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Cranked Skyrme-Hartree-Fock-Bogoliubov approach for a mean-field description of nuclear
rotations near the drip line
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To describe the yrast states in weakly bound nuclei, I directly solve the coordinate-space cranked Skyrme-
Hartree-Fock-Bogoliubov equation on a three-dimensional lattice with the continuum states discretized in a
box. After the numerical demonstration for the ground-state band in a medium-mass nucleus, I apply the newly
developed method to neutron-rich even-N Mg isotopes. I find that the appearance of the significantly low Iπ = 2+

state in 40Mg is mainly due to the suppression of pairing. The calculation predicts that the 2+ state in 42Mg
appears as high in energy as in 34–38Mg whereas the triaxial deformation is enhanced in nonzero spin states. The
present numerical framework offers a practical approach for investigating the near yrast states systematically and
revealing structures unique in drip-line nuclei.
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I. INTRODUCTION

A diverse variety of modes of motion show up in nu-
clei. To explore unique structures in exotic nuclei, various
spectroscopic studies have been carried out via decays and
making use of direct reactions. Nuclear deformation is a
collective phenomenon that has long attracted interest; a nu-
cleus is deformed as it moves away from the magic number
due to the many-body correlation. It has turned out that the
shell structure evolves as the conventional magic numbers
disappear and new ones appear instead, depending on the
combination of the particle numbers of protons and neutrons
[1]. Energies of excited nuclear states are often among the first
quantities accessible in experiments and have been used as
an indicator of the changing shell structure and the onset of
deformation [2].

Rotational motion is a manifestation of the spontaneous
breaking of the rotational symmetry [3]. The cranking ap-
proximation provides an intuitive picture of the rotation of
quantum systems, and the cranked shell model is a stan-
dard tool to investigate the microscopic structure of nuclear
rotations near the ground state and at high spins [4–7].
The cranked shell model in the framework of the nuclear
energy-density functional (EDF)—the cranked Kohn-Sham
(KS) approach—has provided a systematic and quantitative
description of the (near) yrast states from light to heavy nu-
clei [8–10]. The accumulation of experimental data for low
spins in neutron-rich nuclei has stimulated the application of
the cranked KS approach to the exploration of the rotational
motions unique in weakly bound nuclei.

Since the moments of inertia of neutron-rich nuclei are
sensitive to the pairing and weak binding [11], one needs to
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solve the cranked KS-Bogoliubov (KSB) equation in the co-
ordinate space to describe properly the weak binding and the
pairing embedded in the continuum [12], which is computa-
tionally demanding because many symmetries are broken and
the quasiparticle wave functions are spatially extended. The
low-lying collective states have been investigated microscop-
ically in beyond-mean-field approaches, such as the projected
shell model [13], the generator-coordinate method, and the
collective Hamiltonian [8–10,14]. Including the continuum
effects in these approaches is much more demanding.

The island of inversion has been the subject of much exper-
imental and theoretical interest [15]. A systematic calculation
for the Mg isotopes in the mean-field approximation produces
a spherical configuration in 32Mg, a soft potential energy sur-
face in 34Mg, and a prolate configuration in 36,38,40Mg for the
ground state [16]. It has been clarified that the shape fluctua-
tion and the correlation beyond the mean-field approximation
is significant in 32Mg [17–19]. Experimentally, the measure-
ment of not only the low excitation energy of the first Iπ = 2+
state but the energy of the 4+ state, and their ratios with R4/2

being greater than 3, have revealed a well-deformed structure
in 34,36,38Mg [20]. A significantly low 2+ state in 40Mg is
not reproduced by any theoretical models,1 and it indicates
a unique feature associated with the weak binding [24]. As a
coherent contribution of the pairing in the continuum states
induces an enhanced quadrupole transition to the low-lying
vibrational state in the Mg isotopes [25–29], the roles of the

1The configuration-mixing calculation using the Gogny force tak-
ing only the axial symmetry produces the increase in E (2+

1 ) from
N = 22 to 26 contrary to the measurements and a drop in energy at
N = 28 [18,21]. However, the inclusion of the triaxial deformation
reproduces the isotopic dependence up to 38Mg, and the drop at 40Mg
is washed out. [22]. The relativistic approach in Ref. [23] produces a
strong neutron-number dependence.
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weak binding and the continuum coupling in the rotational
motions are interesting to study.

I investigate in this article the low-spin states in the
neutron-rich Mg isotopes close to the drip line. Then, I try
to clarify the roles of the weak binding and excess neutrons
in the low-lying excited states. To this end, I develop a new
framework of the cranked shell model within the nuclear EDF
approach, which is capable of handling nuclides with arbitrary
mass numbers [8,14].

II. METHOD

To describe the (near) yrast states with proper account
of the pairing in the continuum states, I directly solve
the coordinate-space cranked Skyrme-KSB or Hartree-Fock-
Bogoliubov equation in the quasiparticle basis:

∑
σ ′

[
hq′

σσ ′ (r) h̃q
σσ ′ (r)

4σσ ′h̃q∗
−σ−σ ′ (r) −4σσ ′hq′∗

−σ−σ ′ (r)

][
ϕ

q
1,α (rσ ′)

ϕ
q
2,α (rσ ′)

]

= Eα

[
ϕ

q
1,α (rσ )

ϕ
q
2,α (rσ )

]
, (1)

which is obtained by extending the formalism developed for
describing the ground-state properties of even-even nuclei
near the drip line [12]. Here the single-particle Routhian and
the pair Hamiltonian are defined by using a Skyrme EDF
combined with a pairing functional E [ρ, ρ̃, ρ̃∗] as hq′

σσ ′ (r) =
δE [ρ,ρ̃,ρ̃∗]

δρ
q
σ ′σ (r) − (λq + ωrot jz )δσσ ′ and h̃q

σσ ′ (r) = δE [ρ,ρ̃,ρ̃∗]
δρ̃

q∗
σ ′σ (r)

. I define

the z axis as a quantization axis of the intrinsic spin and
consider the system rotating uniformly about the z axis. I take
the natural units: h̄ = c = 1.

The Skyrme-KSB equation in the three-dimensional (3D)
Cartesian mesh has been solved by employing the contour
integral technique and the shifted Krylov subspace method
for the Green’s function [30,31] to circumvent the succes-
sive diagonalization of the matrix with huge dimension. Very
recently, the direct diagonalization of the KSB Hamiltonian
in the 3D Cartesian-mesh was achieved [32]. The numerical
procedure to solve Eq. (1) in the present study is basically the
same as in solving the cranked KS equation in Refs. [33,34]. I
impose reflection symmetry about the (x, y), (y, z), and (z, x)
planes to reduce the computational time. Thus, the parity
pk (= ±1) and z signature rk (= ±i) are good quantum num-
bers. I solve Eq. (1) by diagonalizing the KSB Hamiltonian
directly in the 3D Cartesian-mesh representation with the box
boundary condition. Thanks to the reflection symmetries, I
have only to consider explicitly the octant region in space
with x � 0, y � 0, and z � 0; see Refs. [35,36] for details.
I use a 3D lattice mesh xi = ih − h/2, y j = jh − h/2, zk =
kh − h/2 (i, j, k = 1, 2, . . . , M ) with a mesh size h. The di-
mension of the KSB Hamiltonian is thus 8M3. To check the
convergence of the results with respect to the box size and
to investigate the effect of the weak binding, I change h
and M in the discussion below. The differential operators are
represented by the use of the nine-point formula of the finite
difference method. For diagonalizing the matrix of Eq. (1),
I use the SCALAPACK PDSYEV subroutine [37]. A modified
Broyden’s method [38] is utilized to calculate new densities

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

30

40

50

60

70

Exp.
SLy4
SkM*

M
om

en
t o

f i
ne

rt
ia

 J
(1

)  (
/M

eV
)

Rotational frequency (MeV)

172Hf8 10 12 14 16
20

25

30

35

40

SLy4
1.25

1.0
0.8

M

FIG. 1. Kinematic moments of inertia J (1) as functions of the
rotational frequency. The experimental data [39] are denoted by open
symbols. Dependence of J (1) evaluated at ωrot = 0.05 MeV on the
parameters h and M is shown in the inset.

during the self-consistent iteration. For each iteration, it took
13.0, 52.5, and 91.0 core hours for M = 12, 14, and 16,
respectively at the Yukawa-21 computer facility. The quasi-
particle energy is cut off at 60 MeV, which has almost no
significant change in computational time but determines the
memory required during the calculation.

III. RESULTS AND DISCUSSION

A. Ground-state band in 172Hf

To see the validity of the present framework, I perform the
calculation for the ground-state rotational band in 172Hf as
a typical example of the collective rotation. Figure 1 shows
the calculated kinematic moments of inertia J (1) as func-
tions of the rotational frequency. Here, J (1) is defined by
Jz/ωrot. I employed the SLy4 [40] and SkM* [41] function-
als together with the Yamagami-Shimizu-Nakatsukasa (YSN)
pairing EDF in Ref. [42]. The inset shows the calculated J (1)

at ωrot = 0.05 MeV obtained by varying h and M. One sees
the results are converged at about 11–12 fm with respect to
the box size. The calculated rms radius is 5.37 and 5.28 fm
for neutrons and protons, respectively. Thus, a rough estimate
for a sufficient box size is that one needs a box about twice
as large as the rms radius. Since the mesh size h = 1.0 fm
gives a reasonable convergence as found in the early studies
[43,44], I use M = 12 and h = 1.0 fm in the following. It is
noticed that a systematic numerical investigation in Ref. [45]
revealed that the 3D mesh calculation gives a remarkably high
precision with apparently coarse meshes such as h = 1.0 fm.

The present model describes well the low spin states and
the band crossing. Around ωrot = 0.25 MeV, the alignment
of neutrons in the i13/2 orbital occurs for the case of SLy4
whereas this is lower than the measurement ≈0.3 MeV. One
sees that the rotational property beyond the band crossing
is also reasonably described. The SkM* functional describes
the alignment around ωrot = 0.35 MeV; however, the level
crossing is more gentle than in the case of SLy4.
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FIG. 2. Similar to Fig. 1 but for 34Mg. The results obtained by
using several pairing interactions are displayed. The experimental
data are obtained from Ref. [46].

B. Neutron-rich Mg isotopes

Then, I investigate the low-spin yrast states in the neutron-
rich Mg isotopes. I use the SkM* functional [41] and the
so-called mixed-type pairing interaction with the strength
V0 = −295 MeV fm3 as in Refs. [28,47], in which the
low-frequency vibrations were investigated. The ground-
state properties thus obtained are summarized in Table 1 of
Ref. [28]. I found that the triaxiality is negligibly small:
γ < 1◦ in low spins. The chemical potential is a key quan-
tity governing the spatial structure of quasiparticle wave
functions: −4.17,−3.26,−2.42,−1.61 MeV for neutrons in
34,36,38,40Mg, respectively. When the two-basis method, in
which the KSB Hamiltonian is diagonalized in a truncated
single-particle basis obtained by solving the KS equation in
the Cartesian-mesh [8], is employed for such weakly bound
nuclei, the single-particle scattering states enter the pairing
window. Therefore, the convergence with respect to the num-
ber of basis states has to be carefully examined as the densities
are spatially localized for λ < 0. In the present case, however,
the densities are always calculated to be localized because the
full KSB Hamiltonian is directly diagonalized [12].

Figure 2 shows the calculated J (1) of 34Mg, and compares
with the experimental data [46]. The measured R4/2 value is
3.06, which is lower than that of the rigid rotor and close to
the calculated value 2.96. The calculation reproduces well the
slight increase in J (1) due to the weakening of pairing. To
see the effect of weak binding, the results obtained by using
M = 8 are also included in Fig. 2. The difference between the
cases with M = 8 and 12 is not very significant, which indi-
cates that the spatial extension of neutrons is not important. It
is noted that the calculated rms radius is 3.49 and 3.14 fm
for neutrons and protons, respectively. That I obtained the
converged results with a box size of 7–8 fm is in accordance
with the above example for 172Hf.

The role of the density dependence of the pairing inter-
action has been discussed in the study of the superdeformed
states [48]: the density dependence results in a retarded align-
ment. I investigate here the density dependence of the pairing
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FIG. 3. (a) Similar to Fig. 2 but for 36,38,40Mg. The experimental
data, denoted by open symbols, are taken from Refs. [20,24]. (b) Cal-
culated J (1) for 40Mg obtained with the box sizes M = 8, 10, and 12.
Results without the pairing are also depicted.

interaction. To this end, I use the volume- and surface-type
pairing interactions. I determined the strength to keep the
calculated pairing gap as obtained with the mixed pairing at
ωrot = 0 MeV: V0 = −211 and −423 MeV fm3 for the volume
and surface pairing, respectively. The pairing gap is defined
by �q = ∫

dr h̃q(r)ρ̃q∗(r)/
∫

drρ̃q∗(r). Notice that the protons
are unpaired at ωrot = 0. In low ωrot, the difference among
three types of interaction is relatively small. However, the
volume pairing gives a faster increase in J (1) similarly to the
finding in Ref. [48].

Next, I investigate the rotational property of 36,38,40Mg
located close to the drip line. Figure 3(a) displays the calcu-
lated J (1) together with the experimental data [20,24]. The
calculated J (1) for 36,38Mg in low ωrot is similar to the one
for 34Mg, and smaller than that for 40Mg. This is consistent
with the calculation in Ref. [28], where the moments of inertia
were evaluated using the Thouless-Valatin procedure in the
framework of the Skyrme EDF-based QRPA [49]. A higher
value for J (1) of 40Mg is partly because of smaller deforma-
tion than others; see Table 1 of Ref. [28]. Another reason is
the weak-binding effect, as discussed below. The experimental
data indicate that the pairing in 36,38Mg would be weaker than
the calculation because the measured J (1) is slightly larger
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than the calculated one. Furthermore, the measurement shows
a faster increase in J (1) than the calculation for 38Mg; the
calculation produces a stronger pairing correlation.

The present calculation fails to describe the rotational mo-
tion in 40Mg: the calculated J (1) is far below the measured
value. One is then tempted to expect that the weak-binding
effect shows up. In Fig. 3(b), I show the results obtained
by varying the box size. With the increase in the box size,
the calculated J (1) increases. The calculation with M = 8
does not show the convergence, while the difference between
the results with M = 10 and 12 becomes small. One cannot
expect a further increase in J (1), even enlarging the box size
more. Notice that for the case of 34Mg the results obtained
with M = 8 and 10 are not very different, as shown in Fig. 2.
In this sense, the weak-binding effect appears in 40Mg; the
weak binding of neutrons reduces the pairing correlation and
enhances the moment of inertia. As an extreme case of weak
pairing, I performed the calculation without the pairing, as dis-
played in Fig. 3(b). The resultant J (1) is much larger than that
obtained with pairing. With increasing rotational frequency,
the results with and without pairing become closer to each
other. The observed J (1) of 6.0 MeV−1 is between these
results and is relatively closer to the one obtained without
pairing J (1) = 6.8 MeV−1. As pointed out in Ref. [16], one
has an oblate minimum in 40Mg. Indeed, I found the oblate so-
lution with β = 0.16, γ = 60◦, though this is located higher
in energy by 0.83 MeV. With this configuration, the calculated
J (1) is much lower: 1.9 MeV−1.

To describe the isotopic dependence of low-spin states
in the Mg isotopes, a key is the isospin dependence of the
pairing correlation. In Ref. [50], it has been pointed out that
the inclusion of the isospin dependence in the pairing EDF
gives a nice reproduction of the pairing gaps in both stable and
neutron-rich nuclei and in both symmetric nuclear matter and
in neutron matter. Thus, I employ the optimal pairing EDF, the
YSN functional [42] as above, in which the isovector density
is introduced to describe pairing in nuclei in a wide mass
region. Figure 4 shows the evaluated E (2+) and R4/2 values.
Here, the spin I is evaluated as J2

z = I (I + 1).
An almost-constant E (2+) and R4/2 in N = 22–26 is well

described by using the SkM*+YSN functional. This model
also describes well the decrease in energy at N = 28 whereas
this predicts the R4/2 value keeps ≈3. When the pairing is
discarded, E (2+) becomes much lower, and R4/2 reaches 3.3
as depicted by a diamond. The results obtained by employ-
ing the SLy4 + YSN functional are also shown in Fig. 4.
The SLy4 + YSN predicts that neutrons and protons are both
unpaired in 40Mg. Thus, this gives a similar result to the
SkM* model without pairing. Whether the pairing of neutrons
vanishes or not is discriminated by the R4/2 value.2

When two neutrons are added, I find a further structural
change. Comparing with 40Mg, the deformation gets weaker
by about 33%, and the triaxiality emerges as shown in Fig. 5,
where the sign of γ is defined in the convention of Ref. [51].
The triaxiality develops with increasing spin. The appearance

2If the spin of the observed second excited state is 4+, the R4/2 value
is 2.34 [24].
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of the triaxiality in the N = 30 isotones has also been dis-
cussed in Ref. [52]. The pairing for protons shows up, and
that for neutrons increases. Accordingly, J (1) is reduced and
thus E (2+) increases as shown in Fig. 4. The present calcula-
tion with SkM*+YSN predicts that the irregularity in E (2+)
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appears only at 40Mg. Because of the developed triaxiality at
finite ωrot, the R4/2 value deviates from that of the rigid rotor
in 42Mg. It is noted that the SLy4 functional gives λν > 0 for
42Mg.

A weak-binding effect is investigated by varying the box
size, and the role in the low-spin states is displayed in Fig. 4.
The results obtained by using M = 10 are compared with
those obtained by using M = 14. I found that the calculated
J (1) at ωrot = 0.1 MeV changes by about 1.3% when the
box size is varied for 42Mg. Since the chemical potential of
neutrons is not very shallow, that is −1.15 MeV for the case of
SkM*, a role of the spatial extension of neutrons is not visible
in the E (2+) value. However, the spatial expansion varies
depending on ωrot as one finds that the R4/2 value becomes
smaller by 6% in enlarging the box size from M = 10 to 14.
Investigation of not only the 2+ state but higher-spin states
in drip-line nuclei reveals unique roles of loosely bound neu-
trons. A triaxially deformed rotating nucleus is, for example,
interesting future work to study [53].

IV. CONCLUSION

To summarize, I have developed a numerical framework
for a mean-field description of yrast states in nuclei near the
drip line in a nuclear EDF approach. To this end, I directly

solved the coordinate-space cranked Skyrme-KSB equation in
a 3D mesh, with the continuum states being discretized in a
box. The present framework reproduces the low-spin states
and band crossing in a medium-heavy deformed nucleus.

The low-spin states in 34Mg are well described by using the
density-dependent pairing interaction. With the increase in the
neutron number, the calculation overestimates the pairing cor-
relation, thus leading to the underestimation of the moments
of inertia. Employing the optimal pairing-EDF constructed to
describe neutron-rich nuclei, I have found that the appearance
of the significantly low Iπ = 2+ state in 40Mg is mainly due to
the suppression of pairing. A systematic study of the 2+ state
in neutron-rich nuclei thus provides a constraint on the global
pairing EDF. In 42Mg, the 2+

1 state appears higher in energy
than in 40Mg, and the R4/2 value decreases due to the structure
change, where the triaxial deformation emerges.
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