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Background: To calculate excited states in quantum many-body systems, multiconfiguration mixing has often
been employed. However, it remains unclear how to choose important Slater determinants from a huge model
space.
Purpose: We propose an efficient method as the replica exchange Monte Carlo (RXMC) method to sample
important Slater determinants and optimize and analyze the results obtained. As an application, we investigate
the ground and excited states of 12C based on the Bloch-Brink α cluster model and show the detailed structure
of the obtained states.
Methods: The RXMC method enables us to efficiently sample Slater determinants following the Boltzmann
distribution on the multidimensional potential-energy surface (PES) under a given model space. To analyze the
excited states obtained, we embed sampled basis functions onto the PES calculated with the β-γ constraint
method and discuss the main component in each state.
Results: The RXMC method efficiently performs the samplings with a temperature parameter of TL = 2.5 MeV
in 12C. We obtain the gas-like state with a wide density distribution in the tail part in the second 0+ state.
We also obtain the linear-chain-like states with the bending and stretching vibrational modes in the third and
fourth 0+ states, respectively. In the fifth 0+ state, the main component of the basis functions contains expanded
equilateral-triangle configurations.
Conclusions: The second 0+ gas-like state emerges at the local minimum in the PES, which is the beginning of
the valley structure connected to the linear-chain breakup channel. The third and fourth linear-chain-like states
emerge in this valley structure. We conclude that the RXMC method is a powerful method to calculate the excited
states of nuclei, which would be applied to much more complicated nuclear fission dynamics in heavier nuclei.
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I. INTRODUCTION

A wide variety of excited states emerges with complicated
dynamics in quantum many-body systems. An essential prob-
lem in nuclear physics is how to describe these dynamics
beyond the description of the single Slater determinant based
on the mean-field picture. A successful method to describe
excited states has been the multiconfiguration mixing; that is,
the superposition of many Slater determinants. It is also often
called the generator coordinate method (GCM) [1,2]. How-
ever, it has been still unclear how to choose important Slater
determinants from a huge model space. Unless we find a good
prescription to choose those, it will be difficult to describe
entirely complicated nuclear fission dynamics in heavy-mass
nuclei.

To resolve this, many prescriptions have been proposed. In
the few-body model, Suzuki and Varga proposed stochastic
sampling [3]. In the nuclear shell model, the Monte Carlo
shell model has been successful in describing excited states,
especially in medium-heavy nuclei [4]. In this method, single
Slater determinants are chosen by adding fluctuations to the
energy minimum obtained by the β-γ constraint [5]. In the nu-
clear cluster model, Suhara and Kanada-En’yo have proposed

the β-γ constraint to choose many Slater determinants, while
parameters contained in each Slater determinant are varia-
tionally optimized under the constraints [6]. An advantage
of the cluster model can clearly define important collective
coordinates such as the intercluster distance; that is, easily
coupled with the GCM method by giving the well-defined
collective path. In the mean-field model, the imaginary-time
evolution method has been proposed by Fukuoka et al. [7].

We have also developed the Bloch-Brink α cluster model
with the stochastic sampling method [8,9]. In this method,
many Slater determinants are sampled by randomly gener-
ating center-of-mass coordinates of α clusters based on a
Gaussian distribution. However, this method has a defect that
the more significant part of Slater determinants contributes
less to lowering the total energy due to random sampling.
This defect is crucial when dealing with the unbound states;
the inclusion of many basis states creates many continuum
states, which shade the physical resonance states. We have
suffered from contaminations of unphysical spurious states in
the calculations. In addition, many Slater determinants identi-
cal under the rotational symmetry are contaminated, causing
unphysical small splits of a state due to the numerical error of
the angular-momentum projection. Therefore, it is necessary
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to perform screening for randomly generated Slater determi-
nants with an appropriate prescription.

In this paper, we propose a sampling method to generate
Slater determinants based on the replica exchange Monte
Carlo (RXMC) method [10–13]. The RXMC method has
been widely used in the sampling of the Monte Carlo inte-
gration to calculate a posterior probability in the Bayesian
inference [14,15]. In material physics, the RXMC method
has also been used in the optimization of ion configurations
coupled with large-scale density-functional calculations [16].
The RXMC method enables us to obtain the distribution of
sampling points following a Boltzmann distribution on an ar-
bitrary multidimensional potential-energy surface (PES). The
main purpose of this study is to show the efficiency of this
method in the calculations of excited states in quantum many-
body systems and perform an application for this method in
the 12C nucleus. We also show how to analyze the properties
of the excited states obtained using this method.

As an application, the 12C nucleus is the most suitable
system. The second 0+ state, called the Hoyle state, has the
character of spatially extended distribution of three α clus-
ters. This prominent character has been attracting interest
for decades because this state has been considered to play
a crucial role in forming carbon in stars. According to the
threshold rule, many of the cluster states, including the second
0+ state of 12C, emerge around the threshold energies for cor-
responding cluster decay channels. It means that they emerge
at energies close to the continuum states.

This fact causes two severe problems in the calculations;
one is that the description of such weakly bound states re-
quires the superposition of many different configurations,
which is necessary for a huge model space in numerical cal-
culations. Suppose that the first problem is overcome, another
problem is that the real state is embedded in the continuum
states. Thus, it is necessary to develop an additional filtering
technique to obtain physical states. We show later that our
method efficiently screens important components, resulting in
drastic noise reductions in the calculations.

The rest of the paper is organized as follows. In Sec. II, we
describe the theoretical framework and how to generate many
Slater determinants. In Sec. III, we present the results of the
calculations using the RXMC method and the analysis of each
excited state. We summarize our studies in Sec. IV.

II. FRAMEWORK

A. Bloch-Brink α cluster wave function and Hamiltonian

We here describe the 12C nucleus using the Bloch-Brink α

cluster model [17] to assess the performance of the Markov-
chain Monte Carlo method for optimizing base functions.
Although we attempt to adapt our method for a simple three-α
structure in this paper, where the contribution of the spin-
orbit interaction cannot be taken into account, our method
can be easily extended to other models such as the an-
tisymmetrized molecular dynamics (AMD) model and the
stochastic-variation correlated Gaussian model.

In the conventional Bloch-Brink α cluster model, the spa-
tial part of the wave function for an α cluster is described by a

simple Gaussian packet, given by φα ( �R) ∝ ∏4
i=1 exp[−ν(�ri −

�R)2], where �R is the center position vector of the Gaussian
function, �ri is the spatial coordinate of each nucleon, and ν

is the size parameter. We take ν = 1/2b2 with b = 1.46 fm
in the calculations. To describe the α cluster, we take the
same �R for all four nucleons. Thus, the wave function of
12C can be described by the antisymmetrized product of three
α clusters, given by � = [Aφα ( �R1)φα ( �R2)φα ( �R3)], where A
is the antisymmetrization operator. Here, we always impose
the center-of-mass position, �RG, of all clusters at the origin,
i.e., �RG = (4 �R1 + 4 �R2 + 4 �R3)/A = 0, where A is the mass
number.

The wave function � of 12C is thus given by

|�〉 = P̂π P̂J
MK |�〉, (1)

where P̂π is the parity projection operator and P̂J
MK is the

angular-momentum projection operator. In the calculations,
the angular-momentum projection onto J = 0, M = 0, and
K = 0 is performed by the numerical integration with 32 ×
32 × 32 grid points for the α, β, and γ directions of the Euler
angle.

For the Hamiltonian operator Ĥ , we take the following
form:

Ĥ =
A∑
i

t̂i − T̂c.m. +
A∑

i> j

v̂i j, (2)

where t̂i is the kinetic energy of the ith nucleon, T̂c.m. is
the center-of-mass kinetic energy, and v̂i j is the two-body
interaction consisting of the central and Coulomb parts. In the
calculations, the spurious center-of-mass motions are exactly
removed. For v̂i j , We employ the Volkov No. 2 effective N-N
potential, given by

v(r) = (W − MPσ Pτ )
∑

k=1,2

Vk exp
( − r2/c2

k

)
, (3)

where Pσ and Pτ are the spin and iso-spin exchange operators,
respectively, and W = 1 − M with the Majorana exchange pa-
rameter M. In the Volkov No. 2, Vk = {−60.65, 61.14} MeV
and ck = {0.308642, 0.980296} fm are used. We choose M =
0.60 so as to reproduce the α-α scattering phase shift. This
Majorana parameter gives a reasonable value for the ground-
state energy of 12C.

To calculate excited states of 12C, we superimpose many
�s. The total wave function �̄ consists of a linear su-
perposition of �s given by |�̄〉 = ∑

i ci|�i〉, where ci is
the real coefficient calculated by the diagonalization of the
Hamiltonian matrix elements. That is, we calculate

∑
j (hi j −

λwi j )c j = 0, where hi j is the Hamiltonian matrix elements
hi j = 〈�i|Ĥ |� j〉, wi j is the overlap matrix elements wi j =
〈�i|� j〉, and λ is the eigenvalue.

B. Principal axes and β-γ deformation parameter

Before the angular-momentum projection, we transform
the coordinates of basis functions so that the z axis coin-
cides with the principal axis. This transformation is essential
because, even if two basis functions have the same con-
figuration under the rotational isomorphism, their energies
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are slightly different due to the numerical accuracy of the
angular-momentum projection. This leads to unphysical splits
of calculated excitation energies when we superimpose many
bases.

To avoid this, we calculate the quadrupole moment tensor
Qkl of the basis function, which is given by

Q̂kl =
∑

i

3r̂i,k r̂i,l − δkl r̂
2
i , (4)

where k and l indexes the x, y, and z axes. The operators
r̂i,x, r̂i,y, and r̂i,z indicate the position operators x̂i, ŷi, and ẑi

for the ith nucleon, respectively. The operator r̂2
i indicates

x̂2
i + ŷ2

i + ẑ2
i . Since the matrix element Q, the expectation

values 〈Q̂kl〉, is not invariant under rotations of the coordi-
nate frame, there is a preferred coordinate system, i.e., the
system of principal axes. The coordinate system is defined
by diagonalizing P−1QP = Q̄, where Q̄ is the diagonal ma-
trix of eigenvalues and P is the matrix transforming into the
principal-axis frame. Here, the trace condition of tr Q̄ = 0 is
always held. In transforming to the principal-axis frame, we
choose the directions with the largest and smallest eigenvalues
as the z and x axes, respectively. That is, the y axis corresponds
to the unstable rotational axis. The quadrupole matrix in the
principal-axis frame thus has only three nonvanishing entries,
〈Q̂xx〉, 〈Q̂yy〉, and 〈Q̂zz〉.

Next, we define the deformation parameter in this
principal-axis frame. All definitions shown here follow
Ref. [18]. Using the quadrupole tensor in the principal-axis
frame, we define the quadrupole moments Q20 and Q22, given
by

Q20 =
√

5

16π
q3 =

√
5

16π
(2〈z2〉 − 〈x2〉 − 〈y2〉), (5)

Q22 =
√

5

96π
(q2 − q1) =

√
15

32π
(〈y2〉 − 〈x2〉), (6)

where q1, q2, and q3 are the eigenvalues of the multipole
moment sorted by ascending order. To remove a scale ef-
fect, they are often expressed as dimensionless quadrupole
moments [18]:

am = 4π

5

Q2m

AR2
, (7)

where R = r0A1/3 using a fixed radius derived from the total
mass number A with r0 = 1.2 fm. In the principal-axis frame,
we obtain a unique characterization of the shape of the nucleus
with the conditions a±1 = 0 and a2 = a−2. There remain only
two shape parameters a0 and a2. Using these parameters, we
can reexpress the total deformation β and triaxiality γ , of-
ten called the Bohr-Mottelson deformation parameter [19,20],
given by

β =
√

a2
0 + 2a2

2, (8)

γ = arctan

(√
2a2

a0

)
. (9)

The triaxiality γ would be interpreted as an angle. It can, in
principle, take all values between 0◦ and 360◦, but physically

relevant parameters stay in the range 0◦ to 60◦. The other
sectors correspond to equivalent configurations [21].

To eliminate spurious energy splits coming from the nu-
merical error for reflection symmetry of each axis, we also
calculate octupole moments, Q(x)

30 , Q(y)
30 , and Q(z)

30 for the x, y,
and z axes, given by

Q(x)
30 = 2〈x3〉 − 3〈xy2〉 − 3〈xz2〉, (10)

Q(y)
30 = 2〈y3〉 − 3〈yz2〉 − 3〈yx2〉, (11)

Q(z)
30 = 2〈z3〉 − 3〈zx2〉 − 3〈zy2〉. (12)

In the calculations, we always choose the sign of each axis so
as to be Q30 > 0.

C. β-γ-constraint calculation

To analyze the structure of cluster wave functions obtained
by the RXMC method, we project basis functions onto the
PES of the two-dimensional β-γ plane to guide the eye.
Note that, in reality, cluster dynamics arise in complicated
multidimensional space where the degree of freedoms is 3A.
This often leads to incorrect mapping of the dynamics because
the projection onto a restricted two-dimensional space is a
specific cross-section of the multidimensional space. One of
the authors (T.I.) has discussed such a problem of incorrect
mapping in nuclear fission dynamics in Ref. [22]. Fortunately,
the three-α system has very simple triangular structures, and
this misunderstanding would be unlikely.

To obtain the PES of the β-γ plane, we minimize the
effective Hamiltonian H ′ by adding constraint terms to H of
the following form:

H ′ = H + η[(a0 − a0)2 + (a2 − a2)2] + η0| �RG|2

+ η1[〈Q̂xy〉2 + 〈Q̂xz〉2 + 〈Q̂yz〉2], (13)

where a0 and a2 are desirable values obtained by mini-
mization. The parameters η0 and η1 are constraints on the
center-of-mass position and the principal-axis frame of the
system, respectively. In the calculations, we take η0 ≈ 10
and η1 ≈ 1. For the parameter η, we increase its value until
desirable values are obtained. To minimize H ′, we adapt the
conjugate gradient method with the numerical derivative using
the two-point formula.

D. Replica exchange Monte Carlo method

The main purpose of this paper is to determine how to effi-
ciently sample basis functions from a huge model space with
the coordinates �R = { �R1, �R2, . . . , �RA/4}. An idea is sampling
so that the distribution of basis functions, D( �R), is propor-
tional to the Boltzmann distribution D( �R) ∝ e−E ( �R)/T with the
potential energy E ( �R) = 〈�( �R)|Ĥ |�( �R)〉 and a temperature
parameter T . This is because we would like to intensively
pick sample points up around minima in the multidimen-
sional PES. This can be achieved by the Markov-chain Monte
Carlo (MCMC) method. It is mathematically guaranteed that
sampling points obtained by the MCMC method obey the
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FIG. 1. Schismatic picture of the replica-exchange Markov-
chain Monte Carlo method. The solid lines are depicted as effective
potential energies with temperature TL , T , and TH . Here, we assume
TL < T < TH . Markov-chain steps are represented as open circles
with gray lines.

Boltzmann distribution under the potential energy and a given
temperature.

However, the conventional MCMC method fails in sam-
plings when a deep minimum exists in its potential energy.
That is, a Markov-chain sampling point cannot escape from
the deep minimum, resulting in distorted distributions of
sampling points. In addition, other important components
would be missing due to the lack of model space explored
by Markov-chain samplings. To overcome this defect, the
RXMC method has been proposed in the field of Bayesian
inference. When the posterior probability is estimated, the
RXMC method is often used in samplings of Monte Carlo
integration points necessary for evaluating the normalization
factor.

Figure 1 shows a schematic picture of how a Markov-
chain sampling point trapped in a deep minimum escapes
from there. In the figure, the solid lines indicate the effective
potential energies depending on the temperature, where the
Markov-chain sampling point explores. The effective poten-
tial energy becomes flat with increasing temperature because a
Markov-chain sampling point similar to the Brownian particle
can easily jump to the next position at higher temperature.

In the RXMC method, independent Markov-chain sam-
plings are simultaneously performed with several different
temperatures. Markov-chain sampling points are widely ex-
plored in the model space with increasing temperature
because the effective PES becomes flat with increasing tem-
perature. In contrast, sampling points at lower temperatures
may be accidentally trapped in a deep minimum of the ef-
fective PES. Then, sampling points at different temperatures
should be exchanged between them with a certain probability.
A Markov-chain step restarts from a position of one at a
higher temperature, widely exploring the effective PES [see
(i) Fig. 1]. Another advantage is that it is much easier to
find an isolated local minimum due to a large barrier for
reaching. Markov-chain steps at very high temperatures are
freely explored in the effective PES. Thus, the exchange of
sampling points allows us to effectively collect important
sampling points by bypassing the barrier [see (ii) in Fig. 1]

We show here briefly the formulation of the RXMC
method. The details are given in Refs. [14,15]. In the cal-
culations, we independently perform MCMC samplings at
different temperatures. The inverse temperature βl = 1/Tl at
the lth sampling is given by

βl =
{

0 (l = 1)

βLbl−L (otherwise),
(14)

where βL is our target temperature, b is the common ratio pa-
rameter, and L is the total number of samplings independently
performed. In the calculations, we take b = 1.5 and L = 24,
which is often used in the field of the Bayesian inference.

At each temperature, Markov-chain samplings are per-
formed by using the Metropolis method. The next step of the
coordinate vector �R(l )

t is given by

�R(l )
t+1 = �R(l )

t + �lŪt , (15)

where �l is the diffusion parameter at each temperature and
Ūt is the matrix of uniform random numbers generated from
−1 to 1. After �R(l )

t+1 is generated, we determine whether it
is acceptable or not with a probability PMC given by PMC =
min (1, pMC), where pMC has the following form:

pMC = e−βl [E ( �R(l )
t+1 )−E ( �R(l )

t )]. (16)

If �R(l )
t+1 is rejected, we accept �R(l )

t as the next position instead.

We also reject �R(l )
t+1 if | �Ri

(l )
t+1| > rmax for any i, where rmax

is the maximum radius taken as rmax = 6.0 fm. Before the
calculations, we fine-tune �l so as to become the acceptance
rate racc ≈ 0.5.

After the next step of the Markov-chain sampling at each
temperature is generated, we also exchange between �R(l )

t and
�R(l+1)

t in different temperatures with a probability Pex. The
probability Pex is given by Pex = min(1, pex), where pex is
chosen as

pex = e(βl+1−βl )[E ( �R(l+1)
t )−E ( �R(l )

t )], (17)

where l = {1, 3, 5, . . . } and {2, 4, 6, . . . } are taken for odd
and even t , respectively.

Before samplings, presamplings must be performed until
the Markov-chain steps reach thermal equilibrium, which is
called “burn-in.” In this paper, we perform burn-in at least for
more than 5000 steps. After the burn-in, we pick 5000 samples
up from the Markov-chain steps at l = L.

E. Selection of optimum energy bases

After 5000 bases are generated using the RXMC method,
we randomly extract 500 bases from them. (If the same base
as the one already extracted is selected, it is rejected.) We
next calculate the Hamiltonian hi j and overlap wi j matrix
elements of the 500 extracted bases. After that, we choose the
optimum 100 bases to decrease the energies from the ground
to the fifth states. This additional optimization is very effective
for analyzing excited states because the most important bases
constructing a core structure of states are preferably collected.
Later, we show how to analyze the structure of excited states.

The procedure for selecting the optimum 100 bases is as
follows: (i) Take the basis function with the lowest energy
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from all bases and construct a submatrix based on it. (ii)
Pick a basis function up from residual bases and add it to
the submatrix elements hi j and wi j . (iii) Check eigenvalues
of wi j of the submatrix. If the lowest eigenvalue of wi j is
smaller than 1.0 × 10−12, it is rejected. (iv) Check eigenvalues
of hi j of the submatrix. If it gives the lowest energy at the ith
states compared with all other residual bases, we accept it.
(v) Increase the dimension of the submatrix and continue the
procedure until the total number of basis functions is satisfied,
and all the desired states are optimized.

In the calculations, we choose 100 bases where the excited
energies from the first to fifth states are optimized with 20
bases at each state.

F. Kernel density estimation

After sampling states, we estimate a population of the
states on the β-γ plane using the kernel density estimation
often used in statistics. We calculate the population f of basis
functions as a function of the coordinates a0 and a2 defined in
Eq. (7):

f (a0, a2) = 1

A

n∑
i

wiKσ (a0 − a0
(i) )Kσ (a2 − a2

(i) ), (18)

where a0
(i) and a2

(i) are the ith sampled data, n is the total
number of sampled data, wi is the weight factor, and A is
the normalization factor A = ∑n

i wi. The symbol Kσ is the
kernel function with the width parameter σ , which is of-
ten given by the Gaussian form Kσ (x) = 1/

√
2πσe−x2/2σ 2

.
The value of σ is determined by Scott’s rule [23] given by
σ = n−1/(d+4)

eff , where neff = n if wi = 1 for all i. Otherwise,
neff = (

∑
i wi )2/

∑
i w

2
i . In the calculation, we use Python

code GAUSSIAN_KDE implemented in SCIPY [24].

G. Density distribution in the laboratory frame

We also estimate the radial density distribution in the lab-
oratory frame to discuss its tail part of calculated states. The
details of the calculation are given in Ref. [25]. In general, the
matrix element of the density operator

∑
i δ(ri − R) between

the states with the angular momentum 〈J ′M| and |JM〉 is
defined using multipole decomposition as

〈J ′M ′|
∑

i

δ(ri − R)|JM〉

=
√

4π
∑
λμ

(JMλμ|J ′M ′)ρJ ′J
λ (R)Y ∗

λμ(�). (19)

Here, ri is the physical coordinate of the ith nucleon and λ is
the rank of the density, and ρJ ′J

λ (R) is called transition density.
We now consider the matrix elements between the 0+ states,
where only λ = 0 contributes, which is the normal scalar
density. According to this definition, the integration of ρ00

0 (R)
over the radius R is normalized to the number of nucleons, A:

∫
R2ρ00

0 (R)dR = A. (20)
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FIG. 2. Potential-energy surface on the β-γ plane for the 0+ state
of 12C from β = 0.0 to 2.0. The open squares indicate the local
minima. The cross indicates the saddle point.

III. RESULTS AND DISCUSSION

A. Potential-energy surface on the β-γ plane for 12C

Before calculating excited states of 12C, we check the PES
on the β-γ plane for the 0+ state of 12C. We perform the
constraint calculations from β = 0.0 to 6.0. Note that we will
never apply the wave functions obtained by the constraint
calculations to the calculations of excited states shown later.

Figure 2 shows the obtained PES from β = 0.0 to 2.0.
The open squares indicate the local minima thus obtained.
The overall structure of the obtained PES is similar to that
of Ref. [6]. The lowest-energy minimum is obtained at β =
0.421 and γ = 27.5◦ with E = −85.98 MeV. The density dis-
tribution obtained at this minimum has the compact triangular
configuration of three αs shown in Fig. 3(a).

There appears a shallow local minimum at β = 1.75 and
γ = 5.0◦ with E = −75.80 MeV in the PES, whose density
distribution is shown in Fig. 3(b). A characteristic shoulder
structure can be seen around this local minimum. The depth
of this minimum is 0.14 MeV and the inner saddle point
relative to this minimum is located at β = 1.58 and γ = 5.0◦
with E = −75.66 MeV [the density is given in Fig. 3(c)].
This shoulder structure around the shallow local minimum
has been well discussed by Tohsaki et al. in connection to the
gas-like state of 12C based on the Tohsaki-Horiuchi-Schuck-
Röpke (THSR) wave function [26].

Figure 4 also shows the obtained PES for the 0+ state of
12C, but the range of β is different. Here, it from β = 0.0
to 6.0 is shown. We can see two prominent potential-energy
valleys leading to the exit channels of the equilateral trian-
gular (γ ≈ 40◦) and linear-chain (γ ≈ 5◦) configurations at
larger β. They are well divided by separating ridges for the
γ direction. Later, we discuss the height of these separating
ridges in Sec. III F. The lowest-energy saddle (threshold) point
is the equilateral triangular configuration [see Fig. 3(d)] at
β = 2.75 and γ = 32.5 with E = −71.71 MeV. The height of
this saddle point from the lowest energy minimum is B(tri)

f =
14.27 MeV. It is interesting that a very flat area widely exists
around this saddle point. In this calculation, we cannot find
the saddle point for the linear-chain configuration due to the
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FIG. 3. Density distributions of (a) the lowest-energy minimum
at β = 0.421 and γ = 27.5◦, (b) the local energy minimum at β =
1.75 and γ = 5.0◦, (c) the inner saddle point at β = 1.58 and γ =
5.0◦, (d) the triangular saddle point at β = 2.75 and γ = 32.5◦, and
(e) the linear-chain configuration at β = 5.75 and γ = 2.5◦.
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FIG. 4. Potential-energy surface on the β-γ plane for the 0+ state
of 12C from β = 0.0 to 6.0. The symbols are the same as in Fig. 2.

FIG. 5. Distributions of 5000 basis functions obtained by the
RXMC method with temperatures TL = (a) 1.00, (b) 1.50, (c) 2.00,
and (d) 2.50 MeV. The contour corresponds to logarithm steps of 0.1
from 10−2 to 10.

region of the β-γ constraint calculations. As a sample, the
density distribution at β = 5.75 and γ = 2.5◦ is shown in
Fig. 3(e).

B. Samplings of basis functions

We here perform samplings of basis functions for 12C using
the RXMC method and analyze the distributions of the basis
functions obtained with different temperatures on the β-γ
plane.

In the calculations, we perform the RXMC samplings with
four different lowest temperatures of TL = 1.00, 1.50, 2.00,
and 2.50 MeV. If we assume the microcanonical ensemble and
use the level-density parameter obtained by the empirical data,
a = A/8 MeV−1, the excitation energies correspond to E∗ ≈
1.50, 3.38, 6.00, and 9.38 MeV, calculated with E∗ = aT 2.
We perform burn-in for 5000 steps before the samplings. We
estimate the distribution of the obtained sampling points on
the γ -β plane by using the kernel density estimation method
with the bandwidth taken from Scott’s rule given in Sec. II F.

Figure 5 shows the distributions thus obtained. We see
that the obtained distributions are spread along two valleys
with increasing temperatures. It is emphasized that we do
not consider any results of the constraint calculations in the
RXMC method. The Markov-chain steps automatically follow
the energy-minimum paths with the Boltzmann distribution.

Figure 6 shows the distributions of 500 basis functions
resampled from 5000 basis functions obtained by the RXMC
method with the different temperatures. In the figure, we see
that the distribution of the 500 resampled basis functions is

024314-6



OPTIMIZATION OF BASIS FUNCTIONS FOR … PHYSICAL REVIEW C 105, 024314 (2022)

FIG. 6. Distributions of 500 basis functions resampled from the
5000 states obtained with temperatures of TL = (a) 1.00, (b) 1.50,
(c) 2.00, and (d) 2.50 MeV. The contour corresponds to logarithm
steps of 0.1 from 10−2 to 10.

well conserved from the 5000 basis functions obtained by the
RXMC method.

C. Optimization of energies for 0+ excited states in 12C

After sampling 500 basis functions, we calculate Hamilto-
nian and overlap matrix elements. Using the matrix elements
obtained, we optimize energies from the ground to fourth
excited states one by one. Each excited state is optimized
for every 20 basis functions; that is, the total number of
basis functions is 100. Figure 7 shows the convergence be-
havior of the ground and excited states with TL = 2.5 MeV
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FIG. 7. Convergence of energies for the 0+ states of 12C as
a function of the number of basis functions sampled with TL =
2.5 MeV.
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FIG. 8. Temperature dependence of the calculated energies for
the 0+ excited states of 12C. At each temperature, the excited states
are calculated with the 100 optimized basis functions.

thus obtained. In the figure, we can see that the energies
from the first to fifth 0+ states are well converged every 20
steps. No unphysical small energy splits coming from the
numerical accuracy of the angular-momentum projection are
found. Such split indeed occurs if we randomly and uniformly
generate basis functions without the principal-axis transfor-
mation [8,9]. The obtained energies of the first five 0+ states
are −87.96, −81.37, −78.95, −78.11, and −76.80 MeV. The
latter four correspond to the excitation energies of Eex = 6.59,
9.01, 9.85, and 11.16 MeV, measured from the ground 0+
state. In the present model, the three-α threshold energy is
−82.71 MeV.

We also check the temperature dependence of the calcu-
lated results. Figure 8 shows the obtained 0+ excited energies
for 12C versus the temperature. We can see that the fourth
and fifth 0+ states drastically decrease at TL = 1.5 MeV. This
is because largely deformed basis functions with β � 2.0
are sampled at temperatures higher than TL = 1.5 MeV (see
Fig. 6). These components play an important role in forming
the fourth and fifth 0+ states. Note that the excitation energy
of Eex = 11.16 MeV for the fifth 0+ state is similar to E∗ ≈
9.38 MeV calculated from the microcanonical ensemble at
TL = 2.5 MeV. It may be the best way to choose a temperature
to coincide between the energy of a desirable excited state and
the thermal excitation energy estimated from the canonical
ensemble.

We finally check the β-γ distribution of the 100 result-
ing basis functions optimized by the energy of each excited
state. Figure 9 shows the distribution of basis functions thus
obtained at TL = 2.5 MeV. We see that the obtained basis
functions are widely distributed in the PES. However, there
are no basis functions around the saddle point at β = 3.0 and
γ ≈ 30◦. There may be an excited state with these regions as
the main component at much higher excitation energies.

D. Calculated results

After 100 basis functions are optimized, we calculate 0+
states by diagonalizing the obtained matrix elements. The
energies, the root-mean-squared (rms) radii, and the iso-scalar
monopole transition strengths thus obtained are summarized
in Table I. In Fig. 10, we also compare the calculated 0+
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FIG. 9. Distribution of 100 optimized basis functions for the 0+

states of 12C at TL = 2.50 MeV. The (blue, orange, green, red, and
purple) solid circles indicate the basis functions thus obtained by the
energy optimization for each excited state. Each color of the symbols
is the same as the corresponding excited state in Fig. 7.

energies with the experimental data taken from NuDat2 of
National Nuclear Data Center [27].

We obtain the second 0+ state at an excitation energy
of Eex = 6.59 MeV just above the three-α decay thresh-
old energy of 5.25 MeV. We also obtain a large iso-scalar
monopole strength, B(IS0), from this state to the ground
state. The obtained root-mean-squared (rms) radius is 4.00 fm,
which is significantly large value. These results are consis-
tent with other microscopic calculations [28–32]. To compare
the rms radius with that of the resonating group method by
Kamimura [28], we calculate those with the same potential
parameter set (modified Volkov No.2 with M = 0.59). In this
parameter, the obtained energy at the ground state is −89.57
MeV. Then, the obtained rms radius of the 0+

2 state is 3.93
fm, which is much larger than that of the RGM calculation by
about 0.5 fm.

The energies of the third and forth 0+ states are close to
those of the experimental data, although the third 0+ state in
the experimental data has not been identified. Although the ex-
citation energy of the fifth state is high (Eex = 11.2 MeV), it is
still lower than the lowest saddle point (Coulomb threshold).
However, its energy is largely underestimated in comparison
with the experimental data (see Fig. 10). There may still exist
an unobserved state.

TABLE I. Calculated 0+ excited states in 12C. E and Eex indicate
the obtained energies and excitation energies measured from the first
0+ state. rrms is the root-mean-squared radius. B(IS0) is the iso-scalar
monopole strength from the ground state.

State E (MeV) Eex (MeV) rrms (fm) B(IS0) (fm4)

0+
1 −87.96 0 2.53

0+
2 −81.37 6.59 4.00 399.6

0+
3 −78.95 9.01 4.80 120.6

0+
4 −78.11 9.85 4.48 113.6

0+
5 −76.80 11.2 5.43 11.94
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FIG. 10. Comparison between the calculated and experimental
0+ states. The experimental data are taken from the NuDat 2 database
in the National Nuclear Data Center [27]. The dashed lines indicate
three-α decay threshold energy.

Figure 11 shows the radial density distribution of the ob-
tained 0+ excited states in the laboratory frame. The solid
line is for the ground state. The density distribution shows a
drop around the origin, which is a somewhat un-normal nu-
clear density distribution. However, this tendency is confirmed

FIG. 11. Density distribution of each state in the laboratory
frame. The density distributions are represented by the normal and
logarithm scales in the (a) upper and (b) lower panels, respectively.
The solid, dashed, dotted, dot-dashed, dot-dot-dashed lines indicate
the 0+

1 , 0+
2 , 0+

3 , 0+
4 , and 0+

5 , respectively.
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FIG. 12. The Gaussian function fit to the obtained density dis-
tribution of the gas-like state for 0+

2 . The solid line indicates the
obtained Gaussian distribution. The solid circle indicates the calcu-
lated density distribution of the 0+

2 state in the laboratory frame. The
(a) upper and (b) lower panels are the same result, but the vertical
scales are different.

by electron-scattering experiments, and this may reflect the
formation of the three-α cluster structure with finite relative
distances. The dashed line represents the density distribution
of the second 0+ state, which shows a longer tail compared
with the ground 0+ state. Figure 11(b) shows the densities in
the logarithm scale, which allows us to confirm that the third,
fourth, and fifth 0+ states have even longer tails.

In Fig. 12, we also compare the second 0+ states with a
single Gaussian fit by the calculated result. The ground-state
density [Fig. 12(a)] is found to be rather well-fit by a Gaussian
distribution. However, the one of the second 0+ [Fig. 12(b)]
is not, especially in the tail region. This is considered to
be due to the Coulomb effect, which has an infinite range.
The tail part of the wave function is slightly affected by the
Coulomb interaction and deviates from the Gaussian form,
unlike the ansatz of the spherical THSR wave function. At
lease two Gaussian components are necessary for obtaining
a good agreement with the data. The deformed THSR wave
function would give a much better fitting to this long tail
structure [33].

E. Analysis of each excited state

We here analyzed components of each excited state by
plotting the squared overlap distribution of basis functions on
the β-γ plane. That is, the size of symbols in the scatter plot is

TABLE II. Top three components with the largest squared over-
lap in each 0+ excited state of 12C. The number (No.) of bases
indicate the order where they are chosen in the energy optimization.
The symbol w indicates the overlap weight. The symbols β and γ are
the deformation parameter. The symbol E is the expectation value of
the energy for the basis function.

State No. of bases w β γ (deg.) E (MeV)

0 0.377 29.7 −86.11
0+

1 3 0.911 0.463 25.3 −85.64
16 0.906 0.374 36.2 −85.82
14 0.905 0.369 39.1 −85.71

0+
2 13 0.449 2.18 6.84 −73.53

61 0.434 1.88 9.93 −74.14
4 0.429 1.55 9.28 −75.72

0+
3 25 0.278 4.07 8.91 −70.16

53 0.277 4.30 7.98 −70.02
45 0.235 4.72 5.19 −71.50

0+
4 63 0.326 3.20 0.732 −72.72

23 0.294 3.63 2.27 −71.92
26 0.288 2.90 0.347 −71.64

0+
5 91 0.396 4.44 35.3 −72.08

42 0.380 4.58 35.0 −72.02
99 0.372 3.86 37.0 −71.24

proportional to the squared overlap between a component of
basis functions and the total wave function for the correspond-
ing excited state. This method was introduced in Ref. [34]
and revealed the shape-coexistence of shape isomers. We also
estimate the distribution function of the obtained overlap val-
ues using the weighted kernel density estimation. Hereafter,
we discuss the results calculated with the basis functions
sampled by TL = 2.5 MeV. The overlap weight is defined as
w

(n)
i = |〈�i|�̄n〉|2, where n is the nth 0+ state and i is the ith

component of the basis functions.
The basis function with the maximum overlap weight in

each excited state is tabulated in Table II. Figure 13 shows the
scatter plots with the symbol size proportional to the overlap
weight on the β-γ plane in each excited state. In the figure, the
component with the maximum overlap weight is indicated by
the solid star. Figure 14 shows the overlap-weight distribution
approximated with the weighed kernel density distribution.
The corresponding density distribution with the maximum
overlap weight in each excited state is shown in Fig. 15.

The ground state. We see that large-overlap-weight compo-
nents are distributed around the bottom of the potential pocket
[see Figs. 13(a) and 14(a)]. This indicates that the samplings
work very well. We emphasize that there are no assumptions
in the samplings and did not use any results obtained by the
constraint calculations. The density configuration of the basis
function with the maximum overlap weight is located at β =
0.46 and γ = 25.3 with E = −85.64 [see Fig. 15(a)], which
is slightly expanded from the lowest energy minimum [see
Fig. 3(a)] in the β-γ constraint calculation. This configuration
shows the Be + α configuration. The basis functions with the
second and third largest overlaps weights have the equilateral
triangular configuration [see Fig. 15(b)]. They would be seeds
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FIG. 13. The squared overlap distribution of the basis functions for each excited state. The open circle indicate the basis function. The size
of the open circles represents the squared overlap value for the total wave function of each state. Each circle is normalized by the maximum
value. The star and diamond indicate the first and second largest components, respectively.

to enhance the iso-scalar monopole transition strength to the
second 0+ state.

The second 0+ state. The main components of the second
0+ state is distributed around the local minimum at β = 1.75
and γ = 5.0◦ [see Figs. 13(b) and 14(b)]. This state has been
considered a gas-like state. Indeed, the iso-scalar monopole
strength from the ground to this state is very large. The density
distributions of the main components are almost isosceles
triangular shapes [see Figs. 15(c) and 15(d)]. In addition,
stretched linear-chain-like configurations about β ≈ 3.0 are
contained in state [see Fig. 14(b)].

The third 0+ state. In this state, the main components are
distributed in the potential valley around β = 4.5 and γ = 5◦
[see Figs. 13(c) and 14(c)]. This would indicate the bending
vibrational mode of the linear-chain state along the direction
perpendicular to the potential valley, as suggested by preced-
ing works [35,36]. In this mode, the 8Be component vibrates
for the last α by changing the angle [see Figs. 15(e) and 15(f)].
This state is qualitatively consistent with the third 0+ state ob-
tained using the THSR calculation by Funaki et al. [30,31,33].
They have proposed that this state has the Be + α configu-
ration. Our calculated result also supports this interpretation.
This state is also very similar to the energy of the third 0+
state obtained with the real-time evolution method by Imai
et al. [32]. Our obtained density distributions are also similar
to their results. In contrast, it seems that this state is missing
in the AMD calculation by Kanada-En’yo [37] due to the lack
of model space. It is also interesting that the calculated energy

of our third 0+ state may correspond to the fourth 0+ state
obtained with the complex-scaling method [38,39], which is a
large decay width below the traditional third 0+ state.

The fourth 0+ state. This state would be the stretched vibra-
tional mode of the linear-chain configuration. The amplitude
of the vibration is between β = 1.5 and 5.0 [see Figs. 13(d)
and 14(d)]. In this state, many linear-chain configurations with
γ ≈ 0◦ are contained [see Figs. 15(g) and 15(h)]. This state is
the vibrational mode of the linear-chain configuration [40].
In general, three particles on a one-dimensional coordinate
have two normal modes, symmetric and asymmetric vibra-
tions. The present case could correspond to the former since
the β value distributes widely. However, the search for the
asymmetric vibration in higher energy would be intriguing,
called the billiard or Newton’s cradle mode. The obtained
energy and density distribution of the linear-chain configura-
tion are very similar to other microscopic calculations such
as in Refs. [6,31,32,37]. Our fourth 0+ state corresponds to
the third 0+ state obtained with the full microscopic AMD
calculation by Kanada-En’yo [37].

The fifth 0+ state. The main components of this state are
distributed around the saddle point at β = 2.5 and γ = 30◦
[see Figs. 13(e) and 14(e)]. The many configurations in this
states are large equilateral triangular shapes [see Figs. 15(i)
and 15(j)]. That is, it would be the breathing mode of the
large equilateral triangle. Note that the energy of this state is
−76.80 MeV, which is much lower than that of the saddle
point by about 5 MeV. This state is directly connected to
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FIG. 14. The squared overlap distribution of the basis functions for each excited state approximated by the weighed kernel density
estimation. The color scale is normalized by the maximum overlap value in each excited state.

the triple-α decay channel. That is, this state would play an
important role in the synthesis of 12C. We emphasize that this
state cannot be seen in other microscopic calculations. We
have found find this state by expanding the model space.

F. Discussion

We summarize all calculated results in Fig. 16. An es-
sential feature of the PES is that the minimum energy path
is directly connected to the linear-chain configuration (see
the solid line in Fig. 16), although the saddle point with the
lowest energy is located at the three-α triangular configuration
(see the open triangle in Fig. 16). The gas-like state (sec-
ond 0+ state) consists of the components distributed around
the local minimum in the energy-minimum path connecting
to the linear-chain decay threshold. This shallow potential
pocket would emerges due to the large shell gap at the
1 : 3 deformation in Nillson’s diagram using the deformed
harmonic-oscillator potential [41]. The bending and stretched
(symmetric) vibrational modes of the linear-chain configu-
rations also emerge with the components distributed in this
energy-minimum path (third and fourth 0+ states). Although
the saddle point (threshold energy) for the path to the linear
chain is much higher than that of the lowest energy located at
the three-α triangle path, these two potential-energy valleys
(triangle and linear) are well separated by the ridge struc-
ture (see the solid line with triangles in Fig. 16). This ridge

structure is a key to the emergence of not only the gas-like
state but also the linear-chain vibrational states. An interesting
point is that the main components of the fifth 0+ state are
distributed just around the lowest-energy saddle point in the
three-α triangular path. There is a very shallow PES in this
channel. These shallow and ridge potential structures after a
saddle point can be also seen in lighter mass nuclei such as
28Si and 32S [42].

In comparison with other microscopic calculations, we
succeed in describing all the states including ones often miss-
ing in other microscopic calculations in a unified way for the
first time. Our calculated results, especially for 0+

3 and 0+
4

states, are consistent with that of Funaki et al. [30,31,33]. In
our calculation, an α cluster at the edged of the linear-chain-
like configuration in the 0+

4 state bends, which is consistent
with that of the 0+

3 state obtained by Kanada-En’yo [37].
However, in her calculation, our 0+

3 state is missing. Our cal-
culated results of the 0+

3 and 0+
4 states are also consistent with

that of Imai et al. [32], although they did not show the 0+
5 state

in their results. It seems that their real-time evolution path
may be trapped in the potential valley leading to the linear-
chain decay channel. To obtain the 0+

5 state, it is necessary to
explore the potential valley leading to three-α decay channel
by overcoming the separating ridge. The classical real-time
evolution path, including the time-dependent Hartree-Fock
path, without the quantum tunneling often suffers the trapping
in a well-developed potential valley.
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FIG. 15. Density distribution of each excited state for the (a), (c), (e), (g), (i) first and (b), (d), (f), (h), (j) second largest overlap values.

Although the second 0+ state has been understood as the
gas-like state described by (0s)3 for three-α clusters, our re-
sults suggests that it belongs to a member of the linear-chain
states rather than the equilateral triangular states. Indeed,
this state consists of many isosceles triangular configurations
emerging at a shallow local minimum in the potential valley
directly leading to the linear-chain decay channel (see the
solid line in Fig. 16). This state is not connected to the poten-
tial valley leading to the equilateral triangular decay channel
(see the green solid line in Fig. 16). In this respect, the fifth 0+
state containing many components in the equilateral triangular
path may play an important role in the synthesis of 12C with
the three-body reaction.

Recent experimental data have shown that the direct
three-α decay width of the second 0+ state is negligi-
ble [43,44]. Itoh et al. further found that the 0+

3 state
only decays into 8Be(0+) + α channel and the 0+

4 state
prefers 8Be(2+) + α decay [45], which can support the
above argument, since a linear-chain structure is consid-
ered to contain non-negligible partial-wave components other
than an S wave. These data would support our calculated
results.

IV. SUMMARY

We have proposed an efficient RXMC method to sample
important Slater determinants from a given Hamiltonian. Us-
ing the RXMC method, we can sample Slater determinants
following the Boltzmann distribution on the PES constructed
by the Hamiltonian. We have also shown how the obtained
Slater determinants are sorted out by optimizing the energy of
each excited stated. To eliminate unphysical splits of excited
states due to numerical errors, we transform all configurations
so as to align the principal axis. To analyze the obtained
excited states, we have also projected the distribution of the
sampled basis functions embedded onto the β-γ PES. We
have applied this method to the ground and excited states of
the 12C nucleus.

We employed the Bloch-Brink α cluster model with the
Volkov No. 2 interaction, where the Majorana exchange pa-
rameter was chosen to reproduce the α-α scattering phase
shifts. to describe three α cluster states in 12C. We performed
the RXMC samplings with different temperatures. Then we
found that the basis functions sampled with a temperature
of TL = 2.5 MeV describe well the excited states so that the
energies from the ground to fifth 0+ states are well converged.
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FIG. 16. Potential-energy surface for Jπ = 0+ of 12C. The origin
of the potential energy is the minimum energy obtained by the β-γ
constraint calculations. The solid black line indicates the minimum-
energy path from the ground state leading to the linear-chain decay
channel. The solid green line indicates a path leading to the equilat-
eral triangular decay channel. The solid line with triangles indicates
the separating ridge. The dashed line indicates the three-α decay
threshold energy. The open square and triangle represent the energy
minimum and saddle point, respectively. The shape configuration of
the main components in each state is depicted. The obtained energies
of the 0+ states are also depicted.

We also investigated the structure of the PES calculated with
the β-γ constraint method. We found two prominent valleys:
one is the path with the lowest saddle point connecting to the
equilateral triangular decay channel. Another is the path con-
necting to the linear-chain configuration. The ridge structure
well separates these two valleys.

To analyze the properties of the obtained 0+ states, we
depicted the weight distribution of the basis functions over-
lapping with the obtained states. By embedding the calculated
weight distributions onto the β-γ PES, we investigated the
main components of the basis functions in each excited state.
We found that the ground state consists of small equilateral
triangular configurations. The second 0+ state, often called
the gas-like state, is built on the shallow local minimum at
the beginning of a potential valley directly connected to the
linear-chain decay channel. The third 0+ state emerges in the
linear-chain potential valley and has the bending vibrational
model in this valley structure. The fourth 0+ state has the
stretched vibrational mode in the linear-chain potential val-
ley. The fifth 0+ state has many large equilateral triangular
components, which is directly connected to the ground state.

As shown in this paper, the RXMC method can efficiently
sample important Slater determinants from a huge model
space and eliminate the continuum solutions. In many previ-
ous calculations, their results strongly depend on individual
research because its sampling was often performed by hand.
The RXMC method completely removes this defect. The great
advantage of the RXMC method can be applied to not only
the cluster model but also other general models, including
antisymmetrized quasicluster model (AQCM), where the ef-
fect of the spin-orbit interaction is incorporated by replacing
α clusters with quasiclusters [46]. We hope that this method
is helpful to describe much-complicated fission dynamics in
heavy-mass nuclei.
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