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Possible halo structure of 62,72Ca by forbidden-state-free locally peaked Gaussians
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In order to efficiently describe nucleon orbits around a heavy core nucleus, we propose locally peaked
Gaussians orthogonalized to the occupied bound states in the core. We show the advantage of those functions
in both numerical stability and fast convergence by taking examples of touchstone calcium isotopes 62,72Ca
in 60,70Ca +n + n three-body models. Both weakly bound configurations and continuum coupling effect are
taken into account. We evaluate the neutron radii and the occupation probabilities of two-neutron configurations
not only for the ground state but also for some particle-bound excited states by varying the strength of the
core-neutron interaction. The emergence of the halo structure in the ground state depends on the energy
difference between 2s1/2 and 0g9/2 orbits. Two-neutron [consisting of (s1/2)2 configuration] and one-neutron
[consisting of (g9/2s1/2) configuration] halo structures of 62Ca can coexist in narrow energy spacing provided
that both of 2s1/2 and 0g9/2 orbits are almost degenerate and barely bound. The ground-state structure of 72Ca is
likely to be a two-neutron halo, although its emergence depends on the position of the 2s1/2 level.
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I. INTRODUCTION

The landscape of exotic short-lived nuclei far from the
stability line extends to the neutron dripline up to Ne isotopes
[1]. In such extreme neutron excess, weakly bound neutrons
emerge and often lead to neutron-halo structure. Exploring
the halo nuclei has continued since the first discovery of the
two-neutron halo nucleus 11Li [2]. Other typical examples
of two-neutron halo nuclei include 6He [2], 14Be [3], 19B
[4], and 22C [5–7]. See also Ref. [8] for more experimental
and theoretical references on halo-nuclei studies. Recently, by
measuring its interaction cross section, 29F has been identified
as the heaviest two-neutron halo nucleus [9].

The two-neutron halo structure has often been described
using a core plus two-neutron model. When the core is
a light nucleus, the two-neutron motion can be accurately
described, e.g., as in 22C [5]. Within the search for evi-
dence of Efimov states [10] in two-neutron (2n) halo nuclei
close to the neutron-core (n-core) unitary limit [11,12],
the emergence of universal properties described by two-
body observables and a three-body scaling parameter became
quite clear in the case of two neutrons bound to light-core
nuclei.

Motivated by the recent measurement reported in Ref. [9],
the dripline and near-dripline F isotopes have been studied
by three-body models: For 29F, the p-wave two-neutron halo
character of 27F +n + n was verified in Refs. [13–15], and
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a competition of halo and antihalo configurations was pro-
posed in Ref. [16] for 31F studied as 29F +n + n. By using
the Gamow shell model these F isotopes were also studied
in Ref. [17]. Studying the existence of heavier neutron-halo
nuclei is interesting as it will help to expose the binding
mechanism when increasing the mass number [18,19], which
opens the possibility of verifying universal aspects expected
to emerge in low-energy quantum systems, such as ultracold
atom-molecule heteronuclear systems [12,20,21]. However,
a microscopic description becomes tougher as the core nu-
cleus becomes heavier because the number of the occupied
orbits in the core increases. Therefore, a reliable and efficient
method is needed to describe the two-neutron motion around
the heavy core nucleus. The complication of such calculation
is mainly due to the condition that requires the configuration
space available to the valence neutrons to be orthogonal to all
the bound states occupied in the core (orthogonality condi-
tion model [22,23]). To eliminate such bound states (called
forbidden states) from a three-body solution, a pseudopo-
tential method [24] has often been applied. With increasing
the mass number of the core nucleus, the number of the
occupied orbits increases and the description of the valence
neutron orbits becomes more complicated and often numeri-
cally unstable.

To describe the nucleon motion around the core, one
can use explicitly correlated Gaussians [25–27]. Due to
the complexity of removing the forbidden states, however,
its application is limited only to light nuclei. See, e.g.,
Refs. [28,29]. Obviously, a single-particle (sp) basis is ad-
vantageous to eliminate the forbidden state. The application
of Gaussian sp basis functions to the alpha decay of 212Po
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in the 208Pb +n + n + p + p model was in fact successfully
made in Ref. [30]. It turned out, however, that the descrip-
tion was not perfect for the localized nucleon orbits, i.e.,
the alpha clustering near the nuclear surface. This is proba-
bly because the ordinary Gaussians, rl exp(−ar2), used there
are not always enough to obtain large amplitude near the
nuclear surface. In Refs. [31,32], locally peaked Gaussians
(LPGs), r2k+l exp(−ar2), are proposed to describe the local-
ized configurations. By the additional r2k factor, the LPG basis
allows one to describe not only damped short-ranged behavior
[25,26] but also large amplitude far from the center, while
keeping the advantage that the matrix elements of the LPG
bases can easily be evaluated.

In this paper, we introduce a forbidden-state-free LPG
(FFLPG) to efficiently describe neutron orbits around a heavy
core nucleus. This opens up the perspectives to study more
complicated multinucleon systems around the heavy core.
To show its effectiveness, we apply the method to describe
62,72Ca in which the emergence of the two-neutron halo was
discussed [18,19]. The purpose of this paper is twofold: (1)
to establish an efficient way to describe both the short-ranged
nodal behavior and enhanced amplitude beyond the nuclear
surface, which is expected to occur in nucleon orbits around
the heavy core, and (2) to clarify the conditions under which
halo structure can emerge not only in the ground state but
also in some excited states of the 60,70Ca +n + n three-body
systems.

As mentioned above, we focus on the neutron-rich Ca
isotopes having large number N of neutrons. Although the
halo structure is expected to appear for N > 40, its structure
or even its existence is under debate. Very little experimental
information is available for the Ca isotopes: The heaviest,
60Ca, was confirmed in Ref. [33] but no information other
than its existence is available. Mass measurements have been
done up to 57Ca [34], and the charge radii [35] have been
determined up to 52Ca, and recently interaction cross sections
have been measured up to 51Ca [36]. It was conjectured by
the coupled-cluster calculation that the neutron dripline of
Ca isotopes is around 60Ca [37] and 62Ca has two-neutron
halo structure with dominant s wave [18]. On the other hand
energy-density-functional [38,39], shell-model [40], and in-
medium similarity renormalization group [41] calculations
predicted that the dripline is around 70Ca. The halo structure
of 72Ca was also predicted by the relativistic mean-field model
[42]. The two-neutron halo structure in the ground state of
72Ca and its relationship to the Efimov physics was studied
by a 70Ca +n + n model [19]. The dripline of Ca isotopes
was predicted to be 72Ca based on a Bayesian analysis of the
density functional theory results [43]. Since there is still some
ambiguity in determining the dripline, we leave its question
open and study possible neutron-halo structure in the spec-
trum of both cases, 62,72Ca.

The paper is organized as follows. Section II presents the
Hamiltonian and some definitions needed to introduce the
present approach and explains how to construct the FFLPG.
Section III discusses our results. First, in Sec. III A the Ca + n
potential employed in this paper is investigated. Section III B
is devoted to test the power of this approach to the 60Ca +n +

n system. Comparison with a standard projection method is
presented. Section III C discusses the emergence of various
halo structures in the spectrum of 62Ca based on the three-
body results. The case of 72Ca is presented in Sec. III D.
Conclusions and future perspectives are given in Sec. IV.

II. FORMULATION

A. Hamiltonian and variational calculation

The Hamiltonian of a core+2n system consists of the
n-core kinetic (T ) and potential (U ) and the n-n potential (v)
terms,

H =
2∑

i=1

(Ti + Ui ) + 1

AmN
p1 · p2 + v12, (1)

where mN and A are the nucleon mass and the mass number
of the core nucleus, respectively. We follow the cluster-orbital
shell model approach [44], by reducing the three-body prob-
lem to a two-body problem using two independent n-core
relative distance vectors, r1 and r2 with their respective mo-
mentum conjugates p1 and p2. The center-of-mass kinetic
energy is subtracted and the corresponding kinetic ener-
gies are given by Ti = p2

i /(2μ) with μ = mN A/(A + 1). Our
choices for the n-core and n-n potentials will be given later.

The total wave function with the angular momentum J and
its z component M is expanded in terms of K basis functions
�JM (αi ) (i = 1, . . . , K ):

�JM =
K∑

i=1

ci�JM (αi ), (2)

where αi denotes a set of variational parameters for the ith
basis. These basis functions are not restricted to be orthogonal.
A set of linear coefficients c = (c1, . . . , cK )t is determined
variationally by solving the generalized eigenvalue problem

Hc = EBc, (3)

where H and B are the Hamiltonian and overlap matrices with
elements defined by

Hi j = 〈�(αi)|H |�(α j )〉 (4)

and

Bi j = 〈�(αi )|�(α j )〉. (5)

An optimal set of αi is selected by the stochastic variational
method (SVM) [25,26]. Its efficiency was demonstrated by a
number of examples. See, e.g., Refs. [27,28,45]. We increase
the basis one by one by selecting the one that gives the lowest
energy among randomly generated candidates until the energy
convergence is met. This procedure greatly reduces the total
number of basis K , which helps the description of nucleon
systems around a heavy core, where the number of possible
configurations is quite large.

B. Definition of FFLPG

The efficiency of a variational calculation strongly depends
on a choice of basis functions. Some basic requirements for
a “good” basis include the following in the present case:
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(i) Weaklybound neutron orbits should be well described, be-
cause the system may have large amplitude at and beyond the
surface of the core nucleus. (ii) The evaluation of the matrix
elements in Eqs. (4) and (5) should be easy and extendable
to systems with more neutrons bound to the core. (iii) The
removal of many forbidden states should be performed nu-
merically easily and stably.

The sp wave function with total (orbital) angular momen-
tum j (l), with their corresponding angular and spin wave
functions, Yl (r̂) and χ1/2, is defined by

φa
kl jm = φa

kl (r)[Yl (r̂)χ1/2] jm, (6)

where the LPG function is given by

φa
kl (r) = Nkl

(
a3

π

) 1
4

(
√

a r)2k+l exp

(
−1

2
ar2

)
, (7)

Here, Nkl is the normalization constant

Nkl =
√

22k+l+2

(4k + 2l + 1)!!
, (8)

and a is a parameter related to the width of the LPG function.
We assume k to be a non-negative integer for the sake of
simplicity. The LPG with k = 0 is nothing but the ordinary
Gaussians. Most of basic matrix elements between the LPG
bases can be obtained analytically [31]. Since the LPG reaches
a maximum at r = √

(2k + l )/a, a suitable combination of
a and k can describe such wave packets that are centered at
different positions and have different widths. Because of this
flexibility, the LPG can describe even linear chain structure
[31]. Obviously the tail of a weakly bound orbit can be de-
scribed well by a superposition of the LPG. This flexibility is
vital to describe the sp orbits around a heavy core nucleus.

The LPG basis satisfies the requirements (i) and (ii).
Concerning the requirement (iii), we introduce a projection
operator onto the forbidden (F ) space,

PF =
∑

n′l ′ j′∈F

j′∑
m′=− j′

|ψn′l ′ j′m′ 〉〈ψn′l ′ j′m′ |, (9)

where the sum extends over all the orbits occupied in the
core nucleus. The forbidden states ψnl jm are defined by the
bound-state solutions of the one-body Hamiltonian, T + U .
As will be seen later, they are very well approximated by the
harmonic-oscillator (HO) functions

ψν
nl jm = ψν

nl (r)[Yl (r̂)χ1/2] jm (10)

with the principal quantum number (n) and an appropriately
chosen oscillator parameter ν. We use this approximation in
what follows. The FFLPG sp orbit is defined by

φ̄a
kl jm = (1 − PF )φa

kl jm

= φa
kl jm −

∑
n′;n′l j∈F

〈ψν
n′l |φa

kl〉ψν
n′l jm

≡ φ̄a
kl (r)[Yl (r̂)χ1/2] jm. (11)

Because ψν
n′l (r) is a combination of LPG’s, φν

k′l (r) (k′ =
0, . . . , n′), 〈ψν

n′l |φa
kl〉 is readily obtained by using

〈
φa′

k′l

∣∣φa
kl

〉 = (2k + 2k′ + 2l + 1)!!√
(4k + 2l + 1)!!(4k′ + 2l + 1)!!

×
√

a2k+l+ 3
2
√

a′2k′+l+ 3
2

( a+a′
2 )k+k′+l+ 3

2

, (12)

which leads to easy determination of φ̄a
kl jm.

With the use of the sp basis defined above, we construct an
antisymmetrized two-neutron basis

�JM (a1k1l1 j1; a2k2l2 j2)

= 1√
2

(1 − P12)
{[

φ̄
a1
k1l1 j1

(1)φ̄a2
k2l2 j2

(2)
]

JM

}
, (13)

where P12 exchanges the neutron labels 1 and 2, and [ j1 j2]JM

denotes the tensor product. Here, the set of variational pa-
rameters of the ith basis αi in Eq. (2) stands for αi =
(a1,ik1,il1,i j1,i, a2,ik2,il2,i j2,i ). This two-neutron basis can eas-
ily be extended to core+few-nucleon systems by successively
coupling another nucleon one by one.

Note that the variational parameter αi comprises eight vari-
ables: two continuous ones (a1,i and a2,i) and six discrete ones.
As will be shown later, both of short- and long-ranged LPG’s
have to be superposed to properly describe the asymptotics
of the FF halo wave functions and also continuum states with
high angular momenta (l1,i and l2,i) have to be included to
reach convergence. Therefore, discretizing each component of
αi on certain grids would lead to enormous basis dimension
even for the present three-body system. More crucial is that
one has to take into account the possibility of producing two
bound states with the same spin and parity. A way to overcome
these difficult problems is to reduce the basis dimension by
the SVM. An interested reader should refer to Chapter 4 of
Ref. [26].

The above basis of Eq. (13) is completely FF. In contrast
to this approach, a popular way of eliminating the forbidden
components is to add a pseudopotential to the Hamiltonian as
in Ref. [24],

H → H + λ

2∑
i=1

PF (i), (14)

and to attempt at reaching a stable eigenvalue by taking λ →
∞. In practice, λ ≈ 104 MeV is taken [28]. This pseudopoten-
tial method has the advantage of its simplicity. We compare
both approaches in the next section.

III. APPLICATION TO Ca + n + n SYSTEMS

A. Choice of n- 60Ca potential

We take the Woods-Saxon (WS) form for the n- 60Ca
potential

U (r) = −V0 fWS(r) + V1r2
0

1

r

dfWS(r)

dr
(� · s), (15)

where fWS(r) = [1 + exp(r − RWS)/aWS]−1 with RWS =
r0A1/3 and r0 = 1.27 fm. We use two sets for the diffuseness
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FIG. 1. Single-particle energies of 0g9/2 and 1d5/2 orbits of 61Ca
as a function of the spin-orbit strength V1. The diffuseness parameter,
aWS, is 0.67 fm for set A and 0.80 fm for set B. The 2s1/2 sp energy,
independent of V1, is set to −0.01 MeV, as indicated by the thin
horizontal line.

parameter: One is a standard one, aWS = 0.67 fm (set A), and
the other is a larger one, aWS = 0.80 fm (set B).

The 60Ca core nucleus is assumed to have the N = 40
closed configuration, that is, the occupied orbits include 0s1/2,
0p3/2, 0p1/2, 1s1/2, 0d5/2, 0d3/2, 1p3/2, 1p1/2, 0 f7/2, 0 f5/2. We
generate these forbidden states by assuming the WS potential
parameters of Eq. (2-182) in Ref. [46]. Those potential pa-
rameters are V0 = 40.00 MeV and V1 = 17.60 MeV. Note that
the potential makes both of 0g9/2 and 2s1/2 orbits unbound.
The HO parameter ν is determined so as to maximize the
average of the squared overlaps,

∑
nl jm∈F 〈ψnl jm|ψν

nl jm〉2/40
(see Ref. [47]). The maximum average value is 0.988 for set
A and the resulting ν value is 0.212 fm−2, while in set B case
they are 0.989 and 0.203 fm−2. Approximating the forbidden
states with the HO wave functions is quite reasonable.

There is no information about 61Ca. Even its stability is
unknown. The valence neutron orbit of 61Ca belongs to the
2n + l = 4 shell comprising the 0g, 1d , and 2s orbits. The or-
der of these sp orbits is under debate [19,38–43]. The standard
shell-model filling with the spin-orbit interaction arranges the
sp levels in the order of 0g9/2, 2s1/2, and 1d5/2 at A ≈ 60 [46],
while Ref. [37] predicted the inverted order of 2s1/2, 1d5/2, and
0g9/2. In the latter case, the halo structure would appear in the
ground state of 62Ca [18]. Following this inverted situation,
we determine V0 in Eq. (15) so as to set the 2s1/2 sp energy
to be −0.01 MeV, resulting in V0 = 44.03 MeV (set A) and
41.89 MeV (set B), respectively. The value turns out to be
slightly stronger than the standard value V0 ≈ 40 MeV [46].

We vary the spin-orbit strength V1 in Eq. (15) to simulate
different conditions for the 61Ca structure. Figure 1 plots the
sp energies of the 0g9/2 and 1d5/2 orbits. Note that the standard
value of V1 for 60Ca is 0.44V0 ≈ 19 MeV for set A [46],
resulting in the sp levels of 0g9/2, 2s1/2, and 1d5/2 order. In
Fig. 1, both sets exhibit similar sp energy dependence as a
function of V1, though the value of V1 for set B tends to be
stronger than that for set A to make 0g9/2 and 2s1/2 states

degenerate due to more diffused nuclear surface. To fix the
range of V1, the following two extreme cases are considered:

Vanishing spin-orbit limit. In Ref. [37], the 1d5/2 and 0g9/2

sp energies of 61Ca are predicted to be 1.14 and 2.29 MeV. To
realize this situation, we need to take a very small V1 value,
V1 ≈ 0 for set A and ≈5 MeV for set B, respectively. We call
this choice of V1 the vanishing spin-orbit (so) limit.

Degenerate sg limit. The sp energies of the 2s1/2 and 0g9/2

orbits are degenerate at V1 = 11.40 MeV for set A and at
V1 = 21.09 MeV for set B. This choice of V1 is called the
degenerate sg limit. Despite both sp energies being the same,
their respective root-mean-square (rms) radii are quite differ-
ent: 36.0 and 5.04 fm for the 2s1/2 and 0g9/2 orbits of set A,
and 36.1 and 5.28 fm for these orbits of set B. In both sets,
the halo features are noticed in the s states, while the rms radii
shrink significantly for the g states due to the l = 4 centrifugal
barrier.

We examine the energy spectrum of 62Ca by varying V1

between the vanishing and degenerate limits. As the outcomes
of both sets A and B are qualitatively the same, we discuss the
results obtained with set A, unless otherwise mentioned.

B. Tests of FFLPG expansion

Before discussing the structure of 62Ca, we evaluate the
power of the FFLPG approach. We use the Minnesota (MN)
potential [48] for v12 of Eq. (1). The MN potential, a soft-core
central potential, is designed to reasonably well reproduce
the energies and sizes of s-shell nuclei [28]. Since the two
neutrons should be antisymmetric in the spin-orbital space, it
is expected that they gain the attraction mostly in the relative
s-wave and spin-singlet state. The spin-orbit and tensor com-
ponents of v12 are therefore expected to play an insignificant
role in the core+n + n model. Refer to Refs. [49–51] for an
example of demonstrating that the MN potential gives similar
results as the realistic n-n ones.

Let L denote the relative orbital angular momentum be-
tween the two neutrons. The MN potential in the spin-singlet
and even L channel reads 200e−1.487r2 − 91.85e−0.405r2

in
MeV, where r is the two-nucleon distance in fm. For the
spin-triplet and odd L channel it is given by (200e−1.487r2 −
178e−0.639r2

)(u − 1), where u is a parameter and usually taken
to be around 1. In what follows, u is set to 1 and no interaction
acts between the two neutrons in the spin-triplet and odd L
channel.

To demonstrate the power of the FFLPG approach, we
focus on such a state that is dominated by the weakly bound
2s1/2 orbit because the approach is expected to have the ad-
vantage in describing nodal orbits properly. We use the set
A potential with V1 = 0 and include the LPG bases restricted
to l1 = l2 = 0. Figure 2 plots the energy as a function of K ,
for different choices of kmax. The candidates for the basis
states are generated randomly in the interval [0.1, 40] fm for
b = 1/

√
a and in the interval [0, kmax] for k, and the best one is

selected by the SVM algorithm. The results with the pseudo-
potential method are also shown for comparison. The FFLPG
approach significantly improves the energy convergence. We
confirm that kmax = 4 truncation virtually gives the same
curve as the one with kmax = 3. The FFLPG calculation leads
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FIG. 2. Energy convergence of the 60Ca +n + n system with
Jπ = 0+ as a function of the number of basis K . The calculations
are performed only with l1 = l2 = 0 channel. Thick lines are the
results with FFLPG functions, while thin lines are those with the
pseudopotential method. See text for details.

to convergence within a few tens of basis functions, while
the pseudopotential method needs more than a hundred bases
to reach convergence. As for the pseudopotential method,
it appears that the convergence is fastest when the ordinary
Gaussians with kmax = 0 are used, and there is no significant
advantage in using the LPG bases with kmax > 0. Probably this
occurs because the k = 0 bases have the largest overlap with
the 0s1/2 and 1s1/2 forbidden states, with the orthogonality
requirement being most efficiently met by a superposition
of those ordinary Gaussians. However, the energy obtained
with K = 150 is −0.0537 for kmax = 0 and −0.0533 MeV for
kmax = 1, respectively, which still misses the FFLPG energy
of −0.0539 MeV. What is more serious in the pseudopotential
method is its numerical instability. Because the k = 0, 1 bases
have in general large overlap with the forbidden states, the
calculation becomes numerically unstable due to the large
prefactor λ in Eq. (14). It is very hard to extend the basis
size without breaking the linear independence of the selected
bases. With kmax = 2, 3 this instability problem is recovered
and we get the energy of −0.0539 MeV by the pseudopoten-
tial method with K = 200.

Here, we should make a comment on the role of k in the
LPG basis. As shown above, the FFLPG basis with kmax > 0
accelerates the energy convergence compared to the ordinary
Gaussians with k = 0. To understand the reason, we plot in
Fig. 3 the s-wave radial functions with different k values for
some choices of a. The thick curves are for φ̄a

k0 in Eq. (11),
while the thin curves are for φa

k0 that in general contains
forbidden states. Note that the forbidden states are ψν

00 and
ψν

10. In the case of b = 1/
√

ν ≡ b0 the FFLPG function thus
vanishes for k = 0 and 1, whereas it has two nodes at short
distances for k = 2 and 3 because it is orthogonal to the for-
bidden states. With increasing b, the amplitude of the FFLPG
function becomes smaller in the inner region and finally has
no node for k = 3 at b = 2.5b0 due to small overlap with
the forbidden states. The FFLPG basis with k = 0 has small
amplitude beyond the nuclear surface. With increasing k, how-
ever, it has large amplitude beyond the nuclear surface and
damped amplitude at short distances. This property meets the
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FIG. 3. s-wave radial functions of FFLPG φ̄a
k0 (thick curves) and

LPG φa
k0 (thin curves) for different k values. The width parameter

b = 1/
√

a is chosen to be (a) b0, (b) 1.5 b0, (c) 2 b0, and (d) 2.5 b0,
where b0 = 1/

√
ν = 2.17 fm with ν being the HO parameter of the

forbidden states for 60Ca +n.

requirement needed for the neutron orbits around the core
nucleus and offers the possibility of efficiently describing
neutron orbits with large radial extension. The FFLPG basis
is also advantageous to gain the energy from the two-neutron
interaction because it can have large relative s-wave compo-
nents around the nuclear surface.

C. Application to 62Ca

The test example presented in the previous subsection
confirms that the FFLPG offer much faster and numeri-
cally stabler results than the pseudopotential method. In this
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FIG. 4. Energies of Jπ = 0+, 2+, and 4+ states of 62Ca as a
function of the number of basis K . The energy drawn is from the two-
neutron threshold, and the spin-orbit strength is V1 = 11.40 MeV, set
A of the degenerate sg limit.

subsection, we study the structure of 62Ca in the 60Ca +n + n
model using the FFLPG expansion. We take kmax = 3 and
lmax = 10 and generate the Gaussian falloff parameter b =
1/

√
a in the interval [0.1,40] fm. All possible different com-

binations of (l1, j1) and (l2, j2) are taken into account. For
example, the numbers of combinations are respectively 21, 55,
and 69 for Jπ = 0+, 2+, and 4+ states.

We exhibit in Fig. 4 the energies of the states with Jπ =
0+, 2+, and 4+ as a function of K . The spin-orbit strength
is V1 = 11.40 MeV, set A of the degenerate sg limit. Note
that the energy converges rapidly on a few hundred bases
for all the states. This is because all the bases are made free
from the forbidden states. The fourth digit of the energy does
not change on K = 1500 for these lowest states. The second
bound states are found for the 0+, 2+, and 4+ states. We
further increase the number of basis to lower the second bound
states and confirm that they converge very well at K = 2000.

The truncation of lmax = 10 appears considerably large.
One might question why so large a value is needed. Most of
the sp levels are unbound in the present case, that is, they
are nonresonant continuum states. The large value of lmax

therefore suggests the need to account of the continuum effect
to bind the two neutrons. Table I lists the lmax dependence of
the basic properties of the 0+

1 and 0+
2 states. As the table in-

dicates clearly, ε2n increases, while 〈v12〉 gets more attractive
as a function of lmax. The lmax dependence of the two-neutron
rms distance, r12, shows an apparent correlation with 〈v12〉.
Although we confirm that the truncation with lmax = 10 takes
into account most of the continuum effect, it appears that
there may be still some room to improve the convergence by
increasing lmax further.

In addition to the six states drawn in Fig. 4, we obtain two
bound states with 6+ and 8+. Table II summarizes the ener-
gies, the rms neutron radii, and the occupation probabilities
for those bound states. Note that the 0g9/2 and 2s1/2 sp states
are set to be degenerate. The ground state exhibits nonhalo
structure, occupying the (g9/2)2 configuration by 94%. The

TABLE I. lmax dependence of the properties of two 0+ states.
E is the energy from the 60Ca +n+n threshold, ε2n=〈∑2

i=1(Ti+Ui )〉
is the sum of the two-neutron sp energies, and r12 =

√
〈(r1 − r2)2〉 is

the rms relative distance between the two neutrons. Energy is in units
of MeV and length is in units of fm.

lmax 4 6 8 10

0+
1 E −0.99 −1.13 −1.16 −1.19

ε2n 0.14 0.33 0.38 0.43
〈v12〉 −1.13 −1.39 −1.47 −1.55
r12 7.10 6.85 6.84 6.84

0+
2 E −0.10 −0.12 −0.14 −0.14

ε2n 0.17 0.27 0.33 0.35
〈v12〉 −0.27 −0.39 −0.45 −0.48
r12 19.6 18.0 17.3 17.1

configuration also produces the 2+
1 , 4+

1 , 6+, and 8+ bound
states that have almost the same structure as the ground state.
Halo structure is realized as the 0+

2 and 4+
2 states. Both states

have the rms neutron radius, r2n, larger than 10 fm. As shown
by the occupation probability, the 0+

2 state may be called an
s-wave two-neutron halo. It should be noted, however, that its
r2n value of about 13 fm is by far smaller than the rms radius
of the 2s1/2 sp orbit, which is about 36 fm. This dramatic
reduction is of course due to the correlated motion of the two
neutrons. The one-neutron halo character of the 4+

2 state is
brought about by the coupling of the g9/2 neutron with the s1/2

neutron, as revealed by the occupation probabilities. This sug-
gests that both states of two- and one-neutron halo structure
can coexist within a narrow energy spacing. Despite the fact
that it is barely bound, the 2+

2 state shows no characteristics of
halo structure. Its r2n value is considerably large, 6.77 fm, but
it is by far smaller than those of the 0+

2 and 4+
2 states. This is

because the main configuration of the 2+
2 state is (g9/2d5/2).

Note that the recoil kinetic energy is not negligible as the
binding energy is small.

Table II also lists the decomposition of the energy E into
the sp energy, the recoil kinetic energy, the two-neutron inter-
action energy, and the rms two-neutron distance. The positive
value of ε2n indicates that the two neutrons move mostly in the
continuum states. The recoil kinetic energies are small due to
the factor 1/60mN . Clearly, the two-neutron interaction v12

plays a decisive role to make the two neutrons bound. At a
closer look, the 2+

2 state shows the largest sp energy and a
relatively large energy gain from the two-neutron interaction
energy. The state is realized by the coupling of the continuum
states such as the d5/2 and other high l orbits due to the
two-neutron correlation.

The (g9/2)2 dominance in the ground state can be explained
by the pairing antihalo effect pointed out in Ref. [16]. A
combination of the higher angular momentum states is more
advantageous to gain energy from the pairing. In fact, 〈v12〉
values are −1.55 and −0.48 MeV for 0+

1 and 0+
2 , respectively.

To make the ground state a halo, the energy difference be-
tween the 2s1/2 and 0g9/2 orbits should be sufficiently larger
than the energy gain of the two-neutron interaction with the
(g9/2)2 configuration.
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TABLE II. Properties of the spectrum of 62Ca. The sp energies of 2s1/2 and 0g9/2 orbits are set to be −10 keV using the parameters of the

degenerate sg limit of set A. The sp energy of the 1d5/2 orbit is 0.77 MeV. See Table I for the definitions of E , ε2n, and r12. r2n =
√

〈 1
2 (r2

1 + r2
2 )〉

is the rms neutron radius, and 〈Trec〉 = 〈 1
60mN

p1 · p2〉 is the recoil kinetic energy. Pxy denotes the occupation probability of finding x, y sp orbits,
where x and y stand for s1/2, g9/2, d5/2, respectively, and �P = 1 − ∑

xy Pxy.

Jπ E (MeV) r2n (fm) Pss Pgg Pdd Psg Psd Pgd �P ε2n (MeV) 〈Trec〉 (MeV) 〈v12〉 (MeV) r12 (fm)

0+
1 −1.19 5.08 0.01 0.94 0.02 0.02 0.43 −0.07 −1.55 6.84

2+
1 −0.74 5.12 0.86 0.01 0.01 0.09 0.03 0.40 −0.06 −1.08 6.96

4+
1 −0.36 5.35 0.87 0.00 0.09 0.03 0.01 0.14 −0.03 −0.47 7.43

6+ −0.22 5.03 0.99 0.01 0.01 0.04 −0.02 −0.24 7.05
8+ −0.21 5.02 0.99 0.01 0.06 −0.01 −0.26 7.06
0+

2 −0.14 12.8 0.91 0.02 0.05 0.03 0.35 −0.01 −0.48 17.1
4+

2 −0.11 10.1 0.10 0.00 0.87 0.02 0.01 0.08 −0.01 −0.18 14.3
2+

2 −0.014 6.77 0.13 0.03 0.14 0.64 0.06 1.04 −0.04 −1.02 9.09

As mentioned above, the 4+
2 state is found to have

one-neutron halo structure constructed dominantly from the
(s1/2g9/2) configuration. That configuration would suggest a
doublet state with 5+. However, its dominant configuration is
in the spin-triplet and odd L channel. Possible existence of
this unnatural-parity state crucially depends on the choice of
u parameter. Since we set u = 1, v12 vanishes and no doublet
state appears. To be more definitive about its existence, we
have to test other realistic n-n potentials.

As discussed above, when the spin-orbit strength V1 of
the n- 60Ca potential is taken to be the degenerate sg limit,
the Jπ = 0+ halo structure appears as the excited state. It
is interesting to examine how the 0+ state changes if the
spin-orbit strength is weakened towards the vanishing so limit.
We introduce a multiplicative factor f and set the spin-orbit
strength as V1 = f V ′

1 (0 � f � 1) with V ′
1 = 11.40 MeV for

set A. The limit of f ≈ 0 is the case used in Ref. [37], where
the energy difference between the 2s1/2 and 0g9/2 orbits is
large (see Fig. 1) and only one bound state of two-neutron
halo structure is predicted.

Figure 5(a) displays the energy of the 0+ state as a function
of f . Only one 0+ state appears for f < 0.7 and the existence
of the second 0+ state is possible for f � 0.7. Figure 5(b)
shows the corresponding rms neutron radii. The halo structure
having a radius larger than 10 fm emerges in the ground state
for f < 0.7. For f > 0.7 the 0+

2 state exhibits the two-neutron
halo structure, whereas the ground state turns out to be a
compact state. At f = 0.7 the ground state shows intermediate
structure between halo and compact states. The rms radius of
the 0+

2 state is extremely large due to the small binding energy
of −0.03 MeV. This behavior can be understood by showing
the occupation probabilities. Figure 5(c) shows the occupation
probabilities of finding (s1/2)2 and (g9/2)2 components in the
0+ states. The contributions of (d5/2)2 component for the 0+

1
state are at most 0.09 at f = 0.7 and other contributions are
less than 0.05 in total. For the 0+

2 state, those contributions
are less about 0.01. As expected, the (s1/2)2 component dom-
inates in the ground state at f = 0, resulting in a large rms
radius of 12 fm, almost the same structure as the 0+

2 state at
f = 1. By increasing f , i.e., reducing the energy difference
between the 2s1/2 and 0g9/2 orbits, the occupation probability
of the 0g9/2 orbit increases gradually and rises suddenly for

f > 0.6. The rms radius decreases simultaneously with the
growing occupation of the 0g9/2 orbit that has a much smaller
radius. An almost equal mixing of the (s1/2)2 and (g9/2)2

configurations occurs at f = 0.7. Here the energy difference
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tion probabilities of the 0+
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2 states of 62Ca as a function of f .

The spin-orbit strength is taken to be V1 = f V ′
1 with V ′

1 = 11.40 MeV
for set A.
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between the 2s1/2 and 0g9/2 orbit is approximately 0.5 MeV,
which is comparable to the difference of 〈v12〉/2 for the two
0+ states as shown in Table II. Finally, the ground state
becomes g9/2 dominant at f = 1, where the sp energies of
the 2s1/2 and 0g9/2 orbits are degenerate, while the 0+

2 state
exhibits two-neutron halo structure consisting of the (s1/2)2

configuration.

D. Probable halo ground state of 72Ca

An extension to the 70Ca +n + n model is straightforward.
The reader is referred to Ref. [19] for the structure of 72Ca
by the hyperspherical method. We follow the case of 62Ca
starting from discussing some constraints on the phenomeno-
logical WS potential parameters.

The n- 70Ca potential should bind the 0g9/2 orbit due to the
assumption of the N = 50 core. However, no bound 0g9/2 or-
bit is generated if we assume the parametrization of Ref. [46].
Instead of searching for such a potential that binds the 0g9/2

orbit, we simply assume that all the occupied neutron orbits
including the 0g9/2 orbit are described by the HO functions
with the oscillator parameter ν ′ that is scaled from the 60Ca
parameter ν by ν ′ = (60/70)1/3ν. The sp energy spectrum of
71Ca with respect to V1 is virtually the same as Fig. 1 except
for the absence of the 0g9/2 level.

To bind the 2s1/2 orbit at −0.01 MeV, the strength V0 turns
out to be 40.26 MeV for set A and 38.32 MeV for set B. Since
V0 gets weaker than the 60Ca -n case, we have only one bound
0+ state that has two-neutron halo structure if V1 is taken to be
the same as that of 61Ca: The energy, rms neutron radius, and
(s1/2)2 and (d5/2)2 occupation probabilities are −0.14 MeV,
12.7 fm, and 0.89 and 0.08 for set A, whereas for set B they
are −0.13 MeV, 13.3 fm, and 0.87 and 0.11, respectively. The
n- 70Ca potential used here makes the energy gap between
the 2s1/2 and 1d5/2 orbits too large to mix those sp states.
To make the 1d5/2 orbit bound is very unlikely because V1

has to be taken more than two times larger than the standard
value. Within the present phenomenological n- 70Ca potential,
the halo structure emerges if the energy of the 2s1/2 state is
close to zero, which is the same conclusion drawn in Ref. [19].

IV. CONCLUSIONS AND PROSPECTS

We have developed a forbidden-state-free locally peaked
Gaussian expansion method to describe the weakly bound
correlated neutron motion around a heavy core. The power
of this approach has been tested by taking examples of the
weakly bound three-body systems 60,70Ca +n + n. The expan-
sion proposed here accelerates the energy convergence much

faster and offers numerically by far stabler results than the
pseudopotential projection method [24]. The present method
allows us to predict very weakly bound excited states. The
energy spectra of unknown 62,72Ca have been calculated to
discuss the possibility of halo-structure emergence by varying
the single-particle levels of unknown 60,70Ca +n systems.

In the extreme single-particle level ordering of 2s1/2, 1d5/2,
and 0g9/2 orbits predicted by Ref. [37], only one bound state is
found in 62Ca, exhibiting s-wave two-neutron halo structure.
The emergence of the halo structure in the ground state in
fact strongly depends on the energy difference between the
2s1/2 and 0g9/2 orbits for 62Ca and between the 2s1/2 and
1d5/2 orbits for 72Ca. Under the very limited condition that
the 2s1/2 and 0g9/2 orbits are bound and degenerate, however,
the ground state becomes a 0+ nonhalo state dominated by the
0g9/2 orbit, consistent with the pairing antihalo effect [16].
In that case, a 0+ two-neutron halo state appears slightly
above the ground state. In addition a 4+ one-neutron halo
state appears at almost the same excitation energy as the
0+ excited state. Apparently experimental information on the
single-neutron levels of 60,70Ca +n system is crucially impor-
tant to identify the structure of these neutron-rich Ca isotopes.

The method proposed here can straightforwardly be ex-
tended to core plus more-nucleon systems. Since it is
advantageous to describe localized orbits near the surface
of the core, it is interesting to apply the method for alpha-
decay phenomena of heavy nuclei. The result of Ref. [30]
for the 212Po problem could be improved with locally peaked
Gaussians. A systematic analysis of the degree of the al-
pha clustering near the nuclear surface is interesting as it
has recently been realized in alpha-knockout reactions on Sn
isotopes [52].
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