.
Method: The quadrupole-collective Bohr Hamiltonian depending on both β and γ shape variables with a
potential having spherical and deformed minima is applied. The relative depth of two minima, height and width
of the barrier, and rigidity of the potential near both minima are determined so as to achieve the best possible
description of the observed properties of the low-lying collective quadrupole states of 92–102Zr.
Results: Satisfactory agreement with the experimental data on the excitation energies and the E2 reduced
transition probabilities is obtained. The evolution of the collective potential with increase of A is described
and the distributions of the wave functions of the collective states in β-γ plane are found.
Conclusion: It is shown that the low-energy structure of 92–102Zr can be described in a satisfactory way within
the geometrical collective model with the Bohr Hamiltonian. The β dependence of the potential energy is fixed
to describe the experimental data in a best possible way. The resulting potential evolves with A increase from
having only one spherical minimum in 92Zr, through the potentials having both spherical and deformed minima,
to the potential with one deformed minimum in 102Zr. A β dependence of the wave functions is presented in a
set of figures illustrating their distribution over β.

DOI: 10.1103/PhysRevC.105.024321

I. INTRODUCTION

Zr isotopes are of particular interest for investigation of
nuclear structure, especially because they are characterized by
a dramatic transition from spherical to deformed shape at low
excitation energies [1,2]. Many spectroscopic data have been
accumulated for these nuclei [3–18] containing information
on excitation energies and electromagnetic transition prob-
abilities. Various theoretical approaches have been used to
study shape phase transitions in these nuclei [2,19–60]. The-
oretical studies of Zr isotopes can be divided into two groups.
The first group was aimed to clarify the mechanism of a sharp
transition from the spherical shape to the deformed one. These
investigations were based either on the nuclear shell model
[19–32], or on the self-consistent mean field, the Strutinsky-
type approaches to calculations of the potential energy surface
[33–40], and the energy density functional [41–44]. The
interacting boson model based on the mean field calcula-
tions was also used to describe the properties of Zr isotopes
[45–47]. The second group includes studies based mainly on
the phenomenological models: the interacting boson model
or the interacting boson model with configuration mixing

[48–54], or on the Bohr collective Hamiltonian [56–58]. In
Refs. [59,60], two-level mixing model has been used to ana-
lyze experimental data.

In this work, the consideration of the low-lying states of
92–102Zr is based on the five-dimensional Bohr Hamiltonian.
The aim of this work is to determine the collective potentials
for the 92–102Zr isotopes fixing their β dependence so as to
obtain the better possible description of the experimental data
and investigate the evolution of the collective potential with
increase of the number of neutrons. The other aim is to get a
distribution of the wave functions of the low-lying collective
states in β-γ plane.

This consideration is not free from restrictions. A certain
dependence of the potential on a variable describing nonaxial
deformation is assumed and restrictions on the inertia tensor
are imposed.

II. HAMILTONIAN

In the general case, the quadrupole collective Bohr Hamil-
tonian can be presented as (see Ref. [56])
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Ĵ2
k

�k (β )
+ V (β, γ ). (1)

Here ω = BββBγ γ − B2
βγ is the determinant of the vibrational

part of the inertia tensor

Bvib =
(

Bββ βBβγ

βBβγ β2Bγ γ

)
, (2)

and r = B1B2B3, where Bk (k = 1, 2, 3) are presented in the
expression for the components of the moment of inertia �k

determined with respect to the body-fixed axes as

�k = 4Bk (β )β2 sin2

(
γ − 2πk

3

)
. (3)

The components of the angular momentum in the body-fixed
frame are denoted as Ĵk and can be expressed in terms of the
Euler angles. The potential energy is denoted as V (β, γ ). The
Hamiltonian (1) is a general case of the conventional Bohr
Hamiltonian [61], allowing the nonzero value of Bβγ .

To simplify consideration, we make below the following
assumptions for the inertia coefficients:

Bββ = Bγ γ = B0, Bβγ = 0,

B1(β ) = B2(β ) = B3(β ) = brot (β )B0, (4)

where B0 is the parameter scaling vibrational and rotational
inertia coefficients. With respect to the value of brot, it is
known [62,63] that in the deformed nuclei brot is less than
one. In the region of a small values of β we put brot = 1
(see discussion in Ref. [58]). Since a general feature of the
collective potential used below is the presence of two minima,
spherical and deformed, separated by the barrier at β = βm,
we set brot as follows:

brot =
{

1 if β � βm,
bdef < 1 if β > βm. (5)

The change from the spherical to deformed value of brot oc-
curs at β = βm, which is taken around the maximum of the
barrier separating spherical and deformed potential wells. Our
calculations show that the small variations of βm do not affect
qualitatively the results of the calculations.

With these assumptions about inertia tensor, the Hamilto-
nian (1) takes the form

Ĥ = − h̄2
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We expect that the wave functions of the lowest states are
localized in the minima while the weight of the wave functions
inside the barrier region is strongly suppressed. In this case,

we can neglect a derivative of brot over β which is presented,
in principle, in the kinetic part of the Hamiltonian (6), as it
gives the nonzero contribution to the matrix elements of the
Hamiltonian only in the barrier region where the wave func-
tions are close to zero. Thus, we obtain finally the following
model Hamiltonian:

H = − h̄2
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+ V (β, γ ), (7)

The aim of the present work is to determine the potential
energy in the Bohr Hamiltonian for nuclei belonging to the
chain of the Zr isotopes so as to achieve the best possible
agreement with the experimental data in excitation energies
and E2 transition probabilities for the low-lying states. This
give us the possibility to explore the evolution of the collective
potential with increase of A along the chain of Zr isotopes. The
potential energy V (β, γ ) in (7) is chosen in the form

V (β, γ ) = U (β ) + Cγ β3(1 − cos 3γ ). (8)

Thus, we fix the dependence of V on γ , eliminating po-
tentials with minimum corresponding to the nonaxial shapes.
The form of U (β ) and the parameter Cγ , which determines
the stiffness of the potential with respect to γ oscillations at
the deformed minimum, are fitted to reproduce the experiment
data.

In our previous work [57], to describe the shape of U (β )
for 96Zr we have defined several points fixing the positions of
the spherical and deformed minima, the rigidity of the poten-
tial near its minima, and the height and width of the barrier
separating two minima. Then we vary the positions of the
selected points in order to get a satisfactory description of the
experimental data. The number of points was taken to be 16
to provide a smooth change of the potential with β. However,
we have found that not all the points are of the same physical
importance and that the number of points can be minimized
as, obviously, the only relative depths of the minima and the
height and width of the barrier leads to physically meaningful
changes.

For this reason, in the present paper we approximate the
potential by the three parabolas: two to describe spherical and
deformed minima, and the inverted parabola to describe the
barrier separating two minima. The potential was constructed
by smooth cross-linking of the three parabolas. The bottom of
the parabola corresponding to spherical minimum was fixed
at β2 = 0 and at zero energy. The adjusted parameters are as
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TABLE I. Parameters of the potential and the rotational inertia
coefficient. wsph (wdef) is the stiffness of the parabola describing the
spherical (deformed) minimum; βdef is the location of the deformed
minimum at β axis; hdef is the height of the location of the bottom
of the parabola describing deformed minimum with respect to the
bottom of the spherical minimum; hb is the height of the top of the
parabola describing the barrier.

wsph wdef hdef hb

Isotope (MeV) (MeV) βdef (MeV) (MeV) bdef

92Zr 933.8 296.6 0.34 4.5 4.5 0.37
94Zr 235.4 200 0.35 2.7 3.2 0.25
96Zr 958 453.4 0.25 5.2 6.7 0.23
98Zr 843.4 200 0.23 4.4 5.5 0.29
100Zr 1027.6 200 0.33 1.1 2 0.27
102Zr 899.2 326.4 0.29 −3.8 0 0.42

follows: stiffness of the parabola describing spherical min-
imum (wsph); stiffness of the parabola describing deformed
minimum (wdef); location at β2 axis (βdef) and the height with
respect to the bottom of the spherical minimum (hdef) of the
parabola describing deformed minimum; and the height of
the top of the parabola defining the barrier (hb). The obtained
parameters for the Zr isotopes are shown in Table I together
with value of the rotational inertia coefficient in deformed
region.

To solve the eigenvalue problem with the Hamiltonian (7),
we expand the eigenfunctions in terms of a complete set of
basis functions that depends on the deformation variables β

and γ and the Euler angles. These functions are well known
and their construction is described in the literature. See, for in-
stance, Refs. [64,65] and references below. For completeness
of presentation, we give some details here.

For each value of angular momentum I , the basis functions
are written as

�
nβvα

IM = R(nβ ,v)(β )ϒvαIM (γ ,
), (9)

where ϒvαIM are the SO(5) ⊃ SO(3) spherical harmonics,
which are the eigenfunctions of the operator �̂2:
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In addition to the angular momentum I and its projection M,
each function ϒvαIM is labeled by the SO(5) seniority quan-
tum number v and a multiplicity index α, which is required
for v � 6.

The ϒvαIM can be explicitly constructed as a sum over the
functions with explicit value of the projection K of the angular
momentum on the intrinsic axis [66,67]

ϒvαIM (γ ,
) =
I∑
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and the FvαI,K (γ ) are polynomials constructed from the
trigonometrical functions of γ [68]. This construction is used
in the present work.

The basis wave functions R(nβ ,v) are chosen as the eigen-
functions of the harmonic oscillator Hamiltonian in β:
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The eigenfunctions of hh.o. have the following analytical
form,

Rnβ ,v (β ) = Nβ
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where β0 is an oscillator length and the normalization constant
Nβ is given as

Nβ =
√

2nβ!

�(nβ + v + 5/2)
. (15)

The basis functions Rnβ ,v are completely specified by the
choice of the oscillator length β0. Our calculations have shown
that the fastest convergence of the results is obtained when
β0 is chosen to be equal to the value at the region of the
barrier separating two minima, so that the oscillator potential
coincides with the potential U (β ) at the top of the barrier.
For such a choice of β0, (nβ )max = 30 is enough to provide
a convergence. The basis of harmonics ϒvαIM (γ ,
) is trun-
cated to some maximum seniority vmax. As shown in Ref. [69],
taking vmax = 50 is sufficient to provide a convergence of the
calculation.

The Hamiltonian eigenfunctions �InM , where n is a
multiplicity index, are obtained in calculations as a series
expansions in the basic functions (9). For discussions below
it is convenient to introduce the one-dimensional probability
distribution over β determined by integration of |�InM |2 over
γ and Euler angles:

β4
∫ π/3

0
sin 3γ dγ

∫
d
|�InM |2. (16)

The collective quadrupole operator responsible for E2 transi-
tions is taken in the form

Q2μ = 3Ze

4π
R2

0

(
β cos γ D2

μ0(
)

+ 1√
2
β sin γ

(
D2

μ2(
) + D2
μ−2(
)

))
. (17)

III. RESULTS

The results of calculations of the excitation energies
and the E2 reduced transition probabilities are presented in
Tables II and III.
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TABLE II. Comparison of the experimental and calculated energies of the low-lying collective states of the even-even 92–102Zr isotopes.
The observed 2+

2 state in 92Zr has a noncollective nature and is presented for the completeness only. For this reason, the calculated excitation
energy of this state is not shown in this table. Experimental data are taken from Ref. [71].

A 92 94 96 98 100 102

State (MeV) Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc

E (0+
2 ) 1.38 1.35 1.30 1.30 1.58 1.58 0.85 0.86 0.33 0.33 0.90 0.90

E (0+
3 ) 2.90 2.10 1.57 2.70 2.40 1.44 1.63 0.83 0.80 1.38

E (2+
1 ) 0.93 0.91 0.92 0.95 1.75 1.75 1.22 1.18 0.21 0.19 0.15 0.15

E (2+
2 ) 1.85 – 1.67 1.61 2.23 2.00 1.59 1.59 0.83 0.88 1.04 1.02

E (2+
3 ) 2.07 1.77 2.15 1.92 2.67 2.79 1.75 2.00 1.20 1.22 1.21 1.21

E (3+
1 ) 2.91 2.91 2.51 3.19 2.44 3.74 2.80 1.40 1.75 1.24 1.32

E (4+
1 ) 1.50 1.88 1.47 1.98 2.86 2.69 1.84 1.86 0.56 0.56 0.48 0.47

E (4+
2 ) 2.40 2.56 2.33 2.07 3.08 3.34 2.05 2.53 1.41 1.43 1.39 1.39

E (4+
3 ) 2.87 2.90 2.86 2.77 3.18 3.68 2.28 2.95 1.86 1.89 1.54 1.68

A. 92Zr

Let us take a closer look at the results of calculations
for 92Zr. In this nucleus, the value of the B(E2; 2+

1 → 0+
1 )

of 6.4 W.u. indicates the collective nature of the 2+
1 state

related to the oscillations of the nuclear shape around the
spherical one. Of course, 92Zr is not the right nucleus to
consider in a collective model. It has only two valence nu-
cleons, and even taking into account a possible transition of
the pair of protons from p1/2 to g9/2 single-particle levels,

this increases the number of valence nucleons to six only.
Nevertheless, we include this nucleus into consideration, since
our main task is to obtain the most complete information on
the evolution of the collective potential along the Zr isotope
chain. In Tables II and III, the experimental data and the
results of our calculations for the low-lying states of 92Zr
are compared. The calculated value of the B(E2; 2+

1 → 0+
1 ) =

8.2 W.u. is close to the experimental value 6.4 W.u. Compar-
ison of the experimental E2 reduced transition probabilities
from 2+

2 (1847 keV) and 2+
3 (2067 keV) states to 2+

1 state

TABLE III. Comparison of the experimental and calculated E2 reduced transition probabilities between the low-lying states of the even-
even 92–102Zr isotopes. The observed 2+

2 state has a noncollective nature and is presented for the completeness only. For this reason, the
calculated values of the E2 reduced transition probabilities from and to this state are not shown in the table. Experimantal data are taken
mainly from Ref. [71].

A 92 94 96 98 100 102

Transition (W.u.) Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc

B(E2; 02 → 21) 14.4(5) 20.74 9.4(4) 12.94 4.90 67(6) 26.35 10.37
B(E2; 21 → 02) 29(+8

−6) 29.02
B(E2; 21 → 01) 6.4(6) 8.17 4.9(3) 8.09 2.3(3)b 3.69 2.9(+8

−5) 1.84 77(2) 64.70 105(14) 53.94
B(E2; 22 → 01) 3.7(5) 3.9(3)a 0.00 0.26(8)c 0.26 2.58 0.00 1.40
B(E2; 22 → 02) 19(2)a 31.59 36(11)c 33.84 3.00 18.10 23.55
B(E2; 22 → 21) 0.001(+25

−1 ) 0.06(+0.13
−0.06)a 1.52 2.8(+1.5

−1.0)d 3.86 12.56 3.49 9.79
B(E2; 23 → 01) <0.0042 0.02 0.01 0.01 0.25 0.53 1.92
B(E2; 23 → 21) <15 16.27 13.76 50(7)b 3.07 9.90 0.03 0.03
B(E2; 31 → 21) 0.030(7) 0.04 0.03 0.1(+0.3

−0.1)b 0.15 1.93 4.49 5.00
B(E2; 31 → 22) 2.4(14) 3.59 3.14 3.79 0.08 42.70
B(E2; 41 → 21) 4.05(12) 17.65 0.879(23) 4.19 16(+5

−13)b 6.86 42(+10
−7 ) 46.99 101.4(11) 104.41 167(+30

−22)e 81.49
B(E2; 41 → 22) 88.07 56(44)b 55.76 54(+18

−16) 11.29 12.76 0.31
B(E2; 42 → 21) 5.9(7) 0.002 13(+4

−7)a 12.08 7.04 1.00 0.03 0.15
B(E2; 42 → 22) 34(+10

−17)a 15.22 2.29 17.41 58.67 50.37
B(E2; 42 → 41) 2.3(13) 5.55 12.26 3.30 9.87 3.73 9.43
B(E2; 43 → 21) 0.76(15) 0.01 0.04 0.21 0.02 0.58 0.73
B(E2; 43 → 41) 2.7(6) 6.84 1.16 6.16 1.92 2.71 0.32
B(E2; 43 → 42) 0.03(+99

−3 ) 8.93 4.56 0.13 8.97 11.48 6.64

aExperimantal data are taken from Ref. [12].
bExperimantal data are taken from Ref. [72].
cExperimantal data are taken from Ref. [14].
dExperimantal data are taken from Ref. [17].
eExperimantal data are taken from Ref. [15].
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FIG. 1. Distribution over β of the squares of the wave functions or their components in 92Zr determined by Eq. (16). (a) 0+
1 (red short

dashed line) and 0+
2 (purple dash-dotted line) states. (b) 2+

1 state (K = 0, red solid line; K = 2, blue dashed line). (c) 2+
3 state (K = 0, red solid

line; K = 2, blue dashed line).

with the calculated ones shows that the calculated state with
excitation energy 1770 keV is close in properties to the ex-
perimentally observed 2+

3 (2067 keV) state. That is why in
the tables the calculated state with the excitation energy of
1770 keV is compared with the observed 2+

3 state. Thus, we
have the B(E2; 2+

3 → 2+
1 )exp � 15 W.u. and the B(E2; 2+

3 →
2+

1 )cal = 16.3 W.u. Further, the B(E2; 2+
3 → 0+

1 )exp < 0.004
W.u and the B(E2; 2+

3 → 0+
1 )cal = 0.02 W.u. This comparison

indicates the collective nature of the 2+
3 state, which is con-

firmed by the small value of the B(M1; 2+
3 → 2+

1 ). A small
value of the B(E2; 2+

2 → 2+
1 )exp = 0.001 W.u. and a large

value of the B(M1; 2+
2 → 2+

1 )exp indicates on the noncollec-
tive nature of the experimentally observed 2+

2 state. Therefore,
description of the observed 2+

2 state requires the shell model
consideration and is not considered in this paper. For this
reason, the results of calculations of the E2 reduced transition
probabilities from the 2+

2 state and to this state are not given
in Table III.

The experimental value of the B(E2; 0+
2 → 2+

1 )exp = 14.4
W.u. indicates the collective nature of the 0+

2 state. From
this point of view, it is in a correspondence with the calcu-
lated value of the B(E2; 0+

2 → 2+
1 )cal = 20.7, although the

calculated value is significantly larger than the experimental
one. Comparison of the experimental and calculated values
of the B(E2; 4+

1 → 2+
1 ), 4.05 and 17.7 W.u., correspondingly,

indicates on the presence in the wave function of the 4+
1 state

of the shell model configuration (d5/2d5/2)4. This explains
the strong discrepancy between the experimental and calcu-
lated results. The proximity in the value of the experimental
E2 reduced transition probabilities B(E2; 4+

1 → 2+
1 )exp and

B(E2; 4+
2 → 2+

1 )exp indicates that the lowest energy pure col-
lective 4+ state generated by the Bohr collective Hamiltonian
is fragmented, and distributed between the experimentally ob-
served 4+

1 and 4+
2 states. This statement is consistent with the

fact that the calculated value of B(E2; 4+
2 → 2+

1 ) is practically
zero.

In Fig. 1, a β dependence of the wave functions of the
2+

1 , 0+
2 , and 2+

3 states of 92Zr is demonstrated. It is seen
that the wave functions of the 0+

2 and 2+
3 states have a

similar β dependance; namely, they have a node in β in
contrast to the 2+

1 state. This makes these states similar to the

two-phonon states, which explains the large value of the E2
reduced transition probability from these states to the 2+

1 state.
Our calculations qualitatively confirm these experimental
date.

B. 94Zr

Let us consider the experimental data on 94Zr. The exper-
imental value of B(E2; 2+

1 → 0+
1 ) = 4.9 W.u. indicates that

the 2+
1 state of this nucleus is quite collective, and its structure

is formed by excitation of both proton and neutron subsys-
tems. However, the predominance of the neutron shell model
configuration (d5/2d5/2)2, whose contribution to the value of
the B(E2; 2+

1 → 0+
1 ) is small, cannot be excluded. This pos-

sibility is indicated by the value of B(E2; 2+
1 → 0+

1 )cal =
8.09 W.u. calculated using the standard definition of the
quadrupole moment operator in the geometrical collective
model. Comparing this value with the experimental one, it can
be assumed that the contribution of a noncollective component
to the wave function of the 2+

1 state may be of the order of
50%.

The experimental value of B(E2; 4+
1 → 2+

1 )exp is notice-
ably less than B(E2; 2+

1 → 0+
1 )exp, which indicates or on a

predominance of the noncollective component (d5/2d5/2)4 in
the structure of the 4+

1 state, either on a deformed nature of
the 4+

1 state in contrast to the spherical 2+
1 state. Our calcula-

tions support a second possibility. At the same time, a large
experimental value of the B(E2; 4+

2 → 2+
1 )exp = 13.2 W.u.

indicates that 4+
2 state is the spherical one as the 2+

1 state. This
interpretation is confirmed by the β dependence of the wave
function of the 4+

2 state [see Fig. 2(e)] which is concentrated
at low β, as the wave function of the 2+

1 state and has a node
in β. The wave function of the 4+

1 state is concentrated at
large β [see Fig. 2(d)]. This explains the small value of the
B(E2; 4+

1 → 2+
1 ). Our calculations of the B(E2; 4+

1 → 2+
1 )

confirm the experimentally observed tendency to decrease
B(E2; 4+

1 → 2+
1 ) compared to B(E2; 2+

1 → 0+
1 ), although it

gives a value exceeding the experimental one.
Interpretation of the properties of the 2+

2 state is com-
plicated. The large experimental value of B(E2; 4+

2 → 2+
2 )

qualitatively reproduced by our calculations (however, twice
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FIG. 2. Distribution over β of the squares of the wave functions or their components in 94Zr determined by Eq. (16). (a) 0+
1 (red short

dashed line) and 0+
2 (purple dash-dotted line) states. (b) 2+

1 state (K = 0, red solid line; K = 2, blue dashed line). (c) 2+
2 state (K = 0, red solid

line; K = 2, blue dashed line). (d) 4+
1 state (K = 0, red solid line; K = 2, blue dashed line; K = 4, blue). (e) 4+

2 state (K = 0, red solid line;
K = 2, blue dashed line; K = 4, green dotted line).

FIG. 3. The same as in Fig. 2, but for 98Zr.
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FIG. 4. Distribution over β of the squares of the wave functions of the 0+
1 (red short-dashed line) and 0+

2 (purple dash-dotted line) states
determined by Eq. (16). (a) 100Zr. (b) 102Zr.

as less) assumes a spherical nature of the 2+
2 state in agreement

with a spherical nature of the 4+
2 state. At the same time, a

small experimental value of the B(E2; 2+
2 → 2+

1 ) contradicts
the assumption of the spherical structure of the 2+

2 state,
because the 2+

1 state is spherical as seen in Fig. 2(b). As
shown in Fig. 2(c), the 2+

2 state is deformed and the relatively
large value of B(E2; 4+

2 → 2+
2 ) is explained by the presence

of the second maximum of the wave function of the 4+
2 state at

large values of β. Deformed structure of the 2+
2 state explains

a small value of the B(E2; 2+
2 → 2+

1 ). The calculated value
of B(E2; 2+

2 → 0+
1 ) is small, in agreement with a deformed

structure of the 2+
2 state and spherical nature of the 0+

1 state.
However, the fact that the calculated value of the B(E2; 2+

2 →
0+

1 ) is significantly less than the experimental value indicates
that the calculated 2+

2 state too much shifted into deformed
region.

A large value of B(E2; 0+
2 → 2+

1 ) indicates that 0+
2 state

can be similar in its structure to the two-phonon state, al-
though modified by the anharmonic effects. At the same
time, a large value of the B(E2; 2+

2 → 0+
2 ), which is also

reproduced by our calculations, is rather consistent with the
deformed structure of the 0+

2 state. In Fig. 2(a), the square of
the wave function of the 0+

2 state is presented as a function
of β. It is seen that from one side the wave function of the
0+

2 state has a node as a function of β, which makes the 0+
2

state similar to the two-phonon state. This explains a large
value of the B(E2; 0+

2 → 2+
1 ). But from the other side, a

large part of the wave function of the 0+
2 state is located

in the region of large β. It explains the large value of the
B(E2; 2+

2 → 0+
2 ).

C. 96Zr

The nucleus 96Zr was considered in details in our previous
publication [58], albeit with slightly different parametrization
of the potential energy. The results shown in Tables II and
III are close to those shown in Ref. [58]. Some of the values
calculated in this work are closer to the experimental values

than those obtained in Ref. [58]. In several cases, previous
results are better agreed with experimental data. This applies
to B(E2; 4+

1 → 2+
1 ) and B(E2; 4+

2 → 2+
2 ).

D. 98Zr

The wave functions of the low-lying states of 98Zr are
shown in Fig. 3. It is seen that the wave function of the 0+

1 state
is concentrated around β ≈ 0.1, i.e., in the spherical region,
but the 0+

2 state is deformed.
The wave function of the 2+

1 state has a wide maximum
centered at β = 0.27, i.e., is distributed over both spherical
and deformed regions. A similar structure has a wave function
of the 4+

2 state. The wave functions of the 2+
2 and 4+

1 states are
similar to each other. The squares of their wave functions has
two maxima: one spherical and the other deformed.

The following E2 transitions are measured: B(E2; 0+
2 →

2+
1 )exp = 29.0 W.u. and B(E2; 2+

1 → 0+
1 )exp = 2.9 W.u. The

large value of the B(E2; 0+
2 → 2+

1 )exp is explained by the fact
that the wave functions of both 0+

2 and 2+
1 states have a similar

structure and are located in deformed region. The relatively
small value of the B(E2; 2+

1 → 0+
1 )exp is explained by the fact

that the wave function of the 0+
1 state is concentrated in a

spherical region, in contrast to the 0+
2 state.

A large experimental value of the B(E2; 4+
1 → 2+

1 )exp =
42 W.u. is reproduced in calculations: B(E2; 4+

1 → 2+
1 )cal =

47 W.u. It is explained by the fact that the wave function
of the 2+

1 state is located in deformed region, and the wave
function of the 4+

1 has a strong maximum in the same region.
The calculated value of the B(E2; 4+

1 → 2+
2 )cal = 11.3 W.u.

is characteristic for the collective E2 transition. However, its
value is five times smaller than the experimental one. Proba-
bly, this means that the maximum of the wave function of the
2+

2 state located at β = 0.1 should be lower than that obtained
in our calculations and shown in Fig. 3(c). However, deformed
maximum of this wave function should be higher than that
shown in Fig. 3(c).
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FIG. 5. Collective potential for the even-even Zr isotopes obtained by fitting the experimental data for the low-lying collective quadrupole
states.

E. 100,102Zr

In 100Zr we consider only two quasirotational bands based
on 0+

1 and 0+
2 states. The more strong E2 transitions connect

the states of the ground band based on the 0+
1 . The results of

calculations of these transitions are in agreement with the ex-
perimental data. Unfortunately, there are no experimental data
for E2 transitions between the states of the second band. The
calculated values of B(E2) for this band are noticeably smaller
than those for transitions within the ground band. However,
they are strong enough to confirm their collective nature.
Calculated values of the E2 transitions between rotational
bands are small compared to probabilities of the E2 transitions

inside rotational bands. Based on the values of B(E2) for
transitions inside the bands, we conclude that the rotational
band based on 0+

1 state is rather deformed and that based on
the 0+

2 is more spherical. This conclusion is supported by the
calculated β dependence of the wave functions of the 0+

1 and
0+

2 sates shown in Fig. 4(a).
The experimental data and the results of calculation for

102Zr present a picture similar to that described above for
100Zr. In 102Zr there is a rotational band based on the ground
state, with strong E2 transitions between the states of the
band. This indicates that the 0+

1 state is deformed. The excited
band is based on the 0+

2 state with the calculated excitation
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energy 900 keV. This band is characterized by fairly collec-
tive, but still weaker than in the case of the ground band, E2
transitions within the band. The calculated excitation energy
of the 0+

2 state indicates that excited band can be interpreted
as a quasi-β band. However, smaller calculated values of the
E2 transition probabilities inside this band indicate that the 0+

2
wave function has an admixture of the spherical component.
Wave functions of the 0+

1 and 0+
2 states are shown in Fig. 4(b).

From Fig. 4(b), it is seen that the wave function of the 0+
2 state

oscillates like the wave function of the β-vibrational state.
However, it is shifted to the spherical region with a greater
extent than the wave function of the 0+

1 state.

F. Potential

The resulting potentials V (β, γ ) for all considered Zr iso-
topes are presented in Fig. 5, where the value of Cγ is taken
to be positive. Our calculations have shown that the results
are not very sensitive to the exact value of the parameter Cγ .
For 96Zr its value was fixed as Cγ = 50 MeV to provide better
fit of the experimental data [58]. No significant changes were
found in the calculated results for the excitation energies and
the E2 transition probabilities when Cγ was varied around
50 MeV. Therefore, to reduce the number of adjustable pa-
rameters, we fix the same value of Cγ for all considered Zr
isotops.

The β dependence of the collective potential taken for γ =
0 is illustrated in Fig. 5. It is seen that in 94,96,98,100Zr spherical
and deformed minima coexist. In 92Zr the deformed minimum
is only intended. In 94Zr deformed minimum is very shallow,
in 96,98,100Zr it is clearly isolated, and in 102Zr there is only
deformed minimum.

It is seen in Fig. 5 that the spherical minimum of the
potential in 96,98Zr is more rigid than in lighter Zr isotopes.
This fact correlates with the higher energies of the 2+

1 states
in 96,98Zr compare to 92,94Zr. This result is in accordance

with the single-particle level scheme of Zr isotopes given
in Ref. [70]. According to this scheme, the lowest neutron
single-particle level in the shell above N = 50 is d5/2. The
following single-particle level s1/2 is located above d5/2 by
1033 keV, and the single-particle level g7/2 is separated from
s1/2 by 1940 keV. Thus, single-particle neutron states d5/2

and s1/2 play the role of subshells and this explains a larger
rigidity of the potential near the spherical minimum in 96,98Zr,
in contrast to the lighter Zr isotopes.

IV. CONCLUSION

We have studied a possibility to describe the properties of
the low-lying collective quadrupole states of 92–102Zr based
on the five-dimensional Bohr collective Hamiltonian. Both β

and γ shape collective variables are included into consider-
ation. The β dependence of the potential energy is fixed to
describe the experimental data in a best possible way. How-
ever, the γ dependence of the potential is introduced in a
simple way favoring axial symmetry at large β. The resulting
potential evolve with A increase from having only one spher-
ical minimum, through the potentials having both spherical
and deformed minima, to the potential with one deformed
minimum in 102Zr.

A detailed comparison of the energy spectra, the E2 transi-
tion probabilities, and a discussion of the characteristics of the
resulting wave functions was carried out. A β dependence of
the wave functions is presented in a set of figures illustrating
their distribution over β at γ = 0.
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