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Properties of hot finite nuclei and associated correlations with infinite nuclear matter
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This work aims to study the various thermal characteristics of nuclei in view of the saturation and criti-
cal behavior of infinite nuclear matter. The free energy of a nucleus is parametrized using the density and
temperature-dependent liquid-drop model, and interaction among nucleons is worked out within the effective
relativistic mean-field theory (E-RMF). The effective mass (m∗) and critical temperature of infinite symmetric
nuclear matter (Tc) of a given E-RMF parameter force play a seminal role in the estimation of thermal properties.
Larger m∗ and Tc of the E-RMF set estimate larger excitation energy, level density, and limiting temperature
(Tl ) for a given nucleus. The limiting temperature of a nucleus also depends on the behavior of the nuclear gas
surrounding the nucleus, making the equation of state (EoS) at subsaturation densities an important input. A
stiff EoS in the subsaturation region estimates a higher pressure of the nuclear gas, making it less stable. Since
Tc plays an important part in these calculations, we perform a Pearson correlation statistical study of twenty
E-RMF parameter sets, satisfying the relevant constraint on the EoS. Effective mass seems to govern the thermal
characteristics of infinite as well as finite nuclear matter in the framework of E-RMF theory.
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I. INTRODUCTION

An astonishing universality in the laws of nature is the
resemblance between the nuclear force and the molecular
force. Molecular force is of van der Waals type and nuclear
force behaves similarly, albeit on the different energy scale.
Therefore one may arrive at the notion that nuclear matter
should undergo a liquid-gas phase transition (LGPT) like a
classical liquid drop. This phenomenon of LGPT in both infi-
nite nuclear matter and finite nuclei is an important feature of
heavy-ion-induced reactions (HIRs) [1–3]. In these reactions,
the participating hot nuclei undergo multifragmentation after
the initial dynamic stage of compression upon reaching sub-
saturation density (≈0.2ρ0) [4]. In this subsaturation density
region, the properties of nuclei are modified [5–7]; these prop-
erties are essential for the understanding of thermodynamics
of hot nuclei, and the medium in which they are created.
Knowledge of nuclear matter in the subsaturation region is
also important in the context of core-collapse supernovae [8],
neutron star crusts, and giant astrophysical explosions where
nuclear matter minimizes its energy by forming clusters at
temperature ≈4 MeV [9].

γ ray emission is the dominant process in the nucleus at
low excitation energy, where nuclear levels are well resolved.
As excitation energy increases slightly, the nuclear energy
levels are substantially modified. The single-particle energy
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states become degenerate and nuclear shells start melting,
leading to a spherical nucleus after a temperature usually
known as shell melting temperature, Tm ≈ 1–2 MeV [10].
Further increase in temperature leads to nucleon emission,
which is generally studied within the framework of nuclear
statistical equilibrium. On further heating, the nucleon evapo-
ration turns violent, and at a certain limiting temperature, Tl ,
a new decay channel known as multifragmentation becomes
dominant. This Tl was found to be ≈5.6 MeV for the mass
region A ≈ 90 in the ALADIN experiment [11]. Nuclear mul-
tifragmentation occurs in the region of a spinodal or phase
instability boundary in the nuclear matter phase diagram [12].
The nucleus, which resembles a hot liquid drop, expands
because of thermal pressure and moves to the spinodal region
where it is surrounded by a nucleon gas. As the spinodal is the
region of instability the nucleus explodes violently, and the
process is known as multifragmentation at freeze-out volume
≈7V0 [13].

There have been several qualitative attempts to study the
limiting temperature of nuclei in terms of Coulomb instabil-
ity, where the EoS of infinite matter is taken from various
theoretical frameworks such as the Skyrme effective NN in-
teraction [14,15], microscopic EoS such as that of Friedman
and Pandharipande [16], finite temperature relativistic Dirac-
Brueckner theory [17], chiral perturbation theory [18–20],
EoS considering the degeneracy of the Fermi system [21],
relativistic calculations using quantum hadrodynamics and the
Thomas-Fermi approach [22–24], Gogny interactions [25],
and the chiral symmetry model [26]. Some calculations have
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been carried out by analyzing the plateau in the caloric curve
obtained from various experimental observations [27]. These
calculations give a qualitative picture of Tl and it is seen that
Tl is model dependent and hence needs to be investigated for
appropriate outcome.

To understand the properties of LGPT in nuclei and most
importantly the temperature at which the nucleus undergoes
multifragmentation and loses its entity, we use one of the
most successful approaches, effective relativistic mean-field
(E-RMF) theory [28]. The E-RMF is the effective theory
of hadrons as per quantum chromodynamics (QCD), which
successfully explains the nuclear matter properties from finite
nuclei to neutron stars and gives valuable inputs in super-
novae simulations. The E-RMF formulation calculates the
volume energy of infinite nuclear matter on which the finite-
size corrections—surface, symmetry, Coulomb—are added to
evaluate the properties of a realistic nucleus. The idea behind
using the E-RMF framework for the bulk volume energy part
is that the nuclear drop is usually surrounded by a nucleon
gas in complete thermodynamic equilibrium. To calculate the
properties of such a system, one usually needs to solve the
Gibbs conditions [29], where it is expected that the same
equation of state (EoS) is used for the gaseous as well as the
liquid phase.

The aim of present study is twofold: First, we investigate
the properties of a hot isolated nuclear drop by studying
the variation of thermodynamic variables such as excitation
energy, entropy, level density, fissility etc. We compare them
with available experimental or microscopic theoretical calcu-
lations [10,30]. The second and important part of this work
is the qualitative analysis of the limiting temperature of a
hot nucleus. In HIRs, nuclei can be heated to their limiting
temperature, which provides an opportunity to investigate the
collective motion of nucleons and their highly chaotic and
disordered behavior at high excitation energy. We use E-RMF
parameter sets, namely FSUGarnet, G3, IOPB-I, and the most
successful one NL3 [31] for the volume energy of a nucleus.
The temperature-dependent surface energy term depends on
the Tc, which is calculated for these individual E-RMF pa-
rameter sets. In the analysis of critical properties of infinite
nuclear matter using these E-RMF sets in [12], we found that
the Tc is not a well-constrained quantity and the majority
of E-RMF sets that satisfy the relevant observational and
experimental constraints on the EoS underestimate it. Since
the experimental value of Tc is calculated by extrapolating the
data from multifragmentation reaction data on finite nuclei, it
is interesting to see the variation of Tl of finite nuclei using
different E-RMF forces. To further generalize the relationship
between various saturation properties of infinite nuclear mat-
ter, its critical properties, and the limiting properties of a hot
nucleus, we have used 20 parameter sets that lie within the
allowed incompressibility range and satisfy other constraints
[32]. An effort is made to establish correlations among these
properties.

The paper is organized as follows: In Sec. II, we discuss
the formalism to calculate the energy of a finite nucleus from
infinite nuclear matter. In subsequent Secs. II C, and II D
we discuss the formalism for the excitation energy, fissility
parameter, and limiting temperature along with the lifetime

of the hot nuclear liquid drop. In Sec. III, we discuss results
related to various properties of a hot nucleus. Finally, we
summarize our results in Sec. IV.

II. THEORETICAL FORMALISM

A. From infinite matter to finite nuclei

We consider a nucleus to be a liquid drop and resort to the
conventional liquid-drop model to define the free energy of
the drop with given mass number A, proton number Z , and
neutron number N as

FA(ρ, T ) = Fv (ρ, T )A + Fcorr (ρ, T ), (1)

where Fv (ρ, T ) is the free energy of infinite symmetric nu-
clear (SNM) matter calculated within the effective-relativistic
mean-field theory (E-RMF) corresponding to the volume and
Fcorr is the finite-size correction due to surface, symmetry, and
Coulomb effects and is written as

Fcorr (ρ, T ) = fsurf (ρ, T )4πR2 + fsym(ρ, T )
(N − Z )2

A

+ fCol. (2)

Here R is the radius of the drop and is defined as

R =
(

3A

4πρ(T )

)1/3

. (3)

The coefficient of free surface energy (FSE), fsurf (ρ, T ), is
a crucial parameter that introduces the surface and is assumed
to be factorized and density dependent [33]. This is written as

fsurf (ρ, T ) = αsurf (ρ0, T = 0)D(ρ)Y (T ). (4)

Here, αsurf (ρ0, T ) is the surface energy coefficient at satu-
ration density (ρ0) of infinite SNM. As the density of the
liquid evolves, the surface energy should change. Therefore
the density dependence is taken from [34] and is written as

D(ρ) = 1 − Kρ

2

(
ρ − ρ0

ρ0

)2

. (5)

The temperature dependence of the coefficient of FSE is
another significant parameter that ensures that the surface
tension vanishes above a certain temperature Tc. In this work,
we use two parametrizations of the temperature dependence
of surface energy which are widely used in the calculation of
multifragmentation in nuclei and the structure of neutron star
crust. The first expression is taken from [33] which takes into
account the plane sharp interface between liquid and gaseous
phases of nuclear matter in equilibrium. It is written as

Y (T ) =
(

T 2
c − T 2

T 2
c + T 2

) 5
4

. (6)

The second expression is derived based from the semi-
classical modified Seyler-Blanchard interaction and takes the
form [35]

Y (T ) =
(

1 + 1.5
T

Tc

)(
1 − T

Tc

) 3
2

. (7)
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In these expressions, Tc is the critical temperature of liquid-
gas phase transition in infinite SNM. αsurf (ρ0, T ) is taken as
1.15 MeV fm−2 and Kρ is a dimensionless constant taken to
be 5.0 as prescribed in [36].

The coefficient of free symmetry energy (FSYE),
fsym(ρ, T ), which depends on the mass number of liquid drop,
is written as

fsym(ρ, T ) = αsym(ρ, T = 0)G(T )

(
ρ

ρ0

)�

. (8)

Here, αsym(ρ, T = 0) is further defined as

αsym(ρ, T = 0) = J

1 + CA−1/3
, (9)

where J is the symmetry energy of cold SNM and is taken as
31 MeV, and C = 2.4. The dependence of fsym(ρ, T ) on the
temperature is ensured using the function G(T ) in line with
the infinite matter calculations that suggest that free FSYE
increases with temperature [29]. It is taken in a schematic
form as [37]

G(T ) = (1 + ν1T + ν2T 2 + ν4T 4), (10)

where ν1 = −0.008 48, ν2 = 0.002 01, ν4 = 0.000 014 7 with
dimensions as relevant power of unit of temperature. The den-
sity dependence is ensured with the � = 0.69 in congruence
with the experimental observations [38]. The free Coulomb
energy FCE which is otherwise absent in the infinite matter is
responsible for the Coulomb instability of the liquid drop. It
is taken as [39]

fCol = 3

5

Z2e2

R

(
1 − 5

2

(
b

R

)2)
, (11)

where b is the surface thickness, which is also a temperature-
dependent quantity taken as

b ≈ 0.72(1 + 0.009T 2). (12)

The ratio b
R increases with temperature resulting in the

reduction of Coulomb free energy in addition to that arising
from the expansion of bulk matter. We do not include the
exchange term in Coulomb free energy due to its low contribu-
tion. In the construction of the liquid drop, we do not include
other finite-size effects such as pairing and shell corrections
because they become insignificant for temperature >1–2 MeV
due to shell melting.

B. E-RMF at zero and finite temperature

The relativistic mean-field model (RMF) treats nucleons
as Dirac particles that interact in a relativistic covariant way
by exchanging virtual mesons, namely, isoscalar-scalar σ me-
son, isoscalar-vector ω meson, isovector-vector ρ meson, and
isovector-vector δ mesons. Further modification in the RMF
model leads to the effective relativistic mean-field formalism
(E-RMF) which has the advantage that one can ignore the
renormalization and divergence of the system. In E-RMF, the
Lagrangian contains an infinite number of terms consistent
with the underlying QCD symmetries. The ratio of meson
fields to the nucleon mass is used for the expansion and
truncation scheme. Taking recourse to the naturalness and

naive dimensional analysis (NDA), it is possible to truncate
the Lagrangian at the given level of accuracy. The detailed
formalism and theoretical background of E-RMF can be found
in [10,12,29,31,40,41] and here we present a general outline
of the formalism. The typical E-RMF Lagrangian for infinite
nuclear matter is written as

E = ψ†

(
iα · ∇+β[M − 
(r)−τ3D(r)] + W (r) + 1

2
τ3R(r)

+ 1 + τ3

2
A(r)

)
ψ+

(
1

2
+k3
(r)

3!M
+ k4

4!


2(r)

M2

)
m2

s

g2
s


(r)2

− ζ0

4!

1

g2
ω

W (r)4 1

2

(
1 + η1


(r)

M
+ η2

2


2(r)

M2

)
m2

ω

g2
ω

W 2(r)

− 1

2

(
1 + ηρ


(r)

M

)
m2

ρ

g2
ρ

R2(r) − �ω(R2(r)W 2(r))

+ 1

2

m2
δ

g2
δ

[D(r)]2. (13)

Here 
(r), W (r), R(r), D(r) and A(r) are the fields cor-
responding to σ , ω, ρ, and δ mesons and photon respectively.
The gs, gω, gρ , gδ , and e2

4π
are the corresponding coupling con-

stants and ms, mω, mρ , and mδ are the corresponding masses.
The zeroth and third components of the energy-momentum
tensor yield the energy and pressure density [12,31]. For cold
matter, i.e., T = 0 case, the complete field equations and
related density, energy, and pressure integrals are well given
in [31,42]. At T �= 0, the energy and pressure for finite tem-
perature can be written by using the concept of canonical
thermodynamic potential � which are also documented in
[12,29]. The Dirac effective mass which is calculated self-
consistently is written as [31]

M∗
n/p = M − 
(r) ± D(r). (14)

C. Excitation energy, level density, and fissility parameter

The binding energy E (T ) of a liquid-drop with given A and
Z can be found by minimizing Eq. (1) to obtain the density of
a nucleus at a given temperature. The excitation energy then
attains a simple form, E∗(T ) = E (T ) − E (T = 0), which es-
sentially signifies the difference of binding energy of ground
level to that at any given temperature. Here the energy can be
determined from the relation

E (T ) = F (T ) + T S. (15)

The interrelationships among temperature, excitation en-
ergy, and entropy which determine the level density parameter
(a) are written as [43]

E∗(T ) = aT 2, S = 2aT, S2 = 4aE∗(T ). (16)

In a heavy nucleus, the competition between Coulomb and
surface energy determines the fissility of the nucleus: the
larger the ratio, the smaller is the fission barrier. The fissility
parameter is given by dimensionless parameter x(T ), which is
defined as [39]

x(T ) = F0
Col

2F0
s

, (17)
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where the “0” in superscript signifies the spherical drop. We
then define the fission barrier or potential energy of a de-
formed drop in terms of standard liquid-drop conventions as

B f (T ) = (Bs − 1) + 2x(T )(Bc − 1). (18)

Here, Bs and Bc are the surface and Coulomb energies at the
saddle point in the units of surface and Coulomb free energy
respectively. Values of Bs and Bc can be determined from [44],
where these values are tabulated against fissility parameter
x(T ).

D. Limiting temperature

The most important aspect of the thermodynamics of a
finite nucleus is its multifragmentation, which can be ex-
plained in terms of liquid-gas phase transition. We consider
the nucleus to be a spherical drop of liquid surrounded by a
gas of nucleons under the assumptions that the hot nucleus at
a temperature T is surrounded by a homogeneous gas of sym-
metric nuclear matter in a complete mechanical and chemical
thermodynamic equilibrium with no exchange of particles.
A sharply defined surface separates the liquid and gaseous
phases and there is no interaction between nucleons in the
gaseous and liquid phase so that the gas remains unchanged
and without Coulomb effect. These approximations then lead
us to the following modified phase equilibrium condition sim-
ilar to the infinite matter case:

Pg
0 (ρg, T ) = Pl

0(ρ l , T ) + δPl , (19a)

μ
g
p0(ρg, T ) = μl

p0(ρ l , T ) + δμl
p. (19b)

Here, “0” in the subscript refers to the bulk matter conditions,
and δPl and δμl

p are the pressure and chemical potential
corrections which are given as [45]

δPl = −ρ2

(
∂Fcorr

∂ρ

)∣∣∣∣
T,N,Z

, (20a)

δμl
p =

(
∂Fcorr

∂Z

)∣∣∣∣
T,N,ρ

, (20b)

where Fcorr is defined in Eq. (1). The expressions for other
thermodynamical quantities such as critical temperature (Tl ),
flash temperature (Tf ), etc. can be found in [12,29] and they
are used similarly in this work. The external nucleon gas
also defines the stability of a hot nuclear liquid drop. In this
context, we define the lifetime of a hot drop by using the
concept of statistical average and assuming neutron emission
to be the dominant process along with neglecting the energy
dependency of the cross section as [30]

1

τ
= 4πγ

1

h3
2m(kT )2σ exp

μn

kT
, (21)

where γ is the spin degeneracy and σ is taken to be the
geometric cross section.

III. RESULTS AND DISCUSSION

In this section, we present the results of our calculation
of a hot nucleus. We use FSUGarnet, G3, IOPB-I, and NL3
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FIG. 1. The excitation energy of 56Fe, 90Zr, 208Pb and 236U as a
function of temperature for FSUGarnet, IOPB-I, G3 and NL3 sets.
The solid lines represents calculation from Eq. (6) and dashed lines
are from Eq. (7). The theoretical data in black cross is taken from
[48], plus from [30] and star from [10]. The experimental values for
A ≈200 are taken from [49].

E-RMF [31] parameter sets. These E-RMF forces are known
to reproduce the properties of finite nuclei as well as infinite
nuclear matter [10,12,29,31,40]. They also satisfy the relevant
constraints on the EoS such as incompressibility, symmetry
energy, slope parameter, etc., and observational constraints
like those from the Flow and Kaon experiments [10]. In
[12,29] we discussed in detail the critical properties of SNM
using these parameters, and here we extend those to the finite
nuclei case. In our calculations, for a fixed nuclear system
and E-RMF parameter set, we use two parametrizations, i.e.,
Eqs. (6) and (7), for surface energy. These parametrizations
are widely used in astrophysical [46] and statistical calcula-
tions [47] and are used here for comparison. We compare the
results in reference to the properties of nuclei at finite temper-
ature and consequently study the role of critical temperature
of infinite matter. This section is divided into three subsec-
tions. We discuss the caloric curve and related aspects in
Sec. III A and limiting temperature in Sec. III B. In Sec. III C
we establish the correlation among various zero- and finite-
temperature properties.

A. Excitation energy, level density, and fissility

We begin with the discussion of the caloric curve, which is
the relation between excitation energy and temperature for the
three isolated spherical nuclei, i.e., 56Fe, 90Zr, 208Pb, and 236U
which is formed when thermally fissile 235U absorbs a thermal
neutron. In experiments, the temperature of the nucleus is
not measured directly but is calculated using excitation en-
ergy, which can be obtained using resonance or energy of the
evaporation residue. The above mentioned nuclei are the most
studied nuclear systems and their microscopic calculations are
available in the literature. Figure 1 shows the caloric curve for
these nuclei using the four E-RMF sets FSUGarnet, IOPB-I,
G3, and NL3.
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The estimations of theoretical caloric curves from the
E-RMF are in reasonable agreement with microscopic calcu-
lations [10,30,48]. The experimental values for mass A ≈ 200
extracted from [49] also align with our calculations for T <

5 MeV. The deviation at higher temperature and excitation
energy may be associated with the production of heavier par-
ticles in the multi-fragmentation process, which may change
the energy of the system. The behavior of different parameter
sets is tightly constrained and the spread of curves becomes
narrower as one moves from 56Fe to 208Pb. The effect of
different parametrizations of surface energy from Eqs. (6) and
(7) is also visible. Equation (7) derived from the semiclassical
Seyler-Blanchard interaction estimates a steeper slope for the
caloric curve as compared to Eq. (6) based on thermodynamic
equilibrium of the sharp interface between liquid and gaseous
phases. This is because Eq. (6) estimates relatively lower
surface energy at any given temperature.

For a particular nucleus, the G3 set with the largest
effective mass (m∗ = M∗/M = 0.699) estimates the steep-
est caloric curve while FSUGarnet with the smallest (m∗ =
0.578) corresponds to the softest caloric curve. The effective
mass in the E-RMF formalism is determined from the strength
of the scalar field because of NN interaction. The G3 set
due to small scalar self-couplings k3, k4 and scalar-vector
cross-couplings η1, η2 estimate the softest scalar field while
FSUGarnet yields the stiffest scalar field. The scalar field con-
sequently determines the mechanical properties of the system
and therefore the effective mass becomes a crucial saturation
property at finite temperature. The effective mass which is ob-
tained self-consistently also determines the chemical potential
and kinetic energy of nucleons, which are essential input for
the thermal properties calculations. Furthermore the G3 set
estimates the softest repulsive contribution arising from the
vector self-coupling ζ0. The combined effect of scalar and
vector fields determines the critical temperature. The param-
eter sets G3 and FSUGarnet estimate the largest and smallest
Tc among these four sets (see Table II). Therefore, in finite
nuclei, the thermal contribution of energy essentially depends
on the combined effect of effective mass, Tc, and the zero-
temperature EoS. It may be noted that the saturation properties
are not unique and different combination of mesons coupling
can yield similar nuclear matter properties. Therefore, it is
relevant to analyze the finite temperature properties of the
nuclear matter in terms of saturation properties and not the
coupling constants.

In the Fermi gas model, the point of minimum entropy in
the transition state nucleus corresponds to its minimum exci-
tation energy (E∗) [50]. Therefore we show the relation of the
square of entropy and E∗ in Fig. 2 for the systems considered
in Fig. 1. The square of entropy increases monotonically with
E∗, signifying a disordered and chaotic nucleus. The disorder
increases with mass number, implying a more violent multi-
fragmentation process once the nucleus reaches its limiting
temperature Tl . Equation (7) estimates higher entropy at a
given E∗ as compared to (6). For a particular nucleus, the
spread of different E-RMF sets increases with E∗. This effect
can be attributed to the effective mass and Tc of a particular
E-RMF parameter. In our model, we have not considered the
shell correction which deviates from straight-line behavior of
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FIG. 2. The Relation between square of entropy and excitation
energy for the systems as in Fig 1.

this curve at low temperature, where shell structure is still
intact. These shells melt at around E∗ ≈ 40 MeV or T ≈
1–2 MeV [51]. After this temperature, the nucleus is highly
disordered; nucleons are constantly trying to push out from
the nuclear boundary, which is ensured by the surface as in
Eq. (4). The behavior of S2 is in agreement with results in
[10,48].

The caloric curve gives us the opportunity to study the
level density parameter (a) which plays a crucial role in under-
standing the particle spectra and nuclear fission. Level density
signifies the available excited state level at a given energy.
In order to study the level densities we use Eq. (16) and fit
them for the value of a with R squared value >0.99. The
level density parameters obtained using different expression
of Eq. (16) are listed in Table I. The level density calculated
from all the three Eqs. (16) are comparable. A larger effective
mass and Tc correspond to the larger level density as in the
case of G3. These calculations are performed using Eq. (6).
On the other hand Eq. (7) estimates lower magnitude of level
density although the trend remains the same. The value of
level density lies within the empirical relations A/11.93 from
[52] and A/14.75 from [53]. Nuclear level density can also
be studied in terms of temperature where one can take the
relevant ratio in a straightforward manner, e.g., a = E∗/T 2

at a particular temperature. The G3 set with largest effective
mass yields the largest temperature-dependent level density.
The above analysis of thermal properties upholds the impor-
tance of effective mass over other saturation properties.

Now we shell discuss the temperature dependence of fis-
sility and fission barrier. Fissility characterizes the stability
of a charged nuclear drop against fission. In general, when
Coulomb free energy Fcol becomes twice the surface free
energy Fsurf , the spherical liquid drop becomes critical to-
wards spheroidal deformation and splits into two equal parts.
This feature is extensively used in the equilibrium condition
determining the structure of neutron star crust and supernova
explosions (see Eq. (44) in [46]). One thing to note here
is that, similar to a classical liquid drop, on increasing the
temperature, the nuclear liquid drop becomes more spherical
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TABLE I. The level density parameters obtained using different
expressions of Eq. (16) for the FSUGarnet, IOPB-I, G3, and NL3
parameter sets.

a (MeV−1) using Eq. (7)

Element Forces E∗/T 2 S2/4E∗ S/2T

NL3 4.695 4.931 4.789
FSUGarnet 4.582 4.323 4.35756Fe
IOPB-I 5.033 4.789 4.808
G3 5.149 4.942 4.963
NL3 7.267 7.740 7.491
FSUGarnet 7.102 7.185 7.07290Zn
IOPB-I 7.812 7.857 7.758
G3 7.872 8.065 7.930
NL3 15.683 17.030 16.394
FSUGarnet 15.752 16.725 16.233208Pb
IOPB-I 16.998 18.040 17.531
G3 17.126 18.191 17.683
NL3 17.640 19.190 18.463
FSUGarnet 17.761 18.946 18.353236U
IOPB-I 19.196 20.400 19.818
G3 19.296 20.532 19.949

[10], i.e., shell structure becomes trivial and deformations in
the nucleus vanish. Therefore, a drop cannot undergo spon-
taneous fission only by the temperature and one always needs
external disturbance like a thermal neutron in the case of 235U.
However, at a certain maximum temperature Tl , the nucleus
will undergo the multifragmentation process.

We show in Fig. 3 the variation of fissility as a function
of T/Tc using Eq. (17) with different forces and both the
parametrizations of temperature dependence of surface en-
ergy, i.e., Eqs. (6) and (7). The fissility for 236U increases
exponentially with temperature, suggesting that the surface
energy decreases much faster on increasing the temperature.
Equaton (7) has steeper slope than Eq. (6), which is again
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FIG. 3. The fissility parameter x(T ) as a function of T
Tc

for 236U
using parameter sets FSUGarnet, IOPB-I, G3, and NL3 on the left
panel. The right panel show the liquid-drop fission barrier for 236U.
Solid and dashes lines have the same meaning as in Fig. 1.

the result of lower surface energy in the case of Eq. (6). The
fission barrier decreases with temperature and almost vanishes
for T/Tc = 0.4 for all the forces. The G3 parameter set es-
timates the largest barrier and FSUGarnet the lowest which,
may be due to their effective masses. The effective mass con-
trols the mechanical properties and consequently determines
the equilibrium density of the nuclear liquid drop. One may
notice in Fig. 3 the dominant effect of Tc as these quantities do
not include the volume term [see Eq. (17)]. The FSUGarnet
and IOPB-I sets show the similar trends with almost similar
Tc. The G3 parameter set estimates the softest fissility and
largest fission barrier followed by the NL3 set, as their values
of Tc are 15.3 and 13.75 respectively. The vanishing points of
the liquid-drop fission barrier are aligned with their respective
values of Tc (see Table II).

B. Limiting temperature

Determination of the temperature at which a hot nucleus
drop will undergo multifragmentation by losing its entity
is one of the challenging problems in nuclear physics. Ex-
perimentally it is difficult to estimate Tl and other related
properties such as specific heat for a particular nucleus as
there are a large number of nucleons involved. However,
theoretically we can study these properties by applying ap-
propriate constraints. In that context, we consider a simplistic
approach to determine the Tl of a nucleus. We employ our
assumption stated in Sec. II D and solve Eqs. (19). These
equations will not have any solution for a given T , ρv , and
ρl for temperature greater than Tl , signifying that the nucleus
can no longer exist.

In Fig. 4 we show the variation of limiting temperature Tl ,
Tl/Tc, limiting excitation energy [E∗(Tl )/A], and the lifetime
(τ ) of a nucleus at limiting temperature as a function of mass
number for the nuclei along the β stability line, where the
atomic number can be written as

Z = 0.5A − 0.3 × 10−2A
5
3 . (22)

The value of Tl decreases exponentially with increasing
mass number as the Coulomb energy rises due to larger
Z . At lower Z , Tl decreases at a faster pace because the
Coulomb component dominates the surface and symmetry
energy of the liquid drop. At a higher mass number, the situ-
ation becomes a little different. There is competition between
Coulomb, surface, and symmetry terms. On moving from low
to higher mass number along the β stability line, the Z/A ratio
decreases. The decrease in the Z/A ratio weakens the A depen-
dence causing Tl to increase. On the other hand, the symmetry
and surface energy increase with the increase in mass number,
which tends to bring down the Tl . For comparison we show
points determined from phenomenological analysis [2,27,54]
for the Tl and E∗(Tl ). The results from E-RMF forces are in
reasonable agreement.

The value of Tl for a particular nucleus and a particular
EoS depends on the Tc of infinite nuclear matter and the low
density(ρ0 < 0.01) variation of the EoS, which determine the
properties of the surrounding gaseous phase. Since the finite-
size corrections are employed externally, they are the same
for every EoS. To understand the effect of the EoS, we plot
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TABLE II. The zero temperature incompressibility (K), binding energy (e0), saturation density (ρ0), effective mass (m∗), critical tempera-
ture (Tc), pressure (Pc), density (ρc), along with flash temperature (Tf ), density (ρ f ), incompressibility (Cf ), and effective mass at Tc for infinite
symmetric nuclear matter (m∗

c/m) using various forces.

K e0 ρ0 Tc Pc ρc Tf ρ f

Parameter (MeV) (MeV) (fm−3) m∗/m (MeV) (MeV fm−3) (fm−3) (MeV) (fm−3) Cf m∗
c/m

BM-A [59] 188.32 −15.17 0.179 0.610 13.9 0.236 0.0682 11.21 0.098 0.249 0.787
G2 [28] 215.00 −16.10 0.153 0.664 14.30 0.181 0.0432 11.80 0.080 0.293 0.879
IOPB-I [31] 222.65 −16.10 0.149 0.593 13.75 0.167 0.0424 11.20 0.071 0.286 0.864
Big Apple [60] 227.00 −16.34 0.155 0.608 14.20 0.186 0.0441 11.45 0.073 0.297 0.876
BKA22 [41] 227.00 −16.10 0.148 0.610 13.90 0.178 0.0442 11.33 0.072 0.290 0.855
BKA24 [41] 228.00 −16.10 0.148 0.600 13.85 0.177 0.0450 11.31 0.073 0.284 0.845
FSUGarnet [31] 229.50 −16.23 0.153 0.578 13.80 0.171 0.0430 11.30 0.071 0.288 0.850
FSUGold [61] 230.00 −16.28 0.148 0.600 14.80 0.205 0.0460 11.90 0.074 0.301 0.844
IUFSU [62] 231.31 −16.40 0.155 0.610 14.49 0.196 0.0457 11.73 0.074 0.296 0.862
FSUGold5 [63] 233.18 −16.83 0.148 0.610 15.15 0.214 0.0457 12.20 0.076 0.309 0.845
FSUGold2 [64] 238.00 −16.28 0.151 0.593 14.20 0.187 0.0450 11.51 0.073 0.293 0.855
BKA20 [41] 240.00 −16.10 0.146 0.640 15.00 0.209 0.0458 11.91 0.073 0.304 0.868
G3 [31] 243.96 −16.02 0.148 0.699 15.30 0.218 0.0490 12.10 0.075 0.291 0.879
DJM [59] 244.73 −14.81 0.172 0.570 13.80 0.212 0.0575 11.28 0.091 0.267 0.828
NL3* [65] 258.27 −16.31 0.150 0.590 14.60 0.202 0.0466 11.70 0.075 0.297 0.861
Z27v1 [66] 271.00 −16.24 0.148 0.800 18.03 0.304 0.0515 13.70 0.077 0.327 0.914
NL3 [31] 271.38 −16.29 0.148 0.595 14.60 0.202 0.0460 11.80 0.070 0.301 0.846
TM1 [67] 281.10 −16.26 0.145 0.630 15.60 0.236 0.0486 12.09 0.076 0.311 0.862
LA [68] 301.59 −15.46 0.179 0.600 16.60 0.342 0.0678 13.06 0.099 0.303 0.830
DJM-C [59] 329.44 −15.67 0.181 0.540 16.03 0.346 0.0761 12.88 0.107 0.283 0.769

Exp/Emp 240 [32] −16 [29] 0.166 [29] 0.63 [69] 17.9 [70] 0.31 [70] 0.06 [70] 0.288 [12]
± 20 ± 1 ± 0.019 ± 0.05 ± 0.40 ± 0.07 ± 0.01
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FIG. 4. The limiting temperature Tl , the ratio Tl
Tc

, limiting excitation energy per nucleon, and lifetime of nuclear liquid drop at the limiting
temperature as a function of mass number A for the nuclei on the β-stability line. The temperature dependent expression used here is Eq. (6).
Experimental points (solid squares) are taken from [2] for Tl , which are calculated using double isotope yield ratio and thermal bremsstrahlung
measurements, and from [27] for excitation energy. The points represented in the upper triangle are taken from the Fisher droplet model derived
from [54].
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sity at T = 5 MeV for the FSUGarnet, IOPB-I, G3, and NL3
parameter sets.

in Fig. 5 the EoS, chemical potential (μ), and effective mass
(m∗) calculated using the FSUGarnet, IOPB-I, G3, and NL3
parameter sets for the density range significant for nuclear
vapor surrounding the hot nucleus. Chemical potential is
a function of temperature-dependent effective mass, which
consequently determines the chemical equilibrium between
nuclear gas and nuclear drop. The IOPB-I and FSUGarnet sets
have similar ground state saturation properties and they have
similar behavior at T = 5 MeV. The incompressibilities of the
NL3 and G3 sets are 271.38 and 243.96 MeV respectively
but their behavior is opposite in the low-density regime. The
G3 set estimates the maximum value of pressure and effective
mass at any given density. This is the reason the G3 set has
a larger value of Tc than the NL3 set. This trend in Fig. 5 for
different EoS validates the variation of Tl in Fig. 4, where the
magnitude of Tl explicitly depends upon the low density EoS.
In other words, to understand the effect of EoS on the Tl one
has to take into account the Tc and low density behavior of
EoS instead of incompressibility at saturation.

Furthermore, the ratio Tl/Tc signifies the finite-size effect.
where the limiting temperature decreases sharply as com-
pared to the critical temperature of infinite symmetric matter.
It decreases up to the 0.3Tc for heavy nuclei. Furthermore,
there is still model dependency in the Tl/Tc ratio. The larger
effective mass yields smaller Tl/Tc, which is clear from the
fact that FSUGarnet and G3 estimate the largest and smallest
Tl/Tc. Limiting excitation energy per nucleon is calculated at
Tl and our calculations from E-RMF forces agree with the
phenomenological calculation [27]. We have performed these
calculations using Eq. (6) as there was no significant differ-
ence between the values of Tl calculated from Eqs. (6) and
(7). However, Eq. (7) estimates the larger excitation energy
for a given nucleus as compared to Eq. (6). Equations (6) and
(7) are frequently used in various calculations such as statis-
tical equilibrium analysis and for supernovae matter. In that
context, these equations correctly estimate the finite nucleus
observables with slight difference in magnitude. Equation (6)
has a slight edge as it is consistent with the surface energy
estimated from thermal Hartree-Fock approximation [39]. Our

calculations show better agreement with experimental and
theoretical values when using Eq. (6) as well. However, the
judicious use of these can be made depending on the problem,
such as supernova where the thermal energy plays a very
important role.

To further understand the behavior of Tl , we calculate the
lifetime of hot nucleus τ using Eq. (21). As we have not con-
sidered the temperature dependence of neutron-capture cross
section, these values will slightly underestimate the lifetime
but the trend will remain the same. The radius R which is
the input for Eq. (21) is determined after solving the coexis-
tence equations (19) for a particular nucleus. We have seen
that the nuclear gas surrounding the nuclear liquid plays a
significant role in determining the Tl . In terms of lifetime, a
larger pressure and smaller density corresponds to a less stable
liquid drop and, therefore, lower lifetime. The IOPB-I set, that
estimates the lower Tl for a given nucleus, yields the higher
lifetime. We see that the lifetime τ is of the order of 10−22 s at
Tl for all the nuclei on the β stability line. Nuclei at the lower
mass range are slightly more stable than heavy nuclei. This
timescale is just enough for a nucleus to allow thermalization.
This also states the fact that at Tl the nucleus is highly unstable
and will undergo violent multifragmentation which has the
timescale of 10−22 s [4,55].

In Fig. 6(a), the variation of Tl is shown for a fixed atomic
number Z = 82, and Fig. 6(b) demonstrates the behavior for
a fixed neutron number N = 126. For a fixed atomic num-
ber, the Tl rises ≈1.5 MeV when we move from A = 178
to A = 220 or from Z/A = 0.46 to 0.37. The increase in Tl

with a decrease in Z/A ratio is because Coulomb free energy
decreases as the radius of the nuclear liquid drop increases
as a function of charge number. The surface energy then
dominates over the Coulomb energy which helps in preserving
the surface of the drop at a much higher temperature. This
trend is confirmed with the nonrelativistic Hartree-Fock cal-
culation where the solution becomes unstable after a certain
temperature [56]. When we keep the neutron number fixed,
there is an interesting trend in the values of Tl with increasing
mass number. The Tl increases with increasing Z and reaches
its maximum at A ≈ 170. It then decreases at a faster rate
on further increasing the value of Z . This shape of the Tl

as a function of mass number A at fixed N = 126 is the
consequence of three phenomena: (1) exponentially increas-
ing Coulomb energy, (2) exponentially decreasing symmetry
energy, and (3) linearly increasing surface energy, when one
moves from low to high mass number. The combined effect
of the three phenomena results in the increase in Tl and then
subsequently a sharp reduction in it. To quantify it, we plot
in Fig. 7 the finite-size correction Fcorr including surface,
Coulomb, and symmetry terms [see Eq. (1)] in the free energy
of the nucleus at T = 5 MeV for various values of A for a fixed
Z = 126. One can see the strong Coulomb effect on the higher
mass number, resulting in the large correction in the chemical
potential of protons. Furthermore, at any given density, Fcorr

first decreases till A = 190 and then again increases. A com-
bined effect of chemical potential and free energy correction
seems to give a maximum around A = 170. Similar curves
can be drawn for any value of N . This shape of the graph then
signifies that one can make nuclei in unconventional regimes,
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FIG. 6. (a) Limiting temperature for fixed atomic number Z = 82 as a function of mass number calculated from the expression (7). (b) Same
as in (a) but for fixed neutron number N = 126.

which might not be stable at zero temperature but can exist
at some higher temperature [57]. The existence of a stable
nucleus at some temperature rather than at the ground state
is counterintuitive. Still, it can be explained from the fact that
the increase in the kinetic energy is counterbalanced by the
corresponding decrease in the equilibrium density (with rise
in temperature) [58] and the positive chemical potential of an
exotic nucleus becomes negative. Furthermore, in Figs. 6(a)
and 6(b), the trends of Tl are similar to the ones obtained in
the EoSs in the low density regime.

C. Correlations

In the analysis of a hot nucleus and its limiting temperature,
we saw that the critical temperature Tc of infinite nuclear
matter affects the observables through Eqs. (6) and (7). They
also depend on the properties of EoS such as effective mass
and low density behavior of a particular EoS. The Tc, which
is basically an inflation point on a critical isotherm, is one of
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FIG. 7. Finite size correction Fcorr in the free energy in Eq. (1)
which includes the surface, Coulomb, and symmetry terms and the
chemical potential correction μCol in Eq. (20b) as a function of
baryon density.

the most uncertain parameters in nuclear matter studies. The
value of Tc is an important factor in calculation of finite nuclei
as well as supernovae matter and neutron star crust [46].
Hence it becomes important to relate the Tc of a particular
EoS to its saturation properties. In Refs. [12,29] we studied
the thermodynamics of liquid-gas phase transition in infinite
nuclear matter using the E-RMF parameter sets used in this
study. It has been observed that the critical temperature Tc is
not a well constrained quantity. It requires a comprehensive
statistical analysis of nuclear properties at critical points and
saturation properties of cold nuclear matter as their analyt-
ical relationship is difficult to establish. For this, we take
twenty E-RMF parameter sets satisfying relevant constraints
[10,29,31,32,41,59] on the EoS and first of all calculate the
properties at the critical point of liquid-gas phase transition in
infinite matter.

In Table II, we present the saturation properties of cold nu-
clear matter, i.e., incompressibility (K), binding energy (e0),
saturation density (ρ0), effective mass (m∗), critical temper-
ature (Tc), pressure (Pc), and density (ρc), along with flash
temperature (Tf ), density (ρ f ), incompressibility factor (Cf ),
and effective mass at (Tc) for infinite symmetric nuclear matter
using different force parameters. For further details on these
quantities, see Ref. [12]. We have selected a variety of forces
with different meson couplings, which include ones up to the
quartic order scalar, vector terms, and different procedures
of fitting the coupling constants, in order to have a general-
ized analysis of E-RMF forces. The E-RMF sets satisfying
the allowed incompressibility range and other observational
constraints underestimate the critical values of temperature,
density, and pressure when compared to experimental data
[70].

We then calculate the Pearson correlation matrix [71] for
variables calculated in Table II and the results are shown in
Fig. 8. The color coded correlation matrix also shows the
statistical significance in form of p value [71] for different
confidence intervals i.e., 95%, 99%, and 99.9%. The bind-
ing energy (e0) and saturation density (ρ0) of cold infinite
nuclear matter have very weak strength of correlation with
the critical temperature. This is against the natural intuition
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FIG. 8. The Pearson correlation matrix for the critical parameters
for infinite symmetric nuclear matter and some cold nuclear matter
properties. The number of stars in a circle represents the p value
given at the bottom. The strength of correlation is color mapped.

that binding energy of infinite matter should impact the Tc.
The reason behind this partly lies in the fact that the E-RMF
parameters predict the saturation energy and density in agree-
ment with the empirically accepted values or “Coester band,”
which has a narrow range, i.e., e0 = −15.86 ± 0.57 MeV
and ρ0 = 0.164 ± 0.007 fm−3 [72], which is an underlying
feature of the relativistic formalism. Therefore, the narrow
range of e0 is insufficient to account for the large variation
in the value of Tc. Hence, one can say that there is no con-
nection between the critical endpoint and saturation energy
e0 in the E-RMF formalism. Furthermore, the value of critical
temperature depends on the subsaturation behavior of pressure
which is the density derivative of energy and does not contain
any information on the actual value of the saturation energy.
This result is also in agreement with a mean-field study using
the Skyrme and Gogny forces [73]. However, the correlation
between the saturation energy and the critical temperature
is visible in the abinit io treatment of nuclear matter using
two- and three-nucleon chiral interactions [18]. This corre-
lation appears to be intrinsic to the ab initio calculations.
The incompressibility (K) and the effective mass (m∗) on the
other hand show positive correlation with the critical tem-
perature (Tc). This is in line with our analytical analysis of
infinite nuclear matter that finite temperature properties in the
E-RMF formalism are governed by the effective mass. This
behavior is consistent with the nonrelativistic formalisms as
well, although the definition of effective mass is different in
the two cases [29]. The incompressibility also show positive
correlation with other finite temperature properties such as Pc,
ρc, and Tf .

From Table II we see that the parameter sets G3 and Z27v1
have relatively high effective mass and a high value of Tc. A
positive correlation between m∗ and Tc in Fig. 8 suggests the
same. Therefore, one way to construct a model at par with
experimental findings is to exploit this property of effective
mass. This fact was also considered in [74]. However, the

FIG. 9. Actual value of Tc from different forces and regression fit
values calculated from Eq. (23).

prescribed range of effective mass 0.58 � m∗/m � 0.68 in
agreement with spin-orbit splitting experiments [69] should
be kept in mind. The Z27v1 set does not satisfy this con-
straint and it was also not considered in [32], from where
the constraints on EoS are taken for this study. Therefore, no
standard RMF and E-RMF parameter sets that satisfy all the
available constraints can reproduce the experimental value of
the critical parameter for infinite nuclear matter, hence more
analysis is needed, especially in the low-density regime of
the EoS. Moreover, the effective mass dependence of thermal
properties will also be useful in microscopic calculations,
where the concept of Tc is not explicitly used for the surface
energy calculation.

The low correlation means that the variables are acting as
independent parameters. This is also justified as the properties

FIG. 10. The Pearson correlation matrix for the critical param-
eter for infinite symmetric nuclear matter and some cold nuclear
matter properties, and limiting properties for 208Pb.
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like K , ρ0, e0, and m∗ are the inherent characteristic prop-
erties of an EoS. The critical temperature therefore can be
understood as a result of competition between various nuclear
matter observables. To demonstrate this, we construct a very
simple multiple linear regression (MLR) fit of following form:

Tc = β0 + β1K + β2e0 + β3ρ
(1/3)
0 + β4m∗, (23)

where all the variables are in MeV except ρ0 which is in MeV3

and coefficients have relevant dimensions with β0,1,2,3,4 =
−26.697, 0.02183, −0.66851, 0.15518, 14.537. These co-
efficients are statistically significant as well for the 95%
confidence interval. In Fig. 9, we show the result of Eq. (23)
against the actual Tc from Table II. The regression equa-
tion estimates the Tc excellently with R squared = 0.926 with
residual sum of square (RSS) = 1.68. The fitted regression
equation suggests that the binding energy has opposite vari-
ation with Tc. The regression equation (23) is better than
the empirical relations suggested in [73] based on Lattimer-
Swesty and Natowitz predictions. This is because greater
degrees of freedom are considered in this equation. However,
this will yield a strange value of Tc when all the saturation
properties tend to zero. This equation gives a useful insight
in the form of free coefficient β0 which suggests that there
is a missing link between our current understanding of critical
temperature and its relationship with the saturation properties.
The β0 becomes inevitable as the equation then gives a bad
fitting.

Unlike saturation and critical properties, the critical param-
eters are strongly correlated with each other. Note that these
correlations are for the E-RMF sets considered in Table II and
are not universal. However, the selected parameter sets have a
wide range of meson couplings and nuclear matter saturation
properties. Moreover, we have presented our results with the
statistical significance of Pearson correlation to make them as
general as possible.

After establishing the relationship between critical proper-
ties and saturation properties of cold nuclear matter, we extend
these correlation to limiting properties of a finite nucleus. In
Table III, we present the values of Tl , chemical potential μ,
pressure (P), gas density (ρg), liquid density (ρl ), radius (R),
and lifetime (τ ) of the 208Pb nucleus for the forces considered
in Table II. To establish the relation of different properties, we
calculate the correlation matrix for limiting properties of the
208Pb nucleus, critical properties of infinite nuclear matter Tc,
and saturation properties of cold nuclear matter in Fig. 10.

The limiting temperature Tl of finite nuclei is positively
correlated with the incompressibility (K), effective mass (m∗),
and critical temperature (Tc) while it negatively correlates with
the saturation energy of infinite nuclear matter. The strength
of correlation between the K-Tl and m∗-Tl pairs decreases as
compared to the K-Tc and m∗-Tc pairs. The incompressibility
(K) is correlated negatively with the lifetime of the nucleus.
This is justified as the stiff EoS corresponds to the larger
pressure, which in turn make the nucleus less stable when
surrounded in a nucleon gas. A strong correlation between Tc

and m∗ then suggest that the limiting properties of a nucleus
essentially depend on the Tc and m∗ of the model applied. This
statement has a far-reaching implication as the majority of the

TABLE III. Limiting temperature (MeV), chemical potential
(MeV), pressure (MeV fm−3), gas density (fm−3), liquid density
(fm−3), radius (fm), and lifetime (τ × exp{−22} s) of 208Pb nucleus
for several forces.

Parameter Tl μ P ρv ρl R τ

BM-A 4.75 −7.039 0.015 0.0068 0.179 6.521 1.98
G2 5.40 −8.55 0.0162 0.0075 0.147 6.964 1.49
IOPB-I 5.88 −9.61 0.02 0.0084 0.143 7.028 1.29
Big Apple 5.37 −8.36 0.0191 0.0075 0.148 6.948 1.47
BKA22 5.46 −8.65 0.0197 0.0076 0.142 7.045 1.42
BKA24 5.51 −8.73 0.0196 0.0075 0.142 7.045 1.40
FSUGarnet 5.9 −9.48 0.024 0.0082 0.148 6.948 1.28
FSUGold 5.92 −9.21 0.0239 0.0085 0.143 7.028 1.18
IUFSU 5.69 −8.97 0.0224 0.0081 0.149 6.933 1.34
FSUGold5 6.25 −9.99 0.0264 0.0088 0.142 7.045 1.10
FSUGold2 5.59 −8.88 0.0207 0.0078 0.145 6.996 1.38
BKA20 5.85 −9.03 0.0238 0.0085 0.140 7.078 1.18
G3 5.90 −9.22 0.0245 0.0087 0.141 7.061 1.19
DJM 5.02 −6.79 0.0195 0.0081 0.173 6.596 1.52
NL3* 5.74 −9.08 0.022 0.0082 0.144 7.012 1.30
Z27v1 6.95 −10.49 0.0369 0.0110 0.14 7.078 0.80
NL3 5.88 −9.17 0.0213 0.0084 0.144 7.012 1.21
TM1 5.85 −8.63 0.025 0.0086 0.138 7.112 1.09
LA 6.07 −7.73 0.0336 0.0116 0.175 6.571 9.70
DJM-C 5.94 −7.74 0.0309 0.0111 0.177 6.546 1.05

calculations employing statistical thermodynamics as well as
the compressed liquid-drop model (CLDM) in astrophysical
applications heavily depend on the value of Tc for surface
energy. Also. in microscopic calculations where the surface
energy is determined using the derivative of mean fields, ef-
fective mass plays the determining role. On the other hand, the
limiting properties for 208Pb, i.e., limiting temperature (MeV),
chemical potential (MeV), pressure (MeV fm−3), gas density
(fm−3), liquid density (fm−3), and radius (fm) are tightly
correlated. A higher Tl means that the chemical potential will
be smaller and the equilibrium pressure and gas density will
be larger.

IV. SUMMARY AND OUTLOOK

In summary, we use the effective relativistic mean-field
theory (E-RMF) to analyze the thermal properties of hot
nuclei. The free energy of a nucleus is estimated by using
temperature and density-dependent parameters of the liquid-
drop model. We parametrize the surface free energy using two
approaches, based on the sharp interface of the liquid-gaseous
phase and the semiclassical Seyler-Blanchard interaction. The
later parametrization estimates relatively stiff behavior of
excitation energy, entropy, and fissility parameter. The esti-
mations of these properties are in reasonable agreement with
the available theoretical microscopic calculations and experi-
mental observations.

It has been observed that the thermal properties of the
finite nuclear system are influenced strongly by the effective
mass and critical temperature (Tc) of the E-RMF parameter
sets employed. A larger effective mass corresponds to the
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higher excitation energy, level density, limiting temperature,
and limiting excitation energy. The limiting temperature also
depends on the behavior of the EoS at subsaturation densities,
which helps us to calculate the properties of the surround-
ing nuclear gas in equilibrium with the hot nucleus. A stiff
EoS at subsaturation density corresponds to a larger limiting
temperature. The temperature-dependent liquid-drop fission
barrier is also influenced by Tc. A larger Tc estimates a larger
temperature where the barrier vanishes.

Finally we have performed a detailed correlation matrix
analysis to account for the large deviations in the values of
critical parameters among various E-RMF sets. The effective
mass shows a positive correlation with the critical parame-
ters, namely Tc, ρc, Pc and the limiting temperature (Tl ) of
the nucleus, which is consistent with the analytical analysis.

The binding energy and saturation density act as independent
parameters, which prompts us to establish a simple multiple
linear regression (MLR) between Tc and saturation properties
of cold nuclear matter. Our MLR equation fits the original
Tc and gives useful relationship between saturation properties
and critical temperature.

The present calculations can be extended to various as-
trophysical problems. A similar situation is encountered in
supernova explosions and neutron star crust, where the nuclei
are surrounded in a nuclear and relativistic electron gas. The
model dependence can also be studied within statistical mul-
tifragmentation calculations. Furthermore, a comprehensive
analysis is required to address the anomaly in the magnitude
of the critical temperature of nuclear matter by employing the
low-density correction in the EoS.
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