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Questioning the wobbling interpretation of low-spin bands in γ-soft nuclei
within the interacting boson-fermion model
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An alternative interpretation of the recently reported low-lying excited bands in γ -soft odd-mass nuclei
as wobbling bands is presented in terms of the interacting boson-fermion model. The model Hamiltonian is
determined based on the mean-field calculations with the nuclear energy density functionals. The predicted
mixing ratios of the �I = 1 electric quadrupole to magnetic dipole transition rates between yrast bands and those
yrare bands previously interpreted as wobbling bands in 135Pr, 133La, 127Xe, and 105Pd are consistently smaller
in magnitude than the experimental values on which the wobbling interpretation is based. These calculated
mixing ratios indicate predominant magnetic character in agreement with the new experimental data. The earlier
wobbling assignments are severely questioned.
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I. INTRODUCTION

Ground-state shape of most nonspherical nuclear systems
is characterized by axially symmetric quadrupole deforma-
tion [1]. The axial symmetry, i.e., invariance under rotation
about the symmetry axis of the intrinsic frame, is, however,
broken in many nuclei. The nonaxial nuclear shapes as well
as the resulting triaxially deformed rotors are a prominent
feature of nuclear structure. A fingerprint of the rigid triaxi-
ality is wobbling motion [1], a collective mode in which the
principal axis of a triaxial rotor corresponding to the largest
moment of inertia oscillates about the space-fixed angular
momentum. The phenomenon has attracted much attention in
nuclear physics and is also recognized in finite many-body
microscopic and macroscopic systems in general.

The wobbling motion in nuclei can be identified exper-
imentally through the observation of rotational bands that
are connected to each other by predominant �I = 1 electric
quadrupole (E2) transitions, because the collective oscillation
of the entire nuclear charge is involved. Traditionally, excited
bands that manifest features of wobbling motion have been
identified in high-spin bands of the odd-mass Lu and Ta
nuclei in the mass A ≈ 160 region [2–7]. More recent ex-
periments have shown new evidence for wobbling bands in
odd-mass nuclei in several other mass regions, observed in
the low-spin regime, e.g., in 135Pr [8,9], 133La [10], 105Pd [11],
127Xe [12], 187Au [13], and 183Au [14], as well as at medium
spins in 130Ba [15] and 136Nd [16]. In comparison to the
high-spin wobbling bands of strongly deformed triaxial nu-
clei in the mass A ≈ 160 region, the new experiments have
proposed the occurrence of low-spin wobbling motion in
normal-deformed γ -soft nuclei, which are characterized by
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a collective potential that is soft in nonaxial deformation and
has small quadrupole deformation. The search for new regions
of wobbling motion expands the frontier of nuclear collective
motion but should be accompanied by increasing experimen-
tal rigor.

In fact, it is of crucial importance to critically assess the
reported experimental evidence for the wobbling bands. The
wobbling interpretation requires connecting transitions with
predominant electric character, which can be established by
extracting mixing ratios δ(E2/M1) with magnitudes larger
than 1, which signifies predominance of the electric over
the magnetic components. Actually, new experiments that in-
volve angular distribution combined with linear polarization
measurements on excited bands in 187Au [17] and 135Pr [18]
showed that the interband transition between the proposed
wobbling bands and the yrast bands in these nuclei are
predominantly magnetic. The wobbling interpretation of the
newly found bands has been mostly based on a particle-rotor
picture, in which the configuration that embodies the wob-
bling motion is explicitly considered within the intrinsic frame
of reference [8–11,18,19]. On the other hand, it would be
useful to give an alternative theoretical interpretation of the
proposed low-spin wobbling bands if the character of the con-
necting transitions is not predominantly electric, as required
by the collective wobbling motion.

In this paper, we shall consider the recently proposed low-
spin wobbling bands of γ -soft odd-mass nuclei 135Pr, 133La,
127Xe, and 105Pd, within the interacting boson-fermion model
(IBFM) [20,21], with the Hamiltonian determined by the con-
strained mean-field calculations that are based on the nuclear
energy density functional (EDF) [22–25]. The aim of this
work is to provide an alternative interpretation of the observed
nonyrast bands of the above odd-mass nuclei. Our calculation
reproduces the new data on 135Pr [18] and the old data on
105Pd [26] but is in contradiction with those experimental
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data on which the wobbling interpretation is based. Here we
mainly focus on the excitation spectra and electromagnetic
transition properties of these nonyrast bands that are obtained
from the diagonalization of the IBFM Hamiltonian in the lab-
oratory frame of reference. We also note that certain intrinsic
properties of odd-mass nuclei can be dealt with within the
IBFM framework as well by making use of the formalism of
coherent state that is generalized to coupled boson-fermion
systems [21,27,28]. This procedure has been extensively used
for analyzing properties in the intrinsic frame, including the
studies of the quantum shape-phase transitions in odd-mass
nuclei [29,30].

The paper is organized as follows. In Sec. II, we outline
the theoretical procedure to construct the IBFM Hamiltonian
based on the mean-field calculations. Section III shows our
results including the excitation spectra, E2/M1 mixing ratios,
and B(E2) and B(M1) transitions for the considered odd-mass
nuclei 135Pr, 133La, 127Xe, and 105Pd. Summary of the main
results is given in Sec. IV.

II. THEORETICAL PROCEDURE

In even-even nuclei, to a good approximation, nucleons
are coupled pairwise and the presence of such pairs play an
important role in nuclear dynamics, determining basic pa-
rameters of vibrational and rotational spectra. In odd-mass
nuclear systems, one has to consider explicitly the unpaired
nucleon and treat the collective and noncollective (single-
particle) degrees of freedom on the same footing [31]. A major
assumption in the present work is that the low-lying states of
an even-even nucleus is described by the interacting boson
model (IBM) [32], consisting of the monopole s (with spin
and parity L = 0+) and quadrupole d (L = 2+) bosons, which
represent the collective S and D pairs of valence nucleons,
respectively.

The low-energy structure of a given odd-mass nucleus is
determined by the interaction between an odd fermion and
the even-even boson (IBM) core. Specifically, 135Pr (133La)
is a system composed of even-even core 134Ce (132Ba) plus
an odd proton particle, while 127Xe (105Pd) is composed of
the 128Xe (106Pd) even-even core coupled to the odd neutron
hole. For all these odd-mass nuclei, the fermion space corre-
sponds to the proton Z or neutron N = 50–82 major oscillator
shell, hence only the orbital 1h11/2 is considered to describe
negative-parity states. In general, the IBFM Hamiltonian is
given by

Ĥ = ĤB + ĤF + V̂BF, (1)

where ĤB stands for the IBM Hamiltonian for an even-even
core, ĤF is the single-nucleon Hamiltonian, and V̂BF repre-
sents the boson-fermion interaction.

In the first step of the present theoretical analysis, we
carry out, for each even-even core nucleus, the constrained
mean-field calculations [33] based on a given EDF and obtain
the potential energy surface (PES) with triaxial quadrupole
degrees of freedom. The constraints imposed here are on
the mass quadrupole moments that are associated with the
polar deformation parameters β and γ (0◦ � γ � 60◦) [34].
Two types of the mean-field methods are considered: (i) the

FIG. 1. Potential energy surfaces (PESs) for the even-even core
nuclei obtained from the mean-field calculations with quadrupole
degrees of freedom β and γ . Two representative nuclear effective
interactions are employed: Gogny D1M [35] (for 132Ba and 128Xe)
and DD-PC1 [37] (for 134Ce and 106Pd) EDFs. The total mean-field
energies are plotted up to 3 MeV and normalized with respect to the
global minimum which is represented by a solid circle. The energy
difference between the neighboring contours is 0.2 MeV. Note that
the PESs for 132Ba and 128Xe are taken from Ref. [39].

Hartree-Fock-Bogoliubov method [24] with the parametriza-
tion D1M [35] of the Gogny EDF [36] for 132Ba and 128Xe
and (ii) the relativistic Hartree-Bogoliubov method [23] with
the density-dependent point-coupling (DD-PC1) EDF [37]
for particle-hole channel and the separable pairing force of
finite range [38] for the particle-particle channel for 134Ce and
106Pd. The calculated PESs for the even-even nuclei 134Ce,
132Ba, 128Xe, and 106Pd, shown in Fig. 1, are essentially soft
in γ deformation. This situation is characteristic of the γ -
unstable rotor picture [40], which is also equivalent to the O(6)
limit of the IBM.

In the next step we build the IBM Hamiltonian ĤB. In
this study, we employ the proton-neutron IBM (IBM-2) [41].
The IBM-2 comprises the proton sπ and dπ bosons, and
the neutron sν and dν bosons, which represent the collective
monopole and quadrupole proton-proton and neutron-neutron
pairs, respectively. For the IBM Hamiltonian ĤB we adopt the
form

ĤB = εd (n̂dπ
+ n̂dν

) + κQ̂π · Q̂ν, (2)

where in the first term n̂dρ
= d†

ρ · d̃ρ (ρ = π or ν) rep-
resents the number operator for the dρ bosons, with εd

the single d-boson energy relative to the s-boson one, and
d̃μ = (−1)μd−μ. Q̂ρ = s†

ρ d̃ρ + d†
ρ s̃ρ + χρ (d†

ρ × d̃ρ )(2) is the
bosonic quadrupole operator; εd , κ , χπ , and χν are the pa-
rameters to be determined.
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The geometrical structure of a given IBM Hamiltonian is
studied by introducing the boson coherent state [42], which is
given by

|�〉 =
∏

ρ=ν,π

[
s†
ρ +

+2∑
μ=−2

αρμd†
ρμ

]Nρ

|0〉 , (3)

up to a normalization factor. The amplitudes αρμ are given as
αρ0 = βρ cos γρ , αρ±1 = 0, and αρ±2 = βρ sin γρ/

√
2, where

βρ and γγ are boson analogs of the deformation variables. Nρ

is the number of neutron (ρ = ν) or proton (ρ = π ) bosons,
and |0〉 represents the boson vacuum, i.e., the inert core.
We assume that both proton and neutron bosons have equal
deformations, βπ = βν and γπ = γν . We could, in general,
take the deformations for the proton and neutron bosons to be
different from each other [43,44] and would then have to treat
the energy surface in four dimensions both in the mean-field
and IBM-2 frameworks. In practical calculations, however,
comparison between the fermionic and bosonic PESs in the
four-dimensional spaces would be too complicated. To sim-
plify the discussion, we here assume equal proton and neutron
deformations for both fermion and boson systems. We further
assume that the fermionic and bosonic deformations can be
related to each other in such a way that βπ = βν ∝ β and
γπ = γν ≡ γ [42,45].

The parameters of the boson Hamiltonian are determined
by mapping the fermionic PES onto the expectation value of
ĤB in the above coherent state, as in Ref. [45]. In other words,
the IBM parameters are calibrated so that the fermionic and
bosonic PESs become similar to each other. No phenomeno-
logical adjustment to experiment is made in this procedure.
We also note that the IBM Hamiltonian (2) is a rather spe-
cific form of the most general IBM-2 Hamiltonian. A more
accurate theoretical description of the relevant spectroscopic
properties of both even-even and odd-mass nuclei might re-
quire the inclusion of additional terms to ĤB, in particular,
the so-called Majorana terms, which could play an important
role in calculations of M1 properties. The Majorana terms,
however, do not add independent contributions to the energy
surface, unless the proton and neutron deformations are taken
to be different [44]. Under the present assumption that the
deformations for the proton and neutron boson systems are
equal to each other, the strength parameters of these terms
cannot be determined only by the comparison of the fermionic
and bosonic PESs that are given in terms of the β and γ

degrees of freedom only.
In Fig. 2 we show the mapped (bosonic) PESs for the

even-even core nuclei 134Ce, 132Ba, 128Xe, and 106Pd, which
can be compared with the original fermionic PESs in Fig. 1.
In general, the bosonic PES appears to be flat especially in
the region far from the global minimum. This reflects the
fact that the IBM is built on the valence space of collective
nucleon pairs in one major shell, while the mean-field model
involves all nucleons. The bosonic PESs for 134Ce, 132Ba,
and 128Xe exhibit a minimum on the prolate axis γ = 0◦,
while a shallow triaxial minimum at γ ≈ 20◦ is suggested in
the corresponding fermionic PESs. This discrepancy could be

FIG. 2. Same as Fig. 1 but for the bosonic PESs

corrected by including a higher-order term in the IBM Hamil-
tonian [46]. However, the triaxial minimum in the fermionic
PES is so shallow that the discrepancy is expected to have a
minor influence on the low-lying spectra of odd-mass nuclei.

Having fixed the boson-core Hamiltonian, we introduce
the unpaired nucleon degree of freedom. The single-nucleon
Hamiltonian in Eq. (1) reads

ĤF = −ε jρ

√
2 jρ + 1(a†

jρ
× ã jρ )(0) ≡ ε jρ n̂ jρ , (4)

where ε jρ is single-particle energy for the odd proton (ρ =
π ) or neutron (ρ = ν) in orbital jρ , a(†)

jρ
denotes the oper-

ator that annihilate (create) a single nucleon with ã jρ ,mρ
=

(−1) jρ−mρ a jρ ,−mρ
, and n̂ jρ stands for the fermion number op-

erator.
The interaction term V̂BF for the coupling between the odd

nucleon with the angular momentum jρ and the boson core
has the form

V̂BF = � jρ Q̂ρ ′ · (a†
jρ

× ã jρ )(2) + � jρ [: (s†
ρ ′ × d̃ρ ′ )(2)

· ((d†
ρ × ã jρ )( jρ ) × (a†

jρ
× s̃ρ )( jρ ))(2) : +(H.c.)]

+ A0n̂dρ
n̂ jρ , (5)

where ρ ′ 	= ρ. The first, second, and third terms are the
quadrupole dynamical, exchange, and monopole interactions,
respectively. The j-dependent parameters � jρ and � jρ are
given by [21,47]

� jρ = �0
(
u2

jρ − v2
jρ

)
Qjρ jρ , (6a)

� jρ = �0

[
−4u2

jρ v
2
jρ Q2

jρ jρ

√
10

Nρ (2 jρ + 1)

]
, (6b)

where Qjρ jρ stands for the matrix element of the spher-
ical harmonic in the single-particle basis, i.e., Qjρ jρ =
〈lρ 1

2 jρ‖Y (2)‖lρ
1
2 jρ〉, and u2

jρ + v2
jρ = 1 is satisfied. The dots
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TABLE I. The parameters for the IBM Hamiltonian (2), the
effective E2 boson charge eB, proton gB

π and neutron gB
ν factors, the

occupation probability v2
jρ

of the odd particle in the 1h11/2 single-

particle state, and the fitted coupling constants of V̂BF. The numbers
of proton Nπ and neutron Nν bosons are also shown, with bar repre-
senting hole nature.

135Pr 133La 127Xe 105Pd

Boson core 134Ce 132Ba 128Xe 106Pd
(Nπ , Nν ) (4, 3̄) (3, 3̄) (2, 4̄) (2̄, 5)
εd (MeV) 0.3 0.650 0.62 0.70
κ (MeV) −0.284 −0.288 −0.315 −0.315
χπ −0.45 −0.45$ −0.55 −0.45
χν 0.25 0.25 0.25 −0.45
eB (e b) 0.12 0.123 0.10 0.095
gB

π (μN ) 1.0 1.0 1.3 1.3
gB

ν (μN ) 0.0 0.0 −0.2 0.3
Odd particle π π ν ν

v2
jρ

0.0303 0.03613 0.4317 0.0494
�0 (MeV) 0.60 0.60 1.50 1.50
�0 (MeV) 3.60 3.50 1.25 1.25
A0 (MeV) 0.0 −0.5 −0.25 −0.05

: (· · · ) : in Eq. (5) denotes normal ordering. Based on the
microscopic considerations in terms of the generalized se-
niority scheme [47], it is assumed that both the dynamical
and exchange terms are dominated by the interaction between
unlike particles, i.e., between the odd proton (neutron) and
the neutron (proton) bosons. The exchange term takes into
account the fact that the bosons are made of nucleon pairs.
For the monopole term, the interaction between like particles,
i.e., between the odd proton (neutron) and the proton (neutron)
bosons, is considered. The specific boson-fermion interaction
of the form (5), which is based on the generalized seniority,
has been frequently used in a number of phenomenologi-
cal IBFM calculations including the spectroscopic studies of
strongly deformed nuclei [21,47,48].

The building blocks of ĤF and V̂BF are spherical single-
particle energy ε jρ and occupation probability v2

jρ of the odd
fermion with j = 11/2, which are computed by the same
mean-field calculations constrained to zero deformation [49].
The three coupling constants �0, �0, and A0, defined in
Eqs. (5) and (6), are fitted to reproduce to a reasonable ac-
curacy the low-lying excitation energies of each odd-mass
nucleus. Table I lists the adopted values of the parameters of
ĤB (2), the occupation probability v2 of the odd particle, and
the fitted coupling constants of V̂BF.

The IBFM Hamiltonian thus constructed is diagonalized
in the basis |[LπLν (L); j : I〉 [50], where Lπ (Lν) and L are
the angular momentum of proton (neutron) boson system, and
the total angular momentum of the even-even boson core,
respectively. I stands for the total angular momentum of the
coupled boson-fermion system.

III. RESULTS AND DISCUSSIONS

A. Excitation spectra

Now we turn to the discussion about the spectroscopic
properties of low-spin bands in odd-mass nuclei, which are
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FIG. 3. Comparisons of theoretical and experimental lowest-
lying negative-parity bands of 135Pr. The theoretical yrast, first, and
second excited bands are denoted by “Yrast,” “B1,” and “B2,” re-
spectively. The experimental bands “SP” and “Wobb” denote the
signature-partner and wobbling bands, respectively, that were identi-
fied in Ref. [8]. The notations “1” to “5” for the experimental bands
corresponds to the ones used in Lv et al. [18]. The theoretical B2
band should be compared with the experimental Wobb band or band
3, both of which are highlighted in bold text.

produced by the diagonalization of the IBFM Hamiltonian (1)
with the parameters obtained by the aforementioned proce-
dure. In what follows, the band built on the 11/2−

1 state, the
first, and the second excited bands resulting from the IBFM
calculations are denoted as Yrast, B1, and B2, respectively.

In Fig. 3 the predicted five lowest-energy negative-parity
bands of 135Pr are shown. The theoretical Yrast, B1, and
B2 bands consist of the states that exhibit dominant �I = 2
inband E2 transitions. The comparison between the experi-
mental and theoretical energy spectra demonstrates that the
IBFM describes well the observed [8,18] low-lying bands in
the odd-mass nucleus 135Pr.

For 135Pr, the experiment performed by Matta et al. [8]
showed that beside the I = 11/2− yrast band, the first excited
band based on the 13/2−

1 state can be identified as unfavored
signature partner (SP) band, and the second excited band
built on the 17/2−

2 state can be assigned as an one-phonon
wobbling band (denoted by “Wobb” in Fig. 3). In the IBFM,
band B1 with bandhead 9/2−

1 corresponds to the proposed SP
band, and band B2 including the 13/2−

2 , 17/2−
2 . . . states is

the theoretical counterpart of the proposed wobbling band.
As for 135Pr, two additional negative-parity bands have

been considered in the new measurement by Lv et al. [18]: the
first one comprising the 19/2−

2 , 23/2−
2 , and 27/2−

2 states (band
4 in Ref. [18] and Fig. 3) and the second one comprising the
23/2−

3 , 27/2−
3 , and 31/2−

3 states (band 5). The IBFM predicts
additional two bands built on the 19/2−

2 and 23/2−
3 states,

which are in agreement with the newly identified bands 4 and
5 in Ref. [18]. Our calculation shows that each of the two
bands is composed by strong inband �I = 2E2 transitions.
In addition, the predicted interband B(E2; 23/2−

3 → 19/2−
2 )

transition is an order of magnitude weaker than the inband
B(E2; 23/2−

2 → 19/2−
2 ) transition. This result supports the
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FIG. 4. Same as Fig. 3, but for 133La. The notations of the exper-
imental bands are according to those used in Ref. [10].

finding in the new measurement of Ref. [18], but is in con-
tradiction to the earlier experiment of Ref. [9], in which the
19/2−

2 , 23/2−
3 , and 27/2−

3 states were grouped into a single
band and interpreted as two-phonon wobbling band. The new
bands proposed in Ref. [18] do not follow the I (I + 1) energy
dependence in a rotor picture, but appear to be rather vibra-
tional, a fingerprint of the γ softness in this mass region.

Figures 4–6 show the calculated and experimental three
lowest-lying negative-parity bands of the odd-mass nuclei
133La, 127Xe, and 105Pd. In general, the IBFM description of
the observed low-lying band structure is satisfactory, except
for the fact that the spins of the predicted bandhead states
of some bands disagree with the experimental ones. The ob-
served bandhead energies of the first (B1) and second (B2)
excited bands are reproduced well by the IBFM.

For 133La, besides the 11/2−
1 ground-state band, the ex-

periment by Biswas et al. [10] identified the first excited
band based on the 13/2− state as wobbling band. In Fig. 4,
we associate the IBFM band B2 with bandhead 13/2−

1
with the proposed wobbling band, according to the facts (i)
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FIG. 6. Same as Fig. 3, but for 105Pd. The notations of the exper-
imental bands are according to those used in Ref. [11].

that the calculated energy levels are in a better agreement
with the experimental ones than band B1, (ii) that the spin
of the bandhead state I = 13/2 is correctly reproduced, and
(iii) that, as shown later, the calculated B(E2)out/B(E2)in

and B(M1)out/B(E2)in ratios are in a better agreement with
data [10] than those for band B1.

The lowest three observed bands for 127Xe [12] are the low-
est band (band 2) built on the 9/2−

1 state, the first excited band
(band 1) built on the I = 11/2− state, and the second excited
band (band 3) built on the 13/2−

1 state, which was assigned
to be wobbling band [12]. Band B2 in the IBFM consisting
of the 9/2−

2 , 13/2−
2 , 17/2−

1 , 21/2−
1 , 25/2−

1 , . . . states is the
theoretical counterpart of band 3. The IBFM yields band B1
with the bandhead 9/2−

1 corresponding to the ground state,
consistently with the observed band 2.

For 105Pd, Timár et al. [11] interpreted the first excited
�I = 2 band (band B), which is built on the 13/2−

1 state
as wobbling band. This is the first evidence for a low-spin
wobbling band in the mass A ≈ 100 region. The present IBFM
calculation yields the equivalent �I = 2 band (B1) consisting
of the 9/2−

1 , 13/2−
1 , . . . states.

B. E2/M1 mixing ratio

The E2 to M1 mixing ratio δ is a criterion for the wobbling
interpretation and is calculated by using the formula [51,52]

δ = 0.835 × Eγ

〈I f ‖T̂ (E2)‖Ii〉
〈I f ‖T̂ (M1)‖Ii〉

, (7)

where Eγ = EIi − EIf , with the resultant excitation energies
of the initial Ii and final I f states, and 〈I f ‖T̂ (E2)‖Ii〉 and
〈I f ‖T̂ (M1)‖Ii〉 represent reduced matrix elements of the E2 and
M1 transition operators, respectively. The E2 operator T̂ E2

here takes the form [21]:

T̂ (E2) = T̂ (E2)
B + T̂ (E2)

F , (8)

where

T̂ (E2)
B = eB

π Q̂π + eB
ν Q̂ν, (9)
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and

T̂ (E2)
F = −eF 1√

5

(
u2

jρ − v2
jρ

)
Qjρ jρ (a†

jρ
× ã jρ )(2) (10)

are the bosonic and fermionic parts of the E2 operators, re-
spectively. Note that Q̂ρ has been defined in (2). We assume
that the effective E2 charges for proton eB

π and neutron eB
ν

bosons are equal to each other, eB
π = eB

ν ≡ eB, and fix eB so
that the experimental B(E2; 2+

1 → 0+
1 ) rate of each even-even

core nucleus is reproduced. For the fermion part, standard
effective charge eF = 1.5 (0.5) eb is adopted for the odd
proton (neutron). The M1 transition operator T̂ (M1) reads:

T̂ (M1) = T̂ (M1)
B + T̂ (M1)

F , (11)

where

T̂ (M1)
B =

√
3

4π

(
gB

π L̂π + gB
ν L̂ν

)
(12)

and

T̂ (M1)
F = − 1√

4π
〈 j‖gl l + gss‖ j〉 (a†

jρ
× ã jρ )(1) (13)

are the boson and fermion parts of T̂ (M1), respectively. The
effective gyromagnetic (g) factors for the proton gB

π and
neutron gB

ν bosons are chosen to be close to the empirical
values [53,54] that satisfy gB

π ≈ 1.0 μN and gB
ν ≈ 0 μN . For

the odd proton (neutron) g factors, the standard Schmidt
values gl = 1.0 μN and gs = 5.58 μN (gl = 0 μN and gs =
−3.82 μN ) are used, with gs quenched by 30% with respect to
the free value. The adopted values of the boson effective E2
charge eB, g factors for proton gB

π and neutron gB
ν are found in

Table I.
We show in Fig. 7 the calculated δ(E2/M1) ratios for the

�I = 1 transitions between the yrast and yrare bands. The
predicted δ values for 135Pr shown in Figs. 7(a) and 7(b),
are close to zero for both the B1 → Yrast and B2 → Yrast
transitions. The experimental absolute values |δ| for the Wobb
→ Yrast transitions [8] increase with spin I . The updated data
of Lv et al. [18], however, provide smaller mixing ratios for
the same band (band 3) at I = 17/2 and 21/2, which agree
with the present calculations.

The computed mixing ratios for 133La, shown in Figs. 7(c)
and 7(d), are generally small, |δ| < 1. The measured δ ratios
for the wobbling (Wobb) band, which are the basis of the
wobbling interpretation of the 13/2− band, are depicted in
Fig. 7(d). The corresponding IBFM δ values for the B2 →
Yrast transitions, plotted also in Fig. 7(d), are much smaller
in magnitude than these experimental values but are rather
close to those obtained with the quasiparticle-plus-triaxial-
rotor (QTR) model [10], giving more weight to a nonwobbling
description of the band. We note that the interpretation of the
experimental 13/2−

1 band as wobbling band [10] has been
recently questioned in Ref. [55], with respect to the reported
E2 dominance of the transitions connecting the proposed wob-
bling and normal bands.

The calculated δ for the B1 → Yrast transitions for 127Xe
shown in Fig. 7(e) are small, except for the one at I = 13/2.
As seen in Fig. 7(f), the absolute δ ratios for the B2 →
Yrast transitions are predicted to be smaller in magnitude

FIG. 7. The E2 to M1 mixing ratios δ for the �I = 1 yrare to
yrast transitions in the odd-mass nuclei 135Pr, 133La, 127Xe, and 105Pd,
for which wobbling bands were previously suggested. The experi-
mental values are taken from Refs. [8,10–12,18,26]. The shaded area
in each panel indicates |δ| < 1. The notations of the experimental
bands in each panel follow the ones used in the above references.
The IBFM δ values for those bands that were previously assigned to
be wobbling bands are represented by solid symbols.

than the experimental counterparts for I � 21/2. However,
the predicted ratios are unusually large |δ| ≈ 5 for I < 21/2.
An earlier in-beam spectroscopic study by Urban et al. [56]
gave the mixing ratio δ = −1.7+0.4

−0.6 or −0.45 ± 0.12 for the
Eγ = 483 keV (or 13/2−

1 → 11/2−
1 ) decay for 127Xe, the

absolute value of which is considerably overestimated by
the present calculation. As we show later, the too-large |δ|
is here obtained because the calculated M1 matrix elements
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FIG. 8. The calculated ratios B(E2; I → I − 1)out/B(E2; I →
I − 2)in and B(M1; I → I − 1)out/B(E2; I → I − 2)in as functions
of spin I for the B1 → Yrast and B2 → Yrast transitions of 135Pr.
The notations of the experimental bands correspond to those used
in Refs. [8,18]. The experimental band built on the 17/2−

2 state
was identified as wobbling band in Ref. [8] and is denoted here by
“Wobb.”

for 127Xe, especially the one for the 13/2−
2 → 11/2−

1 transi-
tion, are negligibly small. For 127Xe, the 1h11/2 single-neutron
orbital is nearly half filled, v2

jν ≈ 0.5 (see Table I), in which
case the contributions from both the dynamical and exchange
terms of V̂BF are rather sensitive to the choice of their strength
parameters. The chosen set of the strength parameters might
have yield substantial amount of configuration mixing in the
lower spin states, thus resulting in the too-small M1 matrix
elements.

The absolute values of the calculated δ for both bands B1
and B2 for 105Pd shown in Figs. 7(g) and 7(h) are all less
than one except for the lowest I = 13/2 state of band B2.
The calculated δ values for band B1 are by a factor of two
to three smaller than the measured values for the proposed
wobbling band B [11]. In contrast, the mixing ratios obtained
by Rickey et al. [26], also shown in Fig. 7(h), agree with the
calculated values at I = 17/2 and 21/2. In this case we are
again faced with contradicting experimental values, like in the
case of 135Pr, which keeps open the question of the real nature
of the band.

C. B(E2) and B(M1) transitions

In Fig. 8 we show the predicted B(E2)out/B(E2)in

[B(M1)out/B(E2)in] ratios of the interband �I = 1 E2 (M1)
to the inband �I = 2 E2 transitions for the bands B1 and B2
for 135Pr. We see from Fig. 8(b) that, as compared to the B1 →
Yrast E2 transitions, the predicted B2 → Yrast E2 transitions
are generally weak. The calculated B(E2)out/B(E2)in ratios
for band B2 are much smaller than the experimental data
reported by Matta et al. [8] but are closer to the new data of

FIG. 9. Same as Fig. 8 but for 133La. The experimental data are
from Ref. [10], which identified the yrare band as wobbling band
(denoted by “Wobb”).

Lv et al. [18] at I = 21/2. The calculated B(M1)out/B(E2)in

ratios for band B2, shown in Fig. 8(d), are much larger than
the data reported in Ref. [8] but are in a better agreement with
the new value at I = 21/2 [18].

The ratios B(E2)out/B(E2)in and B(M1)out/B(E2)in for
133La are shown in Fig. 9. The predicted B(E2)out/B(E2)in

ratios for the B2 → Yrast transitions agree with the exper-
imental values reported in Ref. [10] [Fig. 9(b)], in which
the first excited band (denoted as “Wobb” in Figs. 4 and 9)
has been interpreted as wobbling band, as well as with the
QTR model calculations [10]. The B(M1)out/B(E2)in ratios
for the B2 → Yrast transition are calculated to be much larger
than the measured values of the Wobb → Yrast transitions
[Fig. 9(d)] but rather agree with the QTR results [10], which
also overestimated the data.

As for 127Xe, the calculated B(E2)out/B(E2)in, shown in
Fig. 10(b), are much smaller than the experimental ones for
band 3, which was assigned to be wobbling band [12]. The
experimental B(E2)out/B(E2)in ratios indicate strong E2 tran-
sitions from band 3 to the yrast band (band 1 in Fig. 5),
especially for the spin I � 21/2, while the errors are also
large. In Fig. 10(d), the predicted B(M1)out/B(E2)in ratios for
the band B2 at I = 17/2 and 21/2 are considerably smaller
than the experimental values for band 3, which was identified
as wobbling band. We recall that the too-large δ values are
calculated at these spins [see Fig. 7(f)].

The B(E2)out/B(E2)in ratios for both the B1 → Yrast and
B2 → Yrast transitions in 105Pd shown in Fig. 11 are relatively
small, in comparison to the measured values for band B [11],
which was interpreted as the wobbling band. Generally, the
B(M1)out/B(E2)in ratios are calculated to be larger than the
data. Thus we can confirm the M1 dominance of the predicted
transitions between yrare and yrast bands for 105Pd.
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FIG. 10. Same as Fig. 9 but for 127Xe. The experimental data are
from Ref. [12], which identified the I = 13/2− band (3) as wobbling
band.

For the sake of completeness, the calculated values for the
mixing ratios δ, the B(M1)out/B(E2)in, the B(E2)out/B(E2)in

ratios of the lowest two excited bands, and the corresponding
experimental values based on the wobbling interpretation of
the yrare bands [8,10–12] and those from the new measure-
ment for 135Pr [18] and the old experimental δ values for
105Pd [26] are listed in Table II.

D. Boson and fermion contributions to matrix elements

In this section, we study the individual contributions of the
boson and fermion parts of the E2 (8) and M1 (11) transi-
tion operators to the relevant matrix elements. In Figs. 12

FIG. 11. Same as Fig. 9 but for 105Pd. The experimental band
(B), built on the 13/2− state, was identified as wobbling band in
Ref. [11].

and 13, we show the corresponding reduced matrix ele-
ments of the bosonic and fermionic E2 (M1) operators,
〈I − 1‖T̂ (E2)

B ‖I〉 and 〈I − 1‖T̂ (E2)
F ‖I〉 (〈I − 1‖T̂ (M1)

B ‖I〉 and
〈I − 1‖T̂ (M1)

F ‖I〉), and the absolute values of the full ma-
trix elements, | 〈I − 1‖T̂ (E2)‖I〉 | (| 〈I − 1‖T̂ (M1)‖I〉 |), for the
�I = 1 interband transitions from the theoretical bands B1
and B2 to yrast bands, respectively. We observe in these
figures that, in general, boson contributions are dominant in
the E2 matrix elements, for both bands B1 and B2, and for
all the nuclei considered. In all cases, the boson and fermion
parts contribute coherently to the E2 matrix elements. On the
other hand, the fermion part plays an important role mainly in
the M1 matrix elements, especially, those for band B1 of 135Pr
and band B2 of 133La [see Figs. 12(e) and 13(f)].

For band B1 of 135Pr the fermion contribution to the M1
matrix elements is systematically larger than, and is opposite
in sign to, the boson one. As for band B2 of 135Pr, which is
here associated with the proposed wobbling band [8], both
the boson and fermion parts make small-in-magnitude but
coherent contributions to the E2 and M1 matrix elements.
Band B1 (B2) of 133La appears to show similar patterns of
the boson and fermion contributions to the matrix elements
to those of band B2 (B1) of 135Pr. We note that band B2 of
133La is here considered to be the theoretical counterpart of the
proposed wobbling band [10] (see Fig. 4), while both bands
B1 and B2 in the same nucleus are shown to be close in energy
(see Fig. 4) and have similar electromagnetic properties [see
Figs. 7(c) and 7(d) and 9]. There is essentially no fermion
contribution to the E2, as well as M1, matrix elements of both
bands B1 and B2 of 127Xe. For this nucleus, the calculated
M1 matrix elements at I = 13/2 are especially small, and this
corroborates the too-large δ mixing ratios at lower spins [see
Figs. 7(e) and 7(f)]. For band B1 of 105Pd, here associated with
the wobbling band [11], the boson and fermion parts make
coherent contributions to the matrix elements [see Figs. 12(d)
and 12(h)]. This systematic trend is similar to the one ob-
served for band B2 of 135Pr, which is also associated with the
wobbling band in the present study. The boson contribution to
band B2 of 105Pd becomes increasingly larger for higher spin.

E. The gold nuclei

Finally, we make a remark on the recently proposed
wobbling bands in the heavier nuclei, i.e., 187Au [13] and
183Au [14]. Empirically, their low-lying negative-parity states
are understood as the proton πh9/2 orbital coupled with a
prolate-deformed core. Within the standard IBFM, the above
nuclei would be described by the coupling between the odd
proton πh11/2 orbital and the even-even Hg core. Earlier
phenomenological IBFM calculations [57,58] considered the
πh9/2 intruder orbital coupled to the even-even Pt core in order
to describe the I = 9/2− ground-state bands of odd-mass
Au nuclei. In principle, both the πh11/2 and πh9/2 orbitals
could be simultaneously included in our model but, due to
the huge energy difference between their spherical single-
particle levels across the proton Z = 82 major shell gap,
contribution from the latter is expected to be negligible. In
addition, the even-even core nuclei 188Hg and 184Hg are often
characterized by oblate and prolate shapes that coexist near
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FIG. 12. The bosonic and fermionic reduced matrix elements of the E2, T̂ (E2) (8) (upper row) and M1, T̂ (M1) (11) (lower row) operators
for the �I = 1 interband transition from bands B1 to yrast bands of 135Pr, 133La, 127Xe, and 105Pd, plotted for each angular momentum I . The
absolute values of the reduced matrix elements of T̂ (E2) and T̂ (M1) are also shown. The theoretical band B1 for 105Pd is here associated with
the proposed wobbling band in Ref. [11].

FIG. 13. The same as Fig. 12 but for the transitions from bands B2 to yrast bands. The theoretical bands B2 for 135Pr, 133La, and 127Xe are
here associated with the proposed wobbling bands in Refs. [8,10,12], respectively.
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TABLE II. Comparisons between the calculated and experimental δ(E2/M1) mixing ratios of the �I = 1 interband transitions, and the
ratios of the interband B(M1; I → I − 1)out and B(E2; I → I − 1)out to inband B(E2; I → I − 2)in transition rates, connecting the low-lying
yrare bands to the yrast bands in 135Pr, 133La, 127Xe, and 105Pd.

Nucleus Eγ (keV) Spin δ B(M1)out/B(E2)in B(E2)out/B(E2)in

EXP IBFM EXP IBFM EXP IBFM

135Pr [8] 747.0 17/2−
1 − 1.24 + 0.13 −0.646 0.078 0.034

812.8 21/2−
1 −1.54 ± 0.09 −0.368 0.164 ± 0.014 0.425 0.843 ± 0.032 0.040

754.6 25/2−
1 −2.38 ± 0.37 −0.236 0.035 ± 0.009 0.771 0.500 ± 0.025 0.028

710.2 29/2−
1 −0.078 � 0.016 ± 0.004 0.387 � 0.261 ± 0.014 0.0017

593.9 13/2−
1 −0.16 ± 0.04 −0.988 0.725 4.371

135Pr [18] 747.3 17/2−
1 −0.47+0.09

−0.22 −0.646 0.078 0.034

813.2 21/2−
1 −0.37+0.10

−0.14 −0.368 0.4 ± 0.3 0.425 0.12 ± 0.08 0.040
133La [10] 618 13/2−

1 −1.48+0.45
−0.32 −1.167

758 17/2−
1 −2.05+0.39

−0.30 −0.630 0.107+0.035
−0.028 0.232 1.127+0.140

−0.130 0.683

874 21/2−
1 −2.60+0.46

−0.47 −0.331 0.056+0.018
−0.019 0.404 0.716+0.079

−0.079 0.401

982 25/2−
1 −3.07+0.47

−0.65 −0.065 0.039+0.011
−0.015 1.646 0.545+0.057

−0.059 0.443
127Xe [12] 483 13/2−

1 −2.1+0.2
−0.2 −5.699 0.085 9.242

639 17/2−
1 −2.2+0.2

−0.1 −4.901 0.138 ± 0.012 0.039 2.352 ± 0.565 1.874

735 21/2−
1 −2.4+0.1

−0.1 −1.801 0.098 ± 0.005 0.037 1.500 ± 0.172 0.163

800 25/2−
1 −2.9+0.7

−0.5 −1.117 0.071 ± 0.031 0.050 1.346 ± 0.879 0.064

884 29/2−
1 −3.1+1.9

−1.1 −0.355 0.052 ± 0.044 0.103 0.922 ± 0.895 0.011

651 13/2−
2 +0.15+0.05

−0.05 +1.698 0.180 ± 0.004 0.022 0.014 ± 0.009 0.329

876 17/2−
2 +0.26+0.10

−0.10 +0.085 0.053 ± 0.002 0.462 0.007 ± 0.005 0.005
105Pd [11] 991 17/2−

1 +1.8 ± 0.5 +0.727 0.162 ± 0.097 0.316 0.66 ± 0.18 0.389
1034 21/2−

1 +2.3 ± 0.3 +0.817 0.089 ± 0.026 0.166 0.60 ± 0.09 0.236
994 25/2−

1 +2.7 ± 0.6 +0.851 0.029 ± 0.057 0.101 0.34 ± 0.07 0.182
105Pd [26] 991 17/2−

1 +0.46 ± 0.10 +0.727 0.316 0.389
1034 21/2−

1 +0.62 ± 0.18 +0.817 0.166 0.236
994 25/2−

1 +1.5 ± 1.0 +0.851 0.101 0.182

the ground state [59]. Previous mean-field calculations using
the Skyrme [60] and Gogny [61] forces predicted an oblate
minimum for 188Hg and a pronounced prolate-oblate shape
coexistence for 184Hg. In both cases, the PESs were shown to
be far from γ soft, in contrast to the nuclei considered here
(see Fig. 1). These facts indicate a potential difficulty in the
treatment of the πh11/2 orbital for 187Au and 183Au within our
model calculations.

IV. CONCLUDING REMARKS

In summary, an alternative interpretation of the recently re-
ported low-spin wobbling bands in the odd-mass nuclei 135Pr,
133La, 127Xe, and 105Pd has been presented through IBFM
calculations. The bosonic Hamiltonian for the even-even core
nuclei and the essential building blocks of the boson-fermion
interaction have been determined by using the constrained
mean-field approach based on a given nuclear EDF. The PESs
for the even-even core nuclei, obtained from the mean-field
calculations with representative classes of the universal EDF,

generally exhibit pronounced γ softness characteristic for
nonaxial nuclei. The calculated E2 to M1 mixing ratios δ for
the �I = 1 transitions between the yrare and yrast bands in
the considered nuclei are consistently small, |δ| < 1. These
mixing ratios indicate the M1 dominance of the transitions
connecting the yrare bands in question to the yrast bands,
which is in contradiction with the wobbling interpretation, and
are in agreement with the updated experimental mixing ratios
for 135Pr [18] and the old data for 105Pd [26]. This work sheds
new light on the excited low-lying bands in γ -soft nuclei,
questioning their wobbling interpretation.
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[49] K. Nomura, T. Nikšić, and D. Vretenar, Phys. Rev. C 93,

054305 (2016).
[50] T. Otsuka and N. Yoshida, (1985), JAERI-M (Japan Atomic

Energy Research Institute) Report No. 85.
[51] K. S. Krane and R. M. Steffen, Phys. Rev. C 2, 724 (1970).
[52] J. Lange, K. Kumar, and J. H. Hamilton, Rev. Mod. Phys. 54,

119 (1982).
[53] M. Sambataro, O. Scholten, A. Dieperink, and G. Piccitto, Nucl.

Phys. A 423, 333 (1984).
[54] N. Yoshida and F. Iachello, Prog. Theor. Exp. Phys. 2013,

043D01 (2013).
[55] W. Hua, S. Guo, and C. M. Petrache, arXiv:2011.14369.
[56] W. Urban, T. Morek, C. Droste, B. Kotliński, J. Srebrny, J.
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