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Cooper quartet correlations in infinite symmetric nuclear matter
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We investigate the quartet correlations in four-component fermionic systems at the thermodynamic limit
within a variational many-body theory. The Bardeen-Cooper-Schrieffer (BCS)–type variational wave function
is extended to the systems with the coexistence of pair and quartet correlations at zero temperature. Special
attention is paid to the application of the present framework to an α-particle condensation in symmetric nuclear
matter, where the coexistence of deuteron and α condensations is anticipated. We also discuss how physical
properties, such as quasiparticle dispersion, can be modified by the pair and quartet correlations and show
a hierarchical structure of in-medium cluster formations in infinite nuclear matter. The present results may
also contribute to the interdisciplinary understanding of fermionic condensations beyond the BCS paradigm
in many-body systems.
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I. INTRODUCTION

Study of quantum many-body phenomena is one of
the central issues in modern physics. A striking example
is superconductivity, where two electrons form a Cooper
pair due to the Fermi-surface instability and the many-
body wave function develops macroscopic coherence as a
result of the condensation of Cooper pairs. Such a non-
trivial phenomenon can be successfully described by the
Bardeen-Cooper-Schrieffer (BCS) theory [1], which also
made significant impacts on various research fields such as
nuclear and particle physics.

In pure neutron matter, neutron superfluidity with the
isovector pairing, that is, the spin-singlet 1S0 and spin-triplet
3P2 Cooper pairs, has been widely discussed [2,3]. Such
a superfluid state can be observed in neutron stars, where
a cooling process of a star [4] and the so-called glitch
phenomena [5] may involve nontrivial aspects of neutron su-
perfluids. Moreover, the deuteron condensation has also been
anticipated in the symmetric nuclear matter due to strong
neutron-proton interactions in the isoscalar channel [6]. In
particular, the crossover from the Bose-Einstein condensa-
tion (BEC) of deuterons to the BCS-type neutron-proton
pairing state driven by the increase of nucleon density has
been investigated theoretically [7–11]. Such a phenomenon
is called BCS-BEC crossover, which has been realized in
ultracold Fermi atomic gases [12–14] and in superconductors
[15,16], and its connections to nuclear systems have also been
studied extensively [17,18]. In asymmetric nuclear matter,
both the isovector and isoscalar pairing states can appear
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and compete with each other [19–21]. While the isoscalar
pairing interaction is stronger than the isovector one, the
imbalance between neutron and proton Fermi levels sup-
presses the isoscalar neutron-proton pairing. In this regard,
a variety of pair-condensation phases such as Fulde-Ferrel-
Larkin-Ovchinikov-like state [22,23] have been proposed in
this system [17].

On the other hand, because the nuclear matter generally
consists of four kinds of nucleons with spin and isospin de-
grees of freedom, the four-body (called quartet) correlations
will play a significant role. Indeed, an α particle, which is a
spin- and isospin-singlet bound state consisting of two neu-
trons and two protons, is known as one of the most stable nu-
clear clusters due to its large binding energy Eα = 28.29 MeV.
Accordingly, the investigation on four-body clusters com-
posed of two neutrons and two protons coupled to the isospin
T = 0 and to the angular momentum J = 0, which is com-
monly called an α-like quartet, has become a long-standing is-
sue. Such a four-body structure has been investigated theoret-
ically in finite nuclei [24–31]. In addition, while the α-particle
condensation temperature [32,33], the density-induced sup-
pression of the α-condensate fractions [34,35], the polaronic α

particles [36,37], and the thermal four-body correlations [38]
have been examined theoretically in infinite nuclear matter, it
is worth exploring how the quartet correlation affects physi-
cal properties of infinite nuclear matter at zero temperature,
which is relevant to neutron star physics. The pair and quartet
condensations are also important to clarify the microscopic
origin of symmetry energy in dilute nuclear matter.

Moreover, the theoretical framework of quartet correla-
tions in infinite matter can be applied to other systems
such as biexciton condensation [39,40], SU(4) Fermi atomic
gases [41–43], and charge 4e superconductors [44–47]. In
the context of interdisciplinary studies of multicomponent
fermions, more than two-body cluster states induced by the
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Cooper instability [48–54] and ground-state properties and
N-particle off-diagonal long-range order of η pairing in the
attractive SU(N ) Hubbard model [55,56] have been stud-
ied theoretically. Also, the recent experiment indicates the
existence of quartet correlations with broken time-reversal
symmetry above the superconducting critical temperature in
a condensed-matter system [57].

In this study, we examine the quartet correlations in the
infinite nuclear matter at the thermodynamic limit within the
many-body variational approach. The BCS-type trial wave
function in the momentum space is extended to the symmetric
nuclear matter, where the pair and quartet correlations are
described by the coherent superposition of neutron-proton
Cooper pairs and α-like Cooper quartets. We show an analytic
structure of the quartet BCS wave function in terms of nucleon
degrees of freedom and how Cooper pairs and quartets are
formed in cold symmetric nuclear matter at the thermody-
namic limit. In particular, solving the variational equations for
the quartet BCS framework, we present the numerical results
of the quasiparticle dispersion and the variational parameters
describing the momentum distribution of nucleons under the
presence of deuteron and quartet correlations.

This paper is organized as follows. The theoretical frame-
work is presented in Sec. II, where we show a variational
formalism for pair and quartet condensations in symmetric
nuclear matter. In Sec. III, we discuss how physical properties
are modified by the coexistence of pair and quartet conden-
sations in the present framework. Finally, we summarize this
paper in Sec. IV. In the following, we take h̄ = c = kB = 1.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

In the infinite nuclear matter, the isovector and isoscalar
pairing correlations can be described by the Hamiltonian

H =
∑
p,sz

(
εν,pν

†
p,sz

νp,sz + επ,pπ
†
p,sz

πp,sz

)

+ 1

2

∑
P,q,q′

+1∑
T3=−1

P†
1,T3

(P, q)Vs(q, q′)P1,T3 (P, q′)

+ 1

2

∑
P,q,q′

+1∑
Sz=−1

D†
1,Sz

(P, q)Vt (q, q′)D1,Sz (P, q′), (1)

where the creation operators ν† and π† create a neutron and
a proton, respectively; p is the single-particle momentum,
q = 1

2 (p1 − p2) is the relative momentum, and P = p1 + p2
is the center-of-mass momentum; T3 is the third component of
isospin (or τ3 for single nucleon), Sz is the third component of
spin (or sz for single nucleon); and Vt and Vs are the interaction
strengths in the isoscalar and isovector channels, respectively.
In addition, the single-particle energy reads εi,p = p2

2Mi
− μi

(i = π, ν), where μi is the nucleon chemical potential and Mi

is the nucleon mass.
The two-nucleon annihilation operators are defined as

P1,T3 (P, q) =
∑
sz,s′

z

∑
τ3,τ

′
3

C00
1
2

1
2 szs′

z
C1T3

1
2

1
2 τ3τ

′
3

× c P
2 −q,sz,τ3

c P
2 +q,s′

z,τ
′
3
, (2a)

D1,Sz (P, q) =
∑
sz,s′

z

∑
τ3,τ

′
3

C1Sz
1
2

1
2 szs′

z
C00

1
2

1
2 τ3τ

′
3

× c P
2 −q,sz,τ3

c P
2 +q,s′

z,τ
′
3
. (2b)

They can also be written explicitly as

P1,+1(P, q) =
√

2

2

(
ν P

2 −q, 1
2
ν P

2 +q,− 1
2
− ν P

2 −q,− 1
2
ν P

2 +q, 1
2

)
, (3a)

P1,0(P, q) = 1

2

(
ν P

2 −q, 1
2
π P

2 +q,− 1
2
− π P

2 −q,− 1
2
ν P

2 +q, 1
2

+π P
2 −q, 1

2
ν P

2 +q,− 1
2
− ν P

2 −q,− 1
2
π P

2 +q, 1
2

)
, (3b)

P1,−1(P, q) =
√

2

2

(
π P

2 −q, 1
2
π P

2 +q,− 1
2
− π P

2 −q,− 1
2
π P

2 +q, 1
2

)
(3c)

for the isovector channel and

D1,+1(P, q) =
√

2

2

(
ν P

2 −q, 1
2
π P

2 +q, 1
2
− π P

2 −q, 1
2
ν P

2 +q, 1
2

)
, (4a)

D1,0(P, q) = 1

2

(
ν P

2 −q, 1
2
π P

2 +q,− 1
2
− π P

2 −q,− 1
2
ν P

2 +q, 1
2

−π P
2 −q, 1

2
ν P

2 +q,− 1
2
+ ν P

2 −q,− 1
2
π P

2 +q, 1
2

)
, (4b)

D1,−1(P, q) =
√

2

2

(
ν P

2 −q,− 1
2
π P

2 +q,− 1
2
− π P

2 −q,− 1
2
ν P

2 +q,− 1
2

)
(4c)

for the isoscalar channel. The corresponding creation opera-
tors are their conjugates.

Furthermore, using the symmetry of the interaction

Vt,s(q, q′) = Vt,s(q,−q′) = Vt,s(−q, q′) = Vt,s(−q,−q′), (5)

the translational invariance of the system, and the operators shown in Eqs. (3) and (4), we obtain the explicit form of the
Hamiltonian (1) as

H =
∑
p,sz

(
εν,pν

†
p,sz

νp,sz + επ,pπ
†
p,sz

πp,sz

)

+
∑

P,q,q′
Vs(q, q′)

(
ν

†
P
2 +q, 1

2

ν
†
P
2 −q,− 1

2

ν P
2 −q′,− 1

2
ν P

2 +q′, 1
2
+ π

†
P
2 +q, 1

2

π
†
P
2 −q,− 1

2

π P
2 −q′,− 1

2
π P

2 +q′, 1
2

)
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+
∑

P,q,q′

∑
sz

Vt (q, q′)π†
P
2 +q,sz

ν
†
P
2 −q,sz

ν P
2 −q′,sz

π P
2 +q′,sz

+
∑

P,q,q′

Vs(q, q′)
2

(
π

†
P
2 +q, 1

2

ν
†
P
2 −q,− 1

2

+ ν
†
P
2 +q, 1

2

π
†
P
2 −q,− 1

2

)(
ν P

2 −q′,− 1
2
π P

2 +q′, 1
2
+ π P

2 −q′,− 1
2
ν P

2 +q′, 1
2

)

+
∑

P,q,q′

Vt (q, q′)
2

(
π

†
P
2 +q, 1

2

ν
†
P
2 −q,− 1

2

− ν
†
P
2 +q, 1

2

π
†
P
2 −q,− 1

2

)(
ν P

2 −q′,− 1
2
π P

2 +q′, 1
2
− π P

2 −q′,− 1
2
ν P

2 +q′, 1
2

)
. (6)

B. Trial wave function

Let us construct the trial wave function for quartet cor-
relations in infinite symmetric nuclear matter. Effects of the
center-of-mass momentum P of a two-nucleon pair in the
variational wave function has been shown to be nontrivial
and beyond the mean-field framework, even for pure neu-
tron matter or two-component Fermi gas along the BCS-BEC
crossover [18]. Consequently, in this study, P = 0 will be
adopted for pair states along with the standard BCS theory as
employed in the previous work [26–28,31], where pair states
with time-conjugate orbitals are considered in finite nuclei.

By setting P = 0, the quartet creation operator can be in-
troduced as

α†(q, q′) =
∑
Sz,S′

z

C00
11SzS′

z
D†

1,Sz
(0, q)D†

1,S′
z
(0, q′)

=
√

3

3
[D†

1,+1(0, q)D†
1,−1(0, q′)

+ D†
1,−1(0, q)D†

1,+1(0, q′)

− D†
1,0(0, q)D†

1,0(0, q′)]. (7)

Note that the corresponding quartet created by α†(q, q′) also
has a zero center-of-mass momentum and hence forms the
condensates in infinite matter.

For the four-body sector, the coherent state can be given by

|�coh〉 = exp

(∑
q,q′

gq,q′α†(q, q′)

)
|0〉

= exp
(
gq1,q1

α†(q1, q1) + gq1,q2
α†(q1, q2)

+ gq2,q1
α†(q2, q1) + · · · )|0〉

= (
1 + gq1,q1

α†(q1, q1)
)(

1 + gq1,q2
α†(q1, q2)

)
× (

1 + gq2,q1
α†(q2, q1)

) · · · |0〉
=

∏
q,q′

[
1 + gq,q′α†(q, q′)

]|0〉, (8)

with the weight parameter gq,q′ . This motivates us to use

|	〉 =
∏
q,q′

[
uq,q′ +

∑
Sz

vq,Sz (q)D†
1,Sz

(0, q)

+
∑

T3

xq,T3 (q)P†
1,T3

(0, q) + wq,q′α†(q, q′)

]
|0〉, (9)

as the trial wave function. However, such a trial wave function
is difficult to handle during the practical calculations even in
a numerical way because of the multiple infinite products.
For simplicity, the quartet creation operator is further approx-
imated by taking the case of q = q′ as

α†(q) ≡ α†(q, q′ = q), (10)

which describes a symmetric configuration with respect to
relative momenta q of four nucleons. The trial wave functional
is then rewritten into

|�〉 =
∏

q

[ ∑
T3

xq,T3 P†
T3

(0, q)

+ (ũq,+1 + ṽq,+1D†
1,+1(0, q))

× (ũq,−1 + ṽq,−1D†
1,−1(0, q))

+ (ũq,0 + ṽq,0D†
1,0(0, q))

× (ũ′
q,0 − ṽ′

q,0D†
1,0(0, q))

]
|0〉. (11)

By expanding it, the trial wave function is finally obtained as

|�〉 =
∏

q

[
uq +

√
2

2

∑
Sz

vq,Sz D
†
1,Sz

(0, q)

+
√

2

2

∑
T3

xq,T3 P†
T3

(0, q) + 1

2
wq,1α

†
1 (q)

− 1

2
wq,2α

†
2 (q)

]
|0〉, (12)

where

α
†
1 (q) = D†

1,+1(0, q)D†
1,−1(0, q),

α
†
2 (q) = D†

1,0(0, q)D†
1,0(0, q),

uq = ũq,+1ũq,−1, vq,+1 = ũq,−1ṽq,+1,

vq,−1 = ũq,+1ṽq,−1, vq,0 = ũ′
q,0ṽq,0 − ũq,0ṽ

′
q,0,

wq,1 = ṽq,+1ṽq,−1, wq,2 = ṽq,0ṽ
′
q,0. (13)

In addition, we define

wq = wq,1 + wq,2. (14)

Consequently, the normalization condition reads∑
Sz

∣∣vq,Sz

∣∣2 +
∑

Tz

|xq,T3 |2 + |uq|2 + |wq|2 = 1. (15)
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It is remarkable that, in all of the following equations, only
wq appears, instead of any individual wq,1 or wq,2. Due
to this feature, an equivalent form of trial wave function
to that in Eq. (12) is the one without the term α

†
2 (q) =

D†
1,0(0, q)D†

1,0(0, q), as the form taken in Ref. [26]. By
introducing the “lengths” |vq|2 = ∑

Sz
|vq,Sz |2 and |xq|2 =∑

T3
|xq,T3 |2, we normalize the trial wave function according

to

|uq|2 + |vq|2 + |xq|2 + |wq|2 = 1. (16)

C. Expectation value of Hamiltonian

In this subsection, we will calculate the expectation value
of Hamiltonian 〈�|H |�〉.

First, for the single-particle part, it is easy to obtain that

〈�|H0|�〉

= 〈�
∣∣∣∣∣
∑
p,sz

(
εν,pν

†
p,sz

νp,sz + επ,pπ
†
p,sz

πp,sz

)∣∣∣∣∣�〉

=
∑

q

[|vq,+1|2(επ,q + εν,−q) + |vq,−1|2(επ,q + εν,−q)

+ |vq,0|2(ε0,q + ε0,−q) + |xq,+1|2(εν,q + εν,−q)

+ |xq,−1|2(επ,q + επ,−q) + |xq,0|2(ε0,q + ε0,−q)

+ 2|wq|2(επ,q + εν,−q)
]
, (17)

where we have defined

ε0,q = επ,q + εν,q

2
. (18)

At the next step, for the isoscalar pairing term, since it is
orthogonal to the isovector part, i.e.,

D1,Sz (P, q′)P†
1,T3

(0, q1)|0〉 = 0, (19)

there is no overlap between them. One can then obtain the
contribution from the isoscalar part,

〈�|1

2

∑
P,q,q′

+1∑
Sz=−1

D†
1,Sz

(P, q)Vt (q, q′)D1,Sz (P, q′)|�〉

=
∑
q,q′

∑
Sz

Vt (q, q′)
[
uqv

∗
q,Sz

+ δSz,+1vq,−Szw
∗
q

+ δSz,−1vq,−Szw
∗
q − 1

2
δSz,0

(
vq,−Szw

∗
q + vq,−Szw

∗
−q

)]

× [
u∗

q′vq′,Sz + δSz,+1v
∗
q′,−Sz

wq′ + δSz,−1v
∗
q′,−Sz

wq′

− 1

2
δSz,0

(
v∗

q′,−Sz
wq′ + v∗

q′,−Sz
w−q′

)]
, (20)

where the terms with q = q′ which give the correction to
one-body energies (i.e., the Hartree-Fock correction [58]) are
neglected, since they are smaller than the pairing terms with
q �= q′ which involve a large phase space associated with
momenta for short-range attractive interactions. Such an ap-
proximation is usually assumed in the BCS theory [58,59].

For the isovector part, first obviously the isovector term is also orthogonal to the isoscalar one, which gives

P1,T3 (P, q′)D†
1,Sz

(0, q1)|0〉 = 0. (21)

In a similar way, only pairing terms with q �= q′ are considered here. Consequently, it can be recast into

〈�|1

2

∑
P,q,q′

+1∑
T3=−1

P†
1,T3

(P, q)Vs(q, q′)P1,T3 (P, q′)|�〉

= 1

2

∑
P,q,q′

+1∑
T3=−1

∑
q̃1,q̃2

∑
q1,q2

Vs(q, q′)〈ψ (q̃2)
∣∣P†

1,T3
(P, q)

∣∣ψ (q̃1)〉〈ψ (q2)|P1,T3 (P, q′)|ψ (q1)〉, (22)

where

|ψ (k)〉 =
[

uk +
√

2

2

∑
Sz

vk,Sz D
†
1,Sz

(0, k) +
√

2

2

∑
T3

xk,T3 P†
T3

(0, k) + 1

2
wkα

†(k)

]
|0〉. (23)

As a result, one can obtain that the contribution from the isovector part as

〈�|1

2

∑
P,q,q′

+1∑
T3=−1

P†
1,T3

(P, q)Vs(q, q′)P1,T3 (P, q′)|�〉

=
∑
q,q′

∑
T3

Vs(q, q′)
[

x∗
q,T3

uq + 1

2
δT3,0

(
w∗

qxq,T3 + w∗
−qxq,T3

) + δq,0δT3,+1w
∗
qxq,T3 + δq,0δT3,−1w

∗
qxq,T3

]

×
[

u∗
q′xq′,T3 + 1

2
δT3,0

(
x∗

q′,T3
wq′ + x∗

q′,T3
w−q′

) + δq′,0δT3,+1x∗
q′,T3

wq′ + δq′,0δT3,−1x∗
q′,T3

wq′

]
. (24)
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Furthermore, the terms proportional to δq,0 or δq′,0 are similar to those with q = q′, which give the correction to one-body
energies, and thus they are neglected. The above expression can then be rewritten into

〈�|1

2

∑
P,q,q′

+1∑
T3=−1

P†
1,T3

(P, q)Vs(q, q′)P1,T3 (P, q′)|�〉

=
∑
q,q′

∑
T3

Vs(q, q′)
[

x∗
q,T3

uq + 1

2
δT3,0

(
w∗

qxq,T3 + w∗
−qxq,T3

)][
u∗

q′xq′,T3 + 1

2
δT3,0

(
x∗

q′,T3
wq′ + x∗

q′,T3
w−q′

)]
. (25)

By collecting all the terms, the expectation value of the Hamiltonian reads

〈�|H |�〉
=

∑
q

[|vq,+1|2(επ,q + εν,−q) + |vq,−1|2(επ,q + εν,−q) + |vq,0|2(ε0,q + ε0,−q) + |xq,+1|2(εν,q + εν,−q)

+ |xq,−1|2(επ,q + επ,−q) + |xq,0|2(ε0,q + ε0,−q) + 2|wq|2(επ,q + εν,−q)]

+
∑
q,q′

∑
Sz

Vt (q, q′)
[

uqv
∗
q,Sz

+ δSz,+1vq,−Szw
∗
q + δSz,−1vq,−Szw

∗
q − 1

2
δSz,0

(
vq,−Szw

∗
q + vq,−Szw

∗
−q

)]

×
[

u∗
q′vq′,Sz + δSz,+1v

∗
q′,−Sz

wq′ + δSz,−1v
∗
q′,−Sz

wq′ − 1

2
δSz,0

(
v∗

q′,−Sz
wq′ + v∗

q′,−Sz
w−q′

)]

+
∑
q,q′

∑
T3

Vs(q, q′)
[

x∗
q,T3

uq + 1

2
δT3,0

(
w∗

qxq,T3 + w∗
−qxq,T3

)][
u∗

q′xq′,T3 + 1

2
δT3,0

(
x∗

q′,T3
wq′ + x∗

q′,T3
w−q′

)]
. (26)

D. Variational equations

Since uq can always be considered to be real, from the normalization condition (15), its variation with respect to v∗
q,Sz

, x∗
q,T3

,
and w∗

q can be expressed as

δuq = − 1

2uq

(∑
Sz

vq,Szδv
∗
q,Sz

+
∑

T3

xq,T3δx∗
q,T3

+ wqδw
∗
q

)
. (27)

In analog to BCS, we can define the following energy gaps:

�
(isp)
q,Sz

= −
∑

q′
Vt (q, q′)

[
u∗

q′vq′,Sz + δSz,+1v
∗
q′,−Sz

wq′ + δSz,−1v
∗
q′,−Sz

wq′ − 1

2
δSz,0

(
v∗

q′,−Sz
wq′ + v∗

q′,−Sz
w−q′

)]
, (28a)

�
(ivp)
q,T3

= −
∑

q′
Vs(q, q′)

[
u∗

q′xq′,T3 + 1

2
δT3,0

(
x∗

q′,T3
wq′ + x∗

q′,T3
w−q′

)]
. (28b)

By performing the variations of the expectation value of Hamiltonian, one obtains

δ〈�|H |�〉 = vq,+1δv
∗
q,+1(επ,q + εν,−q) + vq,−1δv

∗
q,−1(επ,q + εν,−q) + vq,0δv

∗
q,0(ε0,q + ε0,−q)

+ xq,+1δx∗
q,+1(εν,q + εν,−q) + xq,−1δx∗

q,−1(επ,q + επ,−q) + xq,0δx∗
q,0(ε0,q + ε0,−q)

+ 2wqδw
∗
q (επ,q + εν,−q) −

∑
Sz

[
v∗

q,Sz
δuq + uqδv

∗
q,Sz

+ δSz,+1vq,−Szδw
∗
q

+ δSz,−1vq,−Szδw
∗
q − 1

2
δSz,0

(
vq,−Szδw

∗
q + v−q,−Szδw

∗
q

)]
�

(isp)
q,Sz

−
∑

Sz

[
vq,−Szδuq + δSz,+1wqδv

∗
q,Sz

+ δSz,−1wqδv
∗
q,Sz

− 1

2
δSz,0

(
wqδv

∗
q,Sz

+ w−qδv
∗
q,Sz

)]
�∗(isp)

q,−Sz

−
∑

T3

[
uqδx∗

q,T3
+ x∗

q,T3
δuq + 1

2
δT3,0xq,T3δw

∗
q + 1

2
δT3,0x−q,T3δw

∗
q

]
�

(ivp)
q,T3

−
∑

T3

[
xq,T3δuq + 1

2
δT3,0wqδx∗

q,T3
+ 1

2
δT3,0w−qδx∗

q,T3

]
�∗(ivp)

q,T3
, (29)
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where the symmetry

�
j
q,i = �

j
−q,i (30)

has been used.
Here we further introduce

Bq = 1

2uq

∑
Sz,T3

[
v∗

q,Sz
�

(isp)
q,Sz

+ vq,Sz�
∗(isp)

q,Sz
+ x∗

q,T3
�

(ivp)
q,T3

+ xq,T3�
∗(ivp)

q,T3

] = 1

uq
Re

[
v∗

q · �(isp)
q + x∗

q · �(ivp)
q

]
. (31)

As a result, the variational equations can be obtained as

vq,+1 = uq�
(isp)
q,+1 + wq�

∗(isp)
q,−1

Bq + (επ,q + εν,−q)
, vq,−1 = uq�

(isp)
q,−1 + wq�

∗(isp)
q,+1

Bq + (επ,q + εν,−q)
, (32a)

vq,0 = uq�
(isp)
q,0 − 1

2 (wq + w−q)�∗(isp)
q,0

Bq + (ε0,q + ε0,−q)
, (32b)

xq,+1 = uq�
(ivp)
q,+1

Bq + (εν,q + εν,−q)
, xq,−1 = uq�

(ivp)
q,−1

Bq + (επ,q + επ,−q)
, (32c)

xq,0 = uq�
(ivp)
q,0 + 1

2 (wq + w−q)�∗(ivp)
q,0

Bq + (ε0,q + ε0,−q)
, (32d)

wq =
1
2 (xq,0 + x−q,0)�(ivp)

q,0 + vq,−1�
(isp)
q,+1 + vq,+1�

(isp)
q,−1 − 1

2 (vq,0 + v−q,0)�(isp)
q,0

Bq + 2(επ,q + εν,−q)
. (32e)

E. Number density equations and condensate fractions

The number densities are given by

nν =
∑

q

(|vq|2 + 2|xq,+1|2 + |xq,0|2 + 2|wq|2) (33)

for neutrons and

nπ =
∑

q

(|vq|2 + 2|xq,−1|2 + |xq,0|2 + 2|wq|2) (34)

for protons, respectively. Thus, the total density of nucleons is

n = nν + nπ =
∑

q

(2|vq|2 + 2|xq|2 + 4|wq|2). (35)

Being similar to the case of the conventional BCS theory
[60], the fractions of pairing and quartetting condensations
can be calculated as

fpair =
∑
P,q

(∑
T3

|〈�|P1,T3 (P, q)|�〉|2

+
∑

Sz

|〈�|D1,Sz (P, q)|�〉|2
)

=
∑

q

∑
T3

∣∣u∗
qxq,T3 + δT3,0x∗

q,T3
wq

∣∣2

+
∑

q

∑
Sz

∣∣u∗
qvq,Sz − (−1)Szv∗

q,Sz
wq

∣∣2
, (36)

fquartet =
∑

q

|〈�|α(q)|�〉|2 =
∑

q

u2
qw

2
q, (37)

respectively. Consequently, the condensate fractions depend
on the variational parameters, which are obviously density
dependent as one sees in Eq. (35). In addition, we also have
applied the same approach for the electron-hole system to
investigate the biexciton-like quartetting correlations [61]. In
this work, the density dependence of various physical quan-
tities has been investigated, including the excitation gap (the
minimum of energy dispersion), energy density, and chemical
potential. Deeper investigation on the condensation fraction
with more realistic nuclear interactions will be useful, but it is
out of scope of this paper.

III. RESULTS AND DISCUSSION

A. Special case of wq = 0

First, let us discuss the special case without the quartet
correlations (wq = 0) to see how the well-known BCS pairing
state is realized in our framework. In such a special case, the
isoscalar and isovector pairings play similar roles, and thus
we take the isoscalar pairing as an example. Correspondingly,
from Eqs. (32a) and (32b) we obtain

vq,Sz = uq�
(isp)
q,Sz

Bq + 2εq
, (38)

where we take εq,ν = εq,π = εq and assume that the varia-
tional parameters are real for simplicity. We then obtain

Bq =
∑

Sz

∣∣�(isp)
q,Sz

∣∣2

Bq + 2εq
= �2

q

Bq + 2εq
, (39)

and thus

B2
q + 2εqBq − �2

q = 0, (40)
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i.e.,

Bq = −εq ±
√

ε2
q + �2

q. (41)

When we choose Bq = −εq +
√

ε2
q + �2

q (noting that this am-
biguity of the sign originates from the physical broken U(1)
symmetry associated with the phase of the gap parameter),
we get

vq,Sz = �
(isp)
q,Sz√

ε2
q + �2

q + εq

uq, (42)

and we can define

E =
√

ε2
q + �2

q. (43)

By using the normalization condition, we can further obtain

u2
q = 1

2

⎛
⎝1 + εq√

ε2
q + �2

q

⎞
⎠, (44a)

v2
q = 1

2

⎛
⎝1 − εq√

ε2
q + �2

q

⎞
⎠. (44b)

These are the well-known results of BCS theory.
Because of the spin degeneracy �q

2 = |�(isp )
q,−1|2 +

|�(isp )
q,0 |2 + |�(isp)

q,+1|2 = 3|�(isp)
q |2, the gap equation (28a)

reads

�
(isp)
q,Sz

= −
∑

q′
Vt (q, q′)

�
(isp)
q′,Sz

2
√

ε2
q′ + �2

q′

= −
∑

q′
Vt (q, q′)

�
(isp)
q′

2
√

ε2
q′ + �2

q′

. (45)

Moreover, if the interactions are separable, for example,
Vt (q, q′) = −λt e−q2/b2

e−q′2/b2
with the coupling constant λt

and the range parameter b [32], we can write the gap as
�

(isp )
q = φe−q2/b2

with a constant φ. Finally, the gap equa-
tion reads

1 = λt

∑
q′

e−2q′2/b2 1

2
√

ε2
q′ + �2

q′

. (46)

Once φ is determined by solving the above equation, thermo-
dynamic quantities such as the internal energy and number
density can be obtained, together with uq and vq,Sz . In this
way, one can find that the momentum dependence of the gap
parameters is associated with that of the interactions. Note that
we obtain the momentum-independent gap parameters for the
contact-type (i.e., momentum-independent) couplings.

B. Quartet correlations

When the quartet correlations are taken in account, in a
similar way to Eq. (39), one can obtain

Bq =
∑

Sz

∣∣�(isp)
q,Sz

∣∣2 + wq

uq

[
2�

(isp)
q,+1�

(isp)
q,−1 − ∣∣�(isp)

q,0

∣∣2]
Bq + 2εq

= �2
q + Rq

Bq + 2εq
, (47)

where Rq is defined as

Rq = wq

uq

[
2�

(isp)
q,+1�

(isp)
q,−1 − ∣∣�(isp)

q,0

∣∣2]
. (48)

One can then obtain

Bq = −εq +
√

ε2
q + �2

q + Rq, (49)

and recast the energy dispersion (43) into

E =
√

ε2
q + �2

q + Rq. (50)

In addition, one can obtain

wq = uq
[
2�

(isp)
q,+1�

(isp)
q,−1 − ∣∣�(isp)

q,0

∣∣2] + wq
∑

Sz

∣∣�(isp)
q,Sz

∣∣2

(Bq + 4εq)(Bq + 2εq)
(51)

and

wq

uq
=

[
2�

(isp)
q,+1�

(isp)
q,−1 − ∣∣�(isp)

q,0

∣∣2]
(Bq + 4εq)(Bq + 2εq) − ∑

Sz

∣∣�(isp)
q,Sz

∣∣2 . (52)

Note that the contribution of the isovector pairing is ig-
nored in the above equations as in the previous subsection.
Nevertheless, this approximation is still valid for qualitative
understanding of in-medium quartet correlations in infinite
nuclear matter since the isovector pairing is much weaker than
the isoscalar pairing [20].

In order to investigate the asymptotic behavior of the vari-
ational parameters, the interaction is taken as a contact-type
one. By taking the energy gap �

(isp)
q,Sz

to be 5 MeV (noting that

|�q| should be multiplied by another factor
√

3) and the ratio
�

(isp)
q,Sz

/μ = 1.16 [62] as a typical value of Fermi superfluids,
the solutions to Eqs. (44b) and (51) are plotted in Fig. 1. The
results v2

q + 2w2
q , v2

q, and u2
q to Eq. (51) with the quartet cor-

relation as a function of relative momentum q are shown with
the blue solid, olive dash-dotted lines, and violet short-dashed,
respectively. In contrast, the result v2

q to Eq. (44b) without
the quartet correlation is shown with the black short-dotted
line. It can be seen that with the consideration of quartet
correlation, nucleons prefer to form the more stable α-like
particles, in the low-momentum region. With the increase of
relative momentum q, α-like particles break into pairs, and
thus w2

q gets smaller while v2
q gets larger. When the relative

momentum q is high enough to even break up the pairs,
both w2

q and v2
q decrease. The curve M2�2

q/q4 is also shown
with the red dashed line for reference of the high-momentum
tail. This result is consistent with the so-called Tan’s relation
[63–65] for the BCS pairing, which is widely discussed in
cold-atom physics and also in nuclear systems in terms of

024317-7



GUO, TAJIMA, AND LIANG PHYSICAL REVIEW C 105, 024317 (2022)

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

 u2
q (with quartet corr.)

 M2�2
q/q4

q (fm-1)

 v2
q (without quartet corr.)

 v2
q+2 w2

q (with quartet corr.)

 v2
q (with quartet corr.)

FIG. 1. Solutions to Eqs. (44b) and (51) as a function of relative
momentum q. Here �

(isp)
q,Sz

and �
(isp)
q,Sz

/μ are adopted as 5 MeV and
1.16 (μ = 4.31 MeV) [62], respectively. The results v2

q + 2w2
q , v2

q,
and u2

q to Eq. (51) with the quartet correlation are shown with the blue
solid, olive dash-dotted, and violet short-dashed lines, respectively.
The result v2

q to Eq. (44b) without the quartet correlation is shown
with the black short-dotted line. The curve M2�2

q/q4 is also shown
with the red dashed line for the asymptotic behavior.

short-range correlations [66–68]. Physically, the power-law
tail M2�2

q/q4 describes high-momentum nucleons forming
neutron-proton Cooper pairs due to the short-range attraction.
Although the quartet correlation does not contribute to the
high-momentum tail in our framework, such an effect may
appear via the correlations associated with excited deuterons
with finite center-of-mass momenta, which are neglected in
this study and will be addressed elsewhere.

Still taking �
(isp)
q,Sz

= 5 MeV and �
(isp)
q,Sz

/μ = 1.16, the en-
ergy dispersions with and without the quartet correlation
are shown in Fig. 2 as a function of relative momentum
q. The correction to the energy dispersion caused by the
quartet correlation mainly contribute to the low relative mo-
mentum region. When the relative momentum become larger
than the value which gives the minimum of the energy
dispersion, the quartet correlation becomes almost negligible.
It is because that the excited deuterons are not considered
here. It can be seen that the value of the excitation gap also
becomes larger. This behavior is reasonable in the sense that a
larger energy is required to cause a single-nucleon excitation
at low momenta accompanying the breakups of not only a
deuteron-like Cooper pair but also an α-like Cooper quartet.

Furthermore, it should be noted that quartet correlations in
the present approach vanish in the absence of the pairing gaps
as found in Eq. (32e). This behavior is associated with the
assumption on the quartet creation operator α†(q, q′) in the
variational wave function, which consists of the combinations
of two isoscalar pair creation operators with zero center-of-
mass momentum P = 0 [see also Eq. (7)]. As a consequence,
the quartet correlations always involve only condensed pairs
(i.e., P = 0) in the present approach. Nevertheless, it can be
assumed that the fraction of condensed pairs is sufficiently

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

10

20

30

40

 E (without quartet corr.)
 E (with quartet corr.)

E 
(M

eV
)

q (fm-1)

FIG. 2. Energy dispersion E with and without the quartet corre-
lation as a function of relative momentum q. The energy dispersion
without the quartet correlation (43) is shown with the black short-
dotted line, and the one with correlation (50) is shown with the blue
solid line. The same parameters in Fig. 1 are adopted.

larger than that of uncondensed ones with P �= 0 at low tem-
perature. To generalize the wave functions for the case with
quartet correlations but without condensed pairs, one may
consider the quartet creation operator α̃†(q, q′, P) involving
excited pairs as

α̃†(q, q′, P) =
∑
Sz,S′

z

C00
11SzS′

z
D†

1,Sz
(P, q)D†

1,S′
z
(−P, q′), (53)

where zero center-of-mass momentum of the four-body state
is kept [i.e., P + (−P) = 0]. However, as we mentioned in
Sec. II B, the trial wave function associated the coherent state
of α̃†(q, q′, P) with multiple momentum degrees of freedom
is practically difficult to handle in the numerical computation.
A similar approximation was employed in the previous work
for finite nuclei [26,27,29,30], considering pairing states with
the time-conjugate orbitals. More explicitly, α̃†(q, q′, P) can
be rewritten in the form of

α̃†(q, q′, P) = α†(q)δP,0δq,q′ + δα†(q, q′, P), (54)

where δα†(q, q′, P) ∝ (1 − δP,0) is the operator for the con-
tribution associated with excited pairs, which is neglected in
this study.

As we mentioned that the high-momentum component of
the dispersion in Fig. 2 may be affected by excited pairs, such
a tendency can also be found in the variational parameters at
the low-density regime where μ is negative and the α-particle
formation is dominant. For that, the solution to Eq. (51) as
a function of the relative momentum q in the low-density
regime is shown in Fig. 3. In order to qualitatively compare it
with the occupation number ρ(k) of nucleons (k is a nucleon
momentum) calculated by solving the in-medium four-body
Schrödinger equation in Ref. [35], the chemical potential μ

is taken as −1.63 MeV. Although the specific value of �q

was not shown in Ref. [35], here �
(isp)
q,Sz

is adopted as 1.73
MeV (i.e., |�q| = 3 MeV), which is comparable with the
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v2 q +
 2

 w
2 q

q (fm-1)

μ = -1.63 MeV, Δq,Sz = 1.73 MeV

FIG. 3. Solution to Eq. (51) as a function of relative momentum
q in the low-density regime (i.e., negative chemical potential μ =
−1.63 MeV [35]). Here �

(isp)
q,Sz

is adopted as 1.73 MeV (|�q| = 3
MeV), which is comparable with the previous numerical result of the
neutron-proton pairing gap in symmetric nuclear matter [7].

previous numerical result of the neutron-proton pairing gap
in symmetric nuclear matter [7]. It is found that v2

q + 2w2
q

approaches almost zero around q = 1.0 fm−1 in the present
calculation, while ρ(k) in Ref. [35] remains a relatively non-
negligible finite value even above k = 1.0 fm−1 (noting that
the overall absolute value depends on details of the configu-
rations). Although the calculated quantities, the approaches,
and the configurations (e.g., interactions) are different from
each other, the quickly decreasing behavior of v2

q + 2w2
q with

increasing the relative momentum q may be reminiscent of the
lack of excited pair contributions in the present approach.

As a step further, we may also consider the effective four-
body interaction

H4 =
∑
q,q′

V4(q, q′)α†(q)α(q′), (55)

which has been taken into account in the study for finite
nuclei [26]. In such a case, one can obtain an additional
gap-like parameter �(α)

q representing solely the quartet cor-
relations without pairing gaps. In other words, the quartet
component will not vanish even if the pairing condensates
are absent, in the presence of four-body interaction terms in
the Hamiltonian. Although the coupling strength V4(q, q′) is
still unknown in infinite nuclear matter, in principle it should
be nonzero. Even for infinitesimally small V4(q, q′), such a
multibody interaction can affect in-medium quartet properties,
as it has been found that the three- and four-body interactions
are crucial for the formation of in-medium fermionic clusters
[52,53,69]. The inclusion of these multibody interactions are
left for future work.

IV. SUMMARY AND PERSPECTIVES

We theoretically investigated the α-like quartet correlations
in the cold nuclear matter at the thermodynamic limit. The
BCS-type variational wave function in the momentum space
is extended to the infinite symmetric nuclear matter, where the
pair and quartet correlations are described by the coherent su-
perposition of neutron-proton Cooper pairs and α-like Cooper
quartets. We showed an analytic structure of the quartet BCS
wave function in terms of nucleon degrees of freedom and the
hierarchical structure of in-medium cluster formations in the
momentum space in the cold symmetric nuclear matter.

In particular, we examined the quasiparticle dispersion and
the momentum distribution of nucleons under the presence
of deuteron-like pair and α-like quartet condensations. With
a low relative momentum q (and zero center-of-mass mo-
mentum), nucleons prefer to form the α-like Cooper quartet,
which is more stable than the deuteron-like Cooper pairs. With
the increase of relative momentum q, α-like Cooper quartets
break into two Cooper pairs, and the fraction of deuteron-like
pairs increases monotonically. When the relative momentum
q is high enough to even kinematically break up the pair,
the fractions of both pairs and quartets decrease with exhibit-
ing the high-momentum-tail behavior associated with residual
pairs. The quartet correlations also give a significant correc-
tion to the energy dispersion in the low-momentum region.
The low-energy excitation of nucleons involves a larger en-
ergy gap compared to the usual BCS pairing state because
it requires the breakups of Cooper pairs as well as Cooper
quartets in the nuclear matter. The present results may also
contribute to the interdisciplinary understanding of multicom-
ponent fermionic condensations beyond the BCS paradigm in
many-body systems, and improve the understanding of many-
body correlations in the nuclear system.

In the next step, by further taking realistic forms of in-
teractions and gradually upgrading the wave function, one
can investigate the quartet correlations in a deeper way. By
using the variational equations, one can calculate different
kinds of equations of states (EOS) for the nuclear matter to
investigate various properties, such as the saturation proper-
ties. Furthermore, while we assumed that the order parameters
are real valued in the present study, it would be interesting to
explore possible intrinsic Josephson currents and out-of-phase
collective modes in the quartet BCS framework with complex
order parameters.
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