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Prediction of the excitation energies of the 2+
1 states for superheavy nuclei

based on the microscopically derived Grodzins relation
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Background: As the result of synthesis of nuclei with large proton numbers a new region of investigations of the
structure of nuclei has been discovered. Due to the recent significant increase in the yield of superheavy nuclei
their gamma-spectroscopic studies became possible.
Purpose: To predict the excitation energies of the 2+

1 states of nuclei with Z � 100.
Method: The microscopic variant of the Grodzins relation derived based on the geometrical collective model
and a microscopic approach to description of the low-energy nuclear structure is applied.
Results: The excitation energies of the 2+

1 states of the even-even nuclei from 256Fm to 296
120X which differ from

each other in the number of α particles are predicted.
Conclusion: It is shown that at the beginning of the chain of the studied nuclei the excitation energies of
the 2+

1 states do not exceed 100 keV. Then E (2+
1 ) sharply increases with A and reaches maximum value of

400–500 keV in 284Fl or 292Og.

DOI: 10.1103/PhysRevC.105.024309

I. INTRODUCTION

The synthesis of nuclei with large proton numbers up to
Z = 118 [1–7] has led to the discovery of a new region for
investigations of the structure of nuclei, namely, the investi-
gation of the structure of the superheavy nuclei. A number
of interesting experimental results have already been obtained
[8–11] and calculations that provide information on the single
particle spectra and evolution of the shape of these nuclei
with increasing Z have been performed [12–41]. A number of
calculations of the excited states spectra of superheavy nuclei
were made in Refs. [42–50]. Currently, the main source of
experimental information on excitation spectra of superheavy
nuclei is their α decay. With the start of work of the factory
of superheavy elements in Dubna and due to a significant
increase in the yield of such nuclei in fusion reactions, gamma
spectroscopic studies became possible in this area of the nu-
clide chart.

One of the most interesting questions related to the study
of the properties of superheavy nuclei is the question of the
next magic number of protons after Z = 82. It is well known
that an accurate indicator of what numbers of protons and
neutrons are magic is the behavior of the excitation energy
of the 2+

1 states of even-even nuclei. When the values of
Z and N approach the magic numbers, the value of E (2+

1 )
increases sharply and reaches a maximum at double magic
nuclei. This makes information about the excitation energies
of the 2+

1 states of the even-even superheavy nuclei important
for the understanding of their structure. It should be noted that
the excitation energy of the 2+

1 state also gives, in principle,
information about the shape of these nuclei.

For the experiments planned to measure E (2+
1 ) it could be

useful to know theoretical predictions of the values of E (2+
1 )

in the region of the nuclide chart under investigation. The
well known Grodzins relation formulated in 1962 [51], which
established that the product of the energy of the 2+

1 state per
probability of the E2 transition from the ground state of the
nucleus to the 2+

1 state, is a smooth function of A and Z . This
property does not depend on whether the nucleus is spherical
or deformed, although both E (2+

1 ) and B(E2; 0+
1 → 2+

1 ) vary
through a large factor. This is especially important when ana-
lyzing the properties of nuclei from those parts of the nuclide
chart where the transition from deformed to spherical nuclei
occurs. Later on Raman and co-workers [52,53], by analyzing
a larger set of the experimental data, where the literature
has been covered to November 2000, have shown that the
Grodzins relation can be presented in the following form:

E (2+
1 ) × B(E2; 0+

1 → 2+
1 ) = 2.57(±45)Z2A−2/3, (1)

where E (2+
1 ) is given in keV and B(E2; 0+

1 → 2+
1 ) in e2b2.

This relation has been often used to estimate the unknown
B(E2; 0+

1 → 2+
1 ) values from the known E (2+

1 ) in different
nuclei, especially in nuclei close to the nuclear drip line,
since the measuring of B(E2) is a much more demanding task
than measuring excitation energies. In the case of superheavy
nuclei both quantities presented in the Grodzins relation are
unknown. However, the value of B(E2; 0+

1 → 2+
1 ) is directly

related to quadrupole deformation of nuclei β2. But this quan-
tity was the object of the numerous theoretical calculations,
whose results are quite close to each other. This circumstance
gives us a possibility to use the results of calculations of β2 in
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order to determine the corresponding values of B(E2; 0+
1 →

2+
1 ), and then using the Grodzins relation to predict E (2+

1 ).
The value of the proportionality coefficient in the relation

(1) has been considered in detail in [54] using the latest set of
the experimental data. The analysis indicates a strong reason
for individual fit of the proportionality coefficient in (1) for
separate groups of nuclei.

In our previous paper [55] we have derived the Grodzins
relation based on the collective quadrupole Bohr Hamiltonian
and reproduced the A dependence of the Grodzins product. At
the same time, in [55] was proposed a method for calculating
the proportionality coefficient in the Grodzins relation, based
on the microscopic model of nuclear structure.

The purpose of this work is to calculate the proportional-
ity coefficient in the Grodzins relation for a group of nuclei
with Z � 100, based on a microscopic nuclear model, and to
predict on this basis the energies of 2+

1 states of even-even
superheavy nuclei.

II. BRIEF DERIVATION OF THE GRODZINS RELATION

Let us repeat shortly a derivation of the Grodzins relation,
suggested in [55]. It was noted in [55] that the form of the
Grodzins relation indicates that it can be derived using the
technique of the energy-weighted sum rule. Therefore, the
relation can be derived by analyzing the double commutator of
the quadrupole operator Q2μ with the collective Bohr Hamil-
tonian which has the form

H = − h̄2

2

∑
μ,μ′

∂

∂α2μ

(B−1)μμ′
∂

α2μ′
+ V (α2μ), (2)

where (B−1)μμ′ is an inverted inertia tensor, α2μ are the col-
lective variables, and V is the potential. It is convenient to
present the inertia tensor in terms of the components having
fixed values of the angular momentum L,

(B−1)μμ′ =
√

5
∑
LM

CLM
2μ2μ′ (B−1)LM, (3)

where CLM
2μ2μ′ is a Clebsch Gordan coefficient. For a double

commutator we obtain

[[H, Q2μ], Q2μ′ ] = −h̄2q2
√

5
∑
LM

CLM
2μ2μ′ (B−1)LM, (4)

where q = 3/4πeZr2
0 A2/3. Taking the average of (4) over the

ground state |0+
1 〉 we obtain∑

n

E (2+
n ) × B(E2; 0+

1 → 2+
n ) = 5

2
h̄2q2〈0+

1 |(B−1)00|0+
1 〉, (5)

where summation takes place over all collective quadrupole
2+ states related to the surface mode treated by the Bohr
Hamiltonian. Only one term in (5) containing the 2+

1 state is
included in the Grodzins relation. Therefore, it is necessary
to evaluate the contribution of the remaining terms in the
total sum. In the limit of harmonic quadrupole oscillations
E2 transition from the ground state is possible only to the 2+

1
state. In this case, leaving on the left in (5) only the transi-
tion to the 2+

1 state, we get on the right the proportionality
factor equal to 5/2. Let us consider the experimental data

on spherical nuclei. The probabilities of the E2 transitions
from the ground to the first, second, and third 2+ states are
experimentally known in some cases. We transfer the contri-
butions corresponding to the last two transitions to the right
part of Eq. (5). We get that the proportionality factor on the
right side in (5) is equal for 106Pd 4.7/2, for 108Pd 4.8/2,
and for 112Cd 4.4/2. Thus, the experimental data for spherical
nuclei are close to the values for the harmonic limit. Consider
another limiting case, namely rigid rotational motion. In [56],
it was shown that nonzero contributions to the sum of (5)
are also given by E2 transitions from the ground state to the
2+ states of the beta- and gamma-rotational bands. Moving
the corresponding terms to the right side of the relation (5),
and leaving on the left only the term corresponding to the
transition 0+

1 → 2+
1 , we get the proportionality coefficient on

the right equal to 2/2. The experimental data for deformed
nuclei are as follows. In the case of 164Dy 3.9/2, in the case
of 158Gd 3.6/2. The same consideration of experimental data
for nuclei transitional between spherical and deformed gives
the following results: 154Gd 1.9/2, 152Sm 3.5/2, 152Gd 4.4/2,
148Sm 2.9/2, 196Pt 4.0/2, 194Pt 4.9/2, 192Pt 4.9/2. We see that
the values of this coefficient show a large variation. In our
calculations below, we use a proportionality factor of 2/2 as
it follows theoretically for the limiting case of the deformed
nuclei, since according to the numerous calculations, nuclei
with Z = 100–110 considered below are well deformed very
heavy nuclei. This is just the value of the proportionality factor
that makes it possible to reproduce below the only experimen-
tally known value of E (2+

1 ) for one of the nuclei considered
below, namely, for 256Fm. At the same time our predictions
for nuclei with smaller deformation will underestimate the
values of E (2+

1 ) for this choice of the proportionality factor.
Thus, below, the following relation will be used to calculate
the value of E (2+

1 ):

E (2+
1 ) × B(E2; 0+

1 → 2+
1 ) = 2

2 h̄2q2〈0+
1 |(B−1)00|0+

1 〉. (6)

The components of the inertia tensor given in the labora-
tory frame can be expressed through their components in the
intrinsic frame [57]:

(B−1)LM = DL
M0(B−1)in

L0 + 1√
2

(
DL

M2 + DL
M−2

)
(B−1)in

L2

+ 1√
2

(
DL

M4 + DL
M−4

)
(B−1)in

L4, (7)

where (B−1)in
LK in general case depends on β and γ . We

see that only (B−1)in
00 contributes to (5). In the case of axial

symmetry, when we put γ = 0 the components (B−1)in
L0 can be

expressed through the inertia coefficients for β and γ motion,
and the rotational inertia coefficient [57]:

1

Bβ

= (B−1)in
00 −

√
10

7
(B−1)in

20 + 3

√
2

7
(B−1)in

40, (8)

1

Bγ

= (B−1)in
00 +

√
10

7
(B−1)in

20 + 1

2

√
2

7
(B−1)in

40, (9)

1

Brot
= (B−1)in

00 − 1

2

√
10

7
(B−1)in

20 − 2

√
2

7
(B−1)in

40. (10)
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We obtain from (8)–(10) that

(B−1)in
00 = 2

5

1

Brot
+ 2

5

1

Bγ

+ 1

5

1

Bβ

. (11)

Substituting (11) and the relation B(E2; 0+
1 → 2+

1 ) = q2β2
2 ,

which is, in fact, an experimental definition of β2, into (6) we

obtain

E (2+
1 ) = h̄2 1

β2
2

(
2

5

1

Brot
+ 2

5

1

Bγ

+ 1

5

1

Bβ

)
. (12)

The cranking model expression for the inertia coefficients
Bβ, Bγ , and Brot in the case of the single particle Hamiltonian
with Woods-Saxon potential are

Brot = 2h̄2R2
0

∑
s,t

∣∣〈s| dV
dr

1√
2
(Y21 + Y2−1)|t〉∣∣2

[εsεt − (Es − λ)(Et − λ) − 	s	t ]

2εsεt (εs + εt )3
, (13)

Bγ = 2h̄2R2
0

∑
s,t

∣∣〈s| dV
dr

1√
2
(Y22 + Y2−2)|t〉∣∣2

[εsεt − (Es − λ)(Et − λ) + 	s	t ](εs + εt )

2εsεt
(
(εs + εt )2 − ω2

γ

)2 , (14)

Bβ = 2h̄2R2
0

∑
s,t

∣∣〈s| dV
dr Y20|t〉

∣∣2
[εsεt − (Es − λ)(Et − λ) + 	s	t ](εs + εt )

2εsεt
[
(εs + εt )2 − ω2

β

]2 , (15)

where Es is the single particle energy, λ is the Fermi energy,
εs is the single quasiparticle energy, 	s is the energy gap
parameter depending on the single particle quantum number,
and ωβ, ωγ are the energies of the β and γ phonons. By
entering definitions

Bx ≡ 2h̄2R2
0�x (16)

where x = rot, β, γ and substituting (16) into (12) we obtain

E (2+
1 ) = 1

2β2
2 R2

0

(
2

5

1

�rot
+ 2

5

1

�γ

+ 1

5

1

�β

)
, (17)

where �β,�γ , and �rot are the sums in Eqs. (13)–(15).

III. MODEL AND RESULTS

As it is seen from (13)–(15) in order to calculate the
quantities �rot, �γ , and �β presented in the expression for
E (2+

1 ) we need in the single particle and single quasiparticle
energies matrix elements of the single particle operators and
the energies of β and γ vibrations. All these quantities can be
calculated in the framework of the quasiparticle phonon model
(QPM) [58–63]. Although this method is not self-consistent it
provides a sufficiently powerful tool for extensive calculations
and predictions.

The Hamiltonian of QPM used below has the following
structure:

H = Hsp + Hpair + HM . (18)

The mean field potential Vsp in Hsp contains the central po-
tential VWS in the Woods-Saxon form for the neutrons and
protons, the spin-orbit part Vso, and the Coulomb field VC for
protons:

Vsp = VWS + Vso + VC, (19)

where

VWS = −V0(1 + exp[(r − R(θ, ϕ))/a])−1. (20)

Here the axially deformed form of the Woods-Saxon potential
is assumed:

R(θ, ϕ) = R0

(
1 + β0 +

∑
λ=2,4

βλYλ,0(θ, ϕ)

)
, (21)

where R0 = r0A1/3. The parameters of the potential are given
in [64].

The term Hpair describes the monopole pairing forces with
the strength set to reproduce the odd-even mass differences.
After Bogoliubov transformation, we obtain the Hamilto-
nian in terms of the quasiparticle creation and annihilation
operators.

The term HM in (18) describes the multipole interaction
of quasiparticles. The separable forces expressed through the
operators of the multipole moments are used as the residual
interaction,

HM = −1

2

∑
l,μ

∑
τ,ρτ =±1

(
κ

(lμ)
0 + ρτκ

(lμ)
1

)
M+

lμ(τ )Mlμ(τ ). (22)

Here τ denotes neutrons or protons. The isoscalar κ
(lμ)
0 and

isovector κ
(lμ)
1 constants depend on angular momentum and

projection μ on the symmetry axis. The choice of their values
was justified in [49,59,65]. We have used the set of interaction
constants suggested for the region of heavy nuclei [65]. HM

generates phonon excitations in nuclei.
Using single particle wave functions and single particle

energies of the Hamiltonian HSP with Woods-Saxon potential,
u-v coefficients of the Bogoliubov transformation, the values
of 	ν and the single quasiparticle energies calculated taking
into account Hpair, as well as the energies of the β and γ

vibrations obtained using HM , we can calculate �rot, �γ , and
�β necessary to find E (2+

1 ) using the relation (17).
Below, we use the relation (17) to predict the energies

of 2+
1 states of a series of superheavy nuclei with proton

numbers from 100 to 120. As an example, we take a chain of
even-even nuclei from 256

100Fm to 296
120X, which differ from each
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TABLE I. The predicted energies of the 2+
1 states. Calculations are based on the microscopic variant of the Grodzins relation (17). The

variants [A] and [B] are calculated with the parameters obtained using Strutinsky procedure and the single particle level scheme described
in the text. These variants differ in the values of parameters of the spin-orbit part of the single particle potential. The variants [Kowal] and
[Möller] are calculated with deformation parameters taken from [68] and [69], correspondingly.

Nucleus β2 [A] E (2+
1 ) (keV) β2 [B] E (2+

1 ) (keV) β2 [Kowal] E (2+
1 ) (keV) β2 [Möller] E (2+

1 ) (keV)

256Fm 0.279 44 0.266 49 0.25 58 0.240 66
260No 0.287 42 0.267 49 0.25 53 0.242 57
264Rf 0.275 43 0.249 51 0.24 61 0.232 70
268Sb 0.263 34 0.252 37 0.23 39 0.232 38
272Hs 0.231 75 0.235 72 0.23 73 0.221 76
276Ds 0.232 89 0.224 95 0.21 100 0.210 101
280Cn 0.181 86 0.180 87 0.19 83 0.086 507
284Fl 0.139 217 0.173 141 0.15 140 0.064 934
288Lv −0.137 202 −0.137 185 −0.12 256 0.075 433
292Og 0.083 532 0.074 523 0.08 433 0.075 480
296120 −0.102 176 −0.102 168 0.09 324 0.075 384

other in the number of α particles. According to numerous
calculations, these nuclei include both highly deformed nuclei
and spherical (or close to spherical) nuclei. Due to this reason,
for our purpose it is convenient to use the Grodzins relation,
since its use is not limited to any particular shape of nuclei.
The practice of using it in the case of well studied nuclei has
confirmed it.

Table I shows the results of calculations of the energies of
the first 2+

1 states of nuclei from the selected chain.
Columns 2–5 show the results of calculations based on

the Hamiltonian QPM with Woods-Saxon potential described
above and quadrupole deformations obtained using the Struti-
nsky method [66,67]. Thus, these deformations correspond to
a minimum of the potential energy surface. The two variants
of the calculations indicated in Table I as [A] and [B] differ
in the values of the parameters of the spin-orbital part of the
Woods-Saxon potential. The results presented in columns 6–9
are obtained using the same single particle level scheme as
above, however, with the values of the quadrupole deforma-
tion β2 taken from [68] (denoted as [Kowal]) and from [69]
(denoted as [Möller]). Thus, in these two cases equilibrium
deformations are not determined self-consistently with the
single particle level scheme used for calculations of the inertia
coefficient. However, this gives us a possibility to check a
sensitivity of the obtained results to variations in deformation
parameters. In addition to the quadrupole deformation each
nucleus in Table I is also characterized by the value of the
hexadecopole deformation which is not indicated. This can
lead to different values of E (2+

1 ) even if the value of β2 and
the parameters of the microscopic Hamiltonian are the same.

The results of calculations are illustrated also in Fig. 1.
We see that qualitatively all four variants given in Table I are
similar in the nature of the change with Z . At the beginning
of the studied region at Z = 100–110, where quadrupole de-
formation is large, the energies of 2+

1 states do not exceed
100 keV, i.e., correspond to rotational states. Then, with de-
crease in deformation, E (2+

1 ) rises sharply and reaches a
maximum value of 400–900 keV in 284Fl ([Möller]) or in
292Og ([A], [B], [Kowal]), i.e., in nuclei with a minimal value
of β2. Clearly, this reflects the characteristics of the underlying

single particle level scheme. As noted above, our predictions
for nuclei with small deformation underestimate the values
of E (2+

1 ). Thus, values of 400–900 keV should be consid-
ered as the lower boundary. Note that even in nuclei with
Z = 114–120 the number of neutrons is far from the magic
one N = 184. Note also that the use of the above microscopic
model to calculate the characteristics of nuclei with a very
small deformation requires justification. This applies espe-
cially to calculation for 284Fl performed at β2 = 0.064. This
work, however, does not consider this issue.

In Fig. 2 are shown the results of the calculations ob-
tained using Eq. (17), as well as the results obtained using
the phenomenological formula (1). Since in (1) the coefficient
on the right side of the equation also contains information

FIG. 1. The predicted energies of the 2+
1 states for different

nuclei. Calculations are based on the microscopic variant of the
Grodzins relation (17) with different sets of quadrupole deformation.
Solid line with squares (black): variant [A]; dashed line with circles
(red): variant [B]; dot line with triangles (blue): variant [Kowal];
dash-dot line with inverted triangles (magenta): variant [Möller].
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FIG. 2. The predicted energies of the 2+
1 states for different

nuclei. Calculations are performed for the microscopic variant of
the Grodzins relation (17) (variant [A]) and the phenomenological
Grodzins relation (1) [E (2+

1 )max and E (2+
1 )min with the proportion-

ality coefficient 3.02 and 2.12, respectively]. Solid line with circles
(red): E (2+

1 )max; solid line with triangles (blue): E (2+
1 )min; dashed

line with squares (black): variant [A].

about the error of its definition, in Fig. 2 are shown two
lines corresponding to the maximum E (2+

1 )max and minimum
E (2+

1 )min values of this coefficient. In the calculations a set
of deformation parameters β2 given in the second column
of Table I is used. It is seen from Fig. 2 that the results of
calculations based on (17) go beyond the limits bounded by

the lines corresponding to E (2+
1 )max and E (2+

1 )min in more
than half of the cases.

IV. CONCLUSION

Based on the Grodzins relation derived using the Bohr col-
lective Hamiltonian and the microscopical model of nuclear
structure, the excitation energy of the first 2+ states of the
chain of even-even superheavy nuclei with Z from 100 to
120 are predicted. Calculations are performed for several sets
of deformation parameter β2 calculated by us or taken from
the other publications. We see that for all sets of deformation
parameters, at the beginning of the studied region of nuclei
at Z = 100–110, where quadrupole deformation is large, the
energies of the 2+

1 states do not exceed 100 keV, i.e., corre-
spond to rotational states. Then, with decrease in deformation,
E (2+

1 ) rises sharply and reaches a maximum value in 284Fl or
in 292Og, i.e., in nuclei with minimal values of β2.

We note that our predictions for nuclei with small de-
formation underestimate the value of E (2+

1 ) because the
proportionality coefficient in Grodzins relation should in-
crease with deformation decrease. At the same time using
the present microscopic model to calculate the characteristics
of nuclei with very small deformation requires justification.
This is important for nuclei around the magic or double magic
ones for which mean square fluctuations of β2 should be used
instead of their equilibrium values.
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