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Nucleon-nucleon scattering with perturbative pions: The uncoupled P-wave channels
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The uncoupled P-wave channels of nucleon-nucleon scattering are studied in an effective field theory (EFT)
including a perturbative dibaryon field and perturbative pions. Good agreement between EFT results and the
Nijmegen partial wave analysis is observed up to a center-of-mass momentum k ≈ 400 MeV. Using a method
that combines renormalization and fitting together, the long-standing convergence problem of EFTs in these
channels with perturbative pions, for momenta above the pion mass is addressed from a new perspective.
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I. INTRODUCTION

Half a decade after Weinberg’s seminal work [1,2] on
effective field theories (EFTs) of nuclear physics with non-
perturbative pions [3,4], Kaplan, Savage, and Wise (KSW)
introduced an EFT with a new power counting (PC) that treats
pion interactions perturbatively [5–7]. For a recent review of
different PC and progress in nuclear EFTs, see Refs. [8,9].
Similar to Weinberg’s PC, i.e., naive dimensional analysis
(NDA) [10,11], the KSW PC requires resummation of the
contact C0 interaction at leading order (LO) for the S-wave
channels. This reproduces the bound and virtual state poles
seen in nature. Pions, however, were included perturbatively
starting at next to leading order (NLO) as justified by em-
pirical evidence from the spin-singlet S-wave channel, which
suggests that the chiral expansion parameter for nucleon-
nucleon (NN) scattering is roughly 1/3. This agrees with
the theoretical expansion in Q/�NN where Q ≈ 100 MeV
is a typical low-energy scale and �NN = 16π f 2

π /(mN g2
A) ≈

300 MeV, with gA = 1.25 and the pion decay constant fπ �
92 MeV.

In the S-wave channels, pions at NLO only account for
half of the effective range r0, so C2 is promoted to NLO
in the KSW PC,1 even though it appears at a higher order
in NDA. By using the same argument as in Ref. [10], one
can show that changing the PC for C2 affects higher order
low-energy constants (LECs) in the S-wave channels as well.
In the other channels,2 the LECs of four-nucleon contact in-
teractions in the KSW PC have an extra power of Mlo/Mhi

relative to NDA. For example, in the P-wave channels the LO
phase shift is zero, and at NLO and next to next to leading
order (NNLO) there are only contributions from the one-pion

*jbalalhabashi@email.arizona.edu
1It has also been shown that with specific renormalization group

considerations C2 should appear at NLO in the KSW and pionless
PC [5–7,12,13].

2Except for the contact interactions of the mixing channel 3S1-3D1,
like C (SD)

2 , that appear at the same order as NDA.

exchange (OPE) potential; C2 in these channels appears at
next to next to next to leading order (N3LO) [7,14].

In the 1S0 channel, the KSW PC converges for momenta
up to �NN ≈ 300 MeV; however, Fleming et al. [14,15] show
that in the lower spin-triplet channels the PC does not con-
verge at NNLO. Additionally, Kaplan and Steele [16] argue
that the slow convergence problem of the KSW PC above the
pion mass is due to higher energy physics and is not related to
pion interactions which mostly affect lower energies.

One way of incorporating correlated high-energy physics
is by introducing a dibaryon field. They were first introduced
in the context of nuclear EFTs by Kaplan [17] and have since
been studied in the S-wave channels of NN scattering [18–23].
These studies were carried out in various energy regimes,
both with perturbative and nonperturbative pions.3 Comparing
the pionless and pionful results of Ref. [22] for momenta up
to k ≈ 400 MeV strongly suggests that pions can be treated
perturbatively in the presence of dibaryon fields. This begs the
question: Can pion interactions in other channels be treated
perturbatively in the presence of an auxiliary field? Although
it might be new in nuclear EFTs, a similar idea was pursued in
the context of quantum interactions. In earlier papers [25,26],
Weinberg showed that quantum interactions can be treated
perturbatively by introducing a heavy quasiparticle state.

In addition to the work on S-wave channels of NN scat-
tering that suggest that pions can be treated perturbatively
with a dibaryon field, there is phenomenological motivation,
especially for the uncoupled P-wave channels, for including
a dibaryon field. That is, the phase shift in these channels
decreases almost linearly at larger momenta, i.e., δ ∝ −k;
however, promoting the contact C2 interaction to NLO gives
δ ∝ k3 [27]. But with a dibaryon field one can get a tuneable
linear function (see Sec. IV for further discussion on this
subject).

3For applying a dibaryon as a resonance field in all partial waves of
a pionless EFT, see Ref. [24].
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By adding a dibaryon field, an infinite subset of correlated
contact interactions are included which incorporate higher
energy physics. One result of this is to push the breakdown
scale of the theory to Mhi ≈ 1 GeV, and the low-energy scale
of the theory to be about Mlo ≈ 300 MeV. Pion interactions
also become perturbative by including a dibaryon field. As a
result, the PC will differ from NDA.

In the new PC chiral-symmetry-breaking (CSB) contact in-
teractions appear at higher orders after chiral ones. By looking
at diagrams and keeping track of divergent terms proportional
to m2m

π we can get an estimate of the PC [6,7]. After factoring
out 4π/mN , the PC of contact interaction LECs in the La-
grangian Eq. (5) for n � 0 and m � 1 is

C2n ∼ O
(

1

MloM2n
hi

)
, (1)

D2n+2m m2m
π ∼ O

(
M2m−2

lo

M2n+2m−1
hi

)
∼

(Mlo

Mhi

)2m−1

O
(

1

Mlo M2n
hi

)
.

(2)

For a specific n, C2n first appears at N2nLO. For example,
two C0 appear at LO of S-wave channels and six C2 appear
at NNLO of S- and P-wave channels and so on. The CSB
LECs with the same powers of momentum as C2ns start to
appear at one order higher. m2

π appears whenever there is a
breaking of chiral symmetry; hence, counting divergent terms
proportional to m2m

π suggests that symmetry breaking is down
by appropriate powers of Mlo/Mhi each time. For example, the
PC of D2n+2m m2m

π suggests that adding m2m
π is equivalent to

adding 2m − 1 powers of Mlo/Mhi to the normal PC of the
same order LECs, i.e., C2ns. This observation is useful for
determining the PC of CSB LECs of dibaryon fields after
finding the PC for their chiral counterparts.

Similar to the PC of NDA and KSW, a cancellation be-
tween C0 and the analytic part of loop integrals results in a
resummation of diagrams. The resummation only happens in
the S-wave channels, and all other LECs are perturbative, e.g.,
a C2 appears at NNLO in all channels. The first CSB contact
interaction D2 appears at NLO in the S-wave channels, and in
all channels D4 appears at N3LO.

As demonstrated in this paper, the dibaryon field is per-
turbative and appears at NLO. For the uncoupled P-wave
channels the PC of the LECs in the Lagrangian Eq. (5) as-
sociated with the dibaryon field is

g1 ∼ O
(

1

Mhi

)
, h1+2m m2m

π ∼ O
(

M2m−1
lo

M2m
hi

)
, (3)

� ∼ O
(

M2
lo

Mhi

)
, ω2m m2m

π ∼ O
(

M2m+1
lo

M2m
hi

)
, (4)

where g1 and � are chirally symmetric dibaryon LECs with
naive or simple PC, and h1+2m m2m

π and ω2m m2m
π are CSB

dibaryon LECs with the same type of interaction as g1 and
�, respectively. In principle, we should be able to derive this
PC for each partial wave by using a nonrelativistic version of
the method in Ref. [10], but such a calculation is beyond the
scope of this paper. I find that the PC in Eqs. (3) and (4) works
at least up to NNLO for the uncoupled P-wave channels. The

observation about the relation between m2m
π and M2m−1

lo /

M2m−1
hi for D2n+2m m2m

π is key in deducing the CSB PC in
Eqs. (3) and (4). As we see, the first CSB LECs for P waves
appear at NNLO.

The rest of the paper is organized as follows. In Sec. II,
the Lagrangian and PC are discussed in more detail. The T
matrix and a new method of renormalization and parameter
fitting are explained in Sec. III. In the same section, the NLO
and NNLO regulator-independent T matrices are calculated.
In Sec. IV, the EFT phase shifts are fitted to the Nijmegen
partial wave analysis (PWA) [28,29]. I conclude in Sec. V.
Appendix A gives details of the off-shell NLO T matrices,
analytic expressions for pion-dibaryon loop integrals and the
regulator dependence of LECs. In Appendix B, a second
method of renormalization and parameter fitting is presented
and discussed.

II. LAGRANGIAN AND POWER COUNTING

I consider an NN scattering system for which the La-
grangian is invariant under Lorentz transformations (in the
form of reparameterization invariance [30,31]), parity and
time-reversal transformations, and conserves baryon number.
Similar to NDA [10,11], the low- and high-energy scales are
taken to be Mlo ≈ 300 MeV and Mhi ≈ 1 GeV, and pions
are needed as explicit degrees of freedom because their mass
mπ � 140 MeV is of order Mlo. Spontaneous breaking of
chiral SU(2)L × SU(2)R symmetry of QCD into the SU(2)V

subgroup of isospin [1,2,32] is a guide for the form of in-
teractions in the EFT, with an isospin-triplet of pions πa

(a = 1, 2, 3). Chiral-symmetric interactions are included via
the chiral covariant derivatives of pion and nucleon fields;
however, CSB interactions proportional to quark masses or m2

π

are constructed using components of SO(4) vectors. Finally,
in order to include physics of energies above the pion mass, I
introduce an auxiliary odd-parity dibaryon field φ

(s)
i,a [17] for

each channel with a sign parameter η(s). The most general
Lagrangian is4

L = N†

[
i∂0 + �∇2

2mN
− gA

2 fπ
τa(�σ · �∇πa)

]
N

+ 1

2
πa

(
∂2

0 − �∇2 + m2
π

)
πa

+ η(s)φ
(s)†
i,a

[
i∂0 + �∇2

4mN
− (

�(s) + ω
(s)
2 m2

π

)]
φ

(s)
i,a

+
√

4π

mN

(
g(s)

1 + h(s)
3 m2

π

)(
φ

(s)†
i,a NT P(s)

i,a N + H.c.
)

− 4π

mN
C(s)

2

(
NT P(s)

i,a N
)†(

NT P(s)
i,a N

) + · · ·, (5)

where s = 1P1,
3P0,

3P1, and the sum over the vector index i
and isospin index a are implicit. LECs are also labeled for

4I assume that only nucleon fields interact with pions and not
the dibaryon field. For a dibaryon field interacting with pions, see
Refs. [19–21].
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each channel separately. In the above Lagrangian, �σ (τa) are
the Pauli matrices in spin (isospin) space,

P(1P1 )
i =

√
3

2
√

2

(
−i

←→∇ i

2

)
(iσ2)(iτ2), (6)

P(3P0 )
a = 1

2
√

2

(
−i

←→∇ i

2

)
(iσ2 σi )(iτ2 τa), (7)

P(3P1 )
i,a =

√
3

4
εi jk

(
−i

←→∇ j

2

)
(iσ2 σk )(iτ2 τa) (8)

are the projection operators on respectively the 1P1, 3P0,
and 3P1 channels [14,15], with

←→∇ ≡ −→∇ − ←−∇ . The “· · ·”
indicates higher order terms with more fields, derivatives,
and powers of m2

π . For a nucleon-dibaryon interaction with
 derivatives that appears at NLO we need at least  + 1
dibaryon LECs to renormalize the loop integrals at higher
orders. For the P waves with  = 1, we need two LECs,
which are present as � and g, and there is no need for higher
derivative dibaryon interactions, as their effects are accounted
for by higher order contact terms.

In contrast to the usual notation in most of the literature,
4π/mN has been factored out of the LECs, and the convention
for definitions of the T matrix and potential throughout the
paper is

T ≡ mN T

4π
, V ≡ mN V

4π
. (9)

A typical LEC g and consequently observables like the T
matrix and phase shift are expanded at each order of the
perturbation

g = g(0) + g(1) + g(2) + · · ·, (10)

T = T
(0) + T

(1) + T
(2) + · · ·, (11)

δ = δ(0) + δ(1) + δ(2) + · · ·, (12)

where the superscripts n = 0, 1, 2, . . . indicate LO, NLO,
NNLO, and so on. Each channel has its own LECs, but the
channel superscripts s will be dropped throughout this paper
for simplicity. According to the PC, the LECs and interactions
appearing at each order are

LO : − − −,

NLO : �(0), g(1)
1 , �π,

NNLO : �(1), ω
(1)
2 m2

π , g(2)
1 , h(2)

3 m2
π , C(2)

2 , �π �π, (13)

where �π �π means iteration of the OPE potential. Radiation
and soft pion interactions are not considered in the up to
NNLO calculations of this paper. Thus, similar to Ref. [14]
for the P waves, I include only iterations of the OPE potential.
These iterations contain infrared enhancements [1,2] relative
to multiple-pion-exchange potentials with the same number of
pion fields [33]. Note that the residual mass of the dibaryon
always comes with a factor of the nucleon mass mN , and
therefore �(0) is a LO LEC with the same size as the kinetic
term, but the smallness of the nucleon-dibaryon coupling g1

means that it first appears at NLO.

There is no difference in the Feynman rules of chiral and
CSB LECs with the same number of derivatives or momenta
that appear at the same order in the perturbation. Thus, I define

�̃(1) ≡ �(1) + ω
(1)
2 m2

π , (14)

g̃(2)
1 ≡ g(2)

1 + h(2)
3 m2

π , (15)

which are used in the NNLO calculations. Whenever a new
LEC appears at a given order of perturbation theory, e.g., ω

(1)
2

and h(2)
3 , an additional fitting parameter is needed as well. The

NLO LECs and NNLO C2 do not run with the regulator, and
I give an estimate of their size in terms of Mlo and Mhi in
Sec. IV.

In this paper, I renormalize in two different ways. In
the next section, I maximally exploit the nonlocality of the
dibaryon field by absorbing a part of the nonanalytic effects
of pion interactions in its NNLO LECs. In the second method
detailed in Appendix B, nonanalytic pion effects get absorbed
in a redefinition of dibaryon NLO LECs by refitting them at
NNLO. Although this may work in special cases and at lower
orders of the perturbation, we see that nonanalytic effects of
pion interactions, both chiral and CSB parts, can have large
effects on LECs at higher orders of the perturbation, as has
been observed in Refs. [14,15].

III. T MATRIX AND RENORMALIZATION

The T matrix of nonrelativistic quantum systems has been
studied extensively; for example, see Ref. [34]. I am specif-
ically interested in the T matrix that is directly related to
the scattering amplitude via Feynman diagrams in an EFT.5

Therefore, for a nonrelativistic EFT, I use the Lippmann-
Schwinger equation (LSE) for a systematic expansion of T
in a perturbative scheme. The off-shell LSE for the T matrix
in the momentum space is

T ( �p ′, �p, k) = V ( �p ′, �p)

+
∫

d3q

(2π )3
V ( �p ′, �q) G(�q, k) T (�q, �p), (16)

where k = √
mN E and

G(�q, k) = mN

k2 − q2 + i ε
(17)

is the nonrelativistic Schrödinger propagator. The potential
V ( �p ′, �p) is given by tree level diagrams in the EFT. The total
spin s and the total angular momentum j are conserved, and if
I label the angular momentum between incoming and outgo-
ing particles by  and ′ respectively, the projected off-shell T
matrix with the convention in Eq. (9) is

T ,′ (p′, p) = V ,′ (p′, p)

+ 2

π

∑
′′

∫ �

dq q2 V ,′′ (p′, q) T ′′,′ (q, p)

k2 − q2 + iε
,

(18)

5Note that for the scattering amplitude A we have A = −T .
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−i T (1) : +

FIG. 1. Feynman diagrams corresponding to the NLO T matrix.
The OPE potential contribution is shown on the left and the dibaryon
contribution on the right. The nucleon-dibaryon coupling is g(1)

1 .

where the angular momenta , ′, and ′′ run over j − s to j +
s. For the uncoupled channels,  = ′ = ′′ and I ignore the
summation. In the above equation, the sharp-cutoff regulator
is only for the magnitude of 3-momentum, and there is no
breaking of rotational invariance.

For the sharp cutoff with � → ∞ limit, Phillips et al. [35]
show that results of loop integration are equivalent to the
power divergence subtraction (PDS) scheme of Ref. [6,7] if
poles in dimensions other than D = 4 are subtracted. In the
sharp-cutoff scheme of this paper, I keep only the divergent
and finite terms in loop diagrams. Although terms that vanish
as � → ∞ give insight into the size of the theoretical error
and the next order LECs, they are omitted because they are
not important for the purpose of renormalization.

In order to find the T matrix at each order in perturbation
theory, I calculate the tree level off-shell T matrix or potential
and then replace the T matrix in the integrand of Eq. (18) with
the potential to get the T matrix of the next order and so on.
The phase shift and T matrix are related to each other through
the unitarity condition of the S matrix

S = e2i δ = 1 − 2 i k T . (19)

For the P-wave channels, the LO phase shift δ(0) = 0 because
the T matrix vanishes at this order. Therefore after using
expansions in Eqs. (11) and (12), relations between phase
shifts and T matrices of higher orders are

δ(1) = −k T
(1)

, (20)

δ(2) = −k T
(2) − i k2 T

(1)2
.

... (21)

Note that the phase shift is real and there is no imaginary
piece in Eq. (20). Also, the imaginary part of NNLO T matrix
cancels the last term in Eq. (21). This is another way of
checking the unitarity condition of the S matrix at each order
in the perturbation.

The NLO and NNLO T matrices

In the three channels I consider in this paper, the T matrix
and the renormalization procedure are independent of spe-
cific channel projections. Hence, at NLO there are OPE and
dibaryon interactions shown in Fig. 1. The on-shell T matrix
corresponding to these diagrams is

T
(1)

(k, m2
π ) = T

(1)
π

(
k, m2

π

) + η mN g(1)
1

2
k2

k2 − mN �(0)
. (22)

−i T (2) : +

+ +

+ +

+ +

FIG. 2. Feynman diagrams corresponding to the NNLO T ma-
trix. First two lines involve NLO vertices and second two lines
involve NNLO vertices. The circle, diamond, and double circle rep-
resent g̃(2)

1 , �̃(1), and C (2)
2 respectively.

where T
(1)
π (k, m2

π ), which is the on-shell tree level OPE T ma-
trix for each channel, is given in the next section by taking the
on-shell limit of the off-shell NLO T matrix in Appendix A.

Feynman diagrams corresponding to the total NNLO T
matrix are shown in Fig. 2. The two-pion ladder or box di-
agram is not divergent for the P waves; however, the cross
pion-dibaryon diagrams are linearly divergent (except for one
channel), and the two-dibaryon diagram with a loop is diver-
gent as well. While it is possible to derive analytic expressions
of the divergent and pionless parts of the NNLO T matrix, I
calculate the finite and real part of the first diagram in Fig. 2
numerically by the method described in the previous section.6

The sum of the finite and real parts of the first three diagrams
in Fig. 2 is

R(2)
(
k, g(1)

1 ,�(0), m2
π

) = Re
[
T

(2)
ππ (k, mπ )

]
+ 2 η mN g(1)

1
2

k2

k2 − mN �(0)
Re

[
I [fin]
πd

]
, (23)

where T
(2)
ππ (k, mπ ) is the on-shell T matrix of the box diagram

from iteration of the OPE potential, and I [fin]
πd is the dimen-

sionless finite part of the loop integral in cross pion-dibaryon
diagrams given in Appendix A. Then, the T matrix at NNLO
can be expressed as

T
(2)

(k, m2
π ) = − i k

[
T

(1)(
k, m2

π

)]2

+R(2)
(
k, g(1)

1 ,�(0), m2
π

) + C(2)
2 k2

6An alternative numerical calculation of the box diagram from the
OPE potential can be found in Ref. [33].
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+ 2 η mN g(1)
1

2
k2

k2 − mN �(0)

[
I [div]
πd − η mN g(1)

1
2 L1

2

+ g̃(2)
1

g(1)
1

]
− m2

N g(1)
1

2
k2

(k2 − mN �(0) )2

× [
g(1)

1
2
(L3 + mN �(0) L1) − η �̃(1)

]
, (24)

where I [div]
πd is the dimensionless divergent part of the loop in-

tegral in cross pion-dibaryon diagrams given in Appendix A,
and for a nonzero integer m and with a sharp-cutoff regulator,
Lm is

Lm = 2

π

�m

m
. (25)

A few remarks: First, from Eqs. (A5)–(A7) in Appendix A,
I [div]
πd is not proportional to m2

π , so there is no need for D4 m2
π

at NNLO; however, the central values of the “chiral” NLO
LECs will change due to the inclusion of ω

(1)
2 and h(2)

3 in �̃(1)

and g̃(2)
1 respectively. But I can renormalize in a way that the

central values of fitted chiral NLO plus CSB NNLO parame-
ters stay unchanged. Second, all divergent terms in Eq. (24)
can be absorbed by the NNLO expansions of NLO LECs,
and therefore C(2)

2 is regulator independent. I find its value by
fitting the result of the up to NNLO EFT phase shift to data.
Finally, all imaginary parts of the NNLO T matrix come from
diagrams in the first two lines of Fig. 2, and one can show
numerically that their sum is the same as the imaginary term
in Eq. (24), as is required by the unitarity condition of the S
matrix.

For renormalization, I use a new method that keeps central
fitted values of chiral NLO plus CSB NNLO parameters un-
changed. There are two NLO LECs and two data points are
needed at momenta k = {k1, k2} to fix them. These fitted val-
ues are directly related to the experimental values or a model
that describes the phase shift (like PWA) at those momenta.
Therefore, in the up to NLO EFT I can attribute these fitted
values to chiral parts, but at NNLO adding ω

(1)
2 and h(2)

3 means
a portion of these fitted values are coming from CSB terms.

Since I want to keep central values of the linear combi-
nation of chiral NLO and CSB NNLO terms unchanged at
momenta used in the NLO fit, the real part of the NNLO T
matrix in Eq. (24) should contribute to the total up to NNLO
T matrix “only” as a renormalized CSB value. Hence, I have

Re
[
T

(2)(
k1,2, m2

π

)]
= η mN γ (2) m2

π k2
1,2

k2
1,2 − mN �(0)

+ η m2
N g(1)

1
2
θ (1) m2

π k2
1,2(

k2
1,2 − mN �(0)

)2 , (26)

where θ (1) and γ (2) are renormalized values related to ω
(1)
2 and

h(2)
3 respectively. The above equation is an abbreviation for

two conditions7 at k1 and k2. From these two conditions, I

7In a pionless theory, the right-hand side of Eq. (26) is zero, which
is similar to conditions put on pionless theories by keeping the
experimental values of the effective range parameters fixed.

can find g̃(2)
1 and �̃(1), given in Appendix A, in terms of NLO

fitted values, the cutoff �, C(2)
2 and complicated nonanalytic

functions of mπ [16,36]. With the conditions in Eq. (26), the
renormalized NNLO T matrix is

T
(2)(

k, m2
π

) = −i k
[
T

(1)(
k, m2

π

)]2 + η mN γ (2) m2
π k2

k2 − mN �(0)

+ η m2
N g(1)

1
2
θ (1) m2

π k2

(k2 − mN �(0) )2

+ R(2)
(
k, g(1)

1 ,�(0), m2
π

)
−

(
k2 − k2

2

)
(
k2

1 − k2
2

)
(
k2

1 − mN �(0)
)2

(k2 − mN �(0) )2

k2

k2
1

R(2)
k1

+
(
k2 − k2

1

)
(
k2

1 − k2
2

)
(
k2

2 − mN �(0)
)2

(k2 − mN �(0) )2

k2

k2
2

R(2)
k2

+
(
k2 − k2

1

)(
k2 − k2

2

)
(k2 − mN �(0) )2 C(2)

2 k2, (27)

with R(2)
k1,2

≡ R(2)(k1,2, g(1)
1 ,�(0), m2

π ). The total phase shift
up to NNLO from Eqs. (20) and (21) is

−δ(t )

k
= −1

k
(δ(1) + δ(2) )

= T
(1)
π

(
k, m2

π

) + η mN ḡ(1)
1

2
k2

k2 − mN �̄(0)

+ R(2)
(
k, g(1)

1 ,�(0), m2
π

)
+

(
k2 − k2

1

)(
k2 − k2

2

)
(k2 − mN �(0) )2 C(2)

2 k2

−
(
k2 − k2

2

)
(
k2

1 − k2
2

)
(
k2

1 − mN �(0)
)2

(k2 − mN �(0) )2

k2

k2
1

R(2)
k1

+
(
k2 − k2

1

)
(
k2

1 − k2
2

)
(
k2

2 − mN �(0)
)2

(k2 − mN �(0) )2

k2

k2
2

R(2)
k2

, (28)

where the finite �̄(0) and ḡ(1) 2
1 are

�̄(0) ≡ �(0) + θ (1) m2
π , (29)

ḡ(1)
1

2 ≡ g(1)
1

2 + γ (2) m2
π . (30)

This method of renormalization uses data points instead of an
interval of data, so the number of data points I need at each
order in the perturbation is equivalent to the number of new
LECs at that order. For example, at NLO I have two LECs
and two data points are needed at k = {k1, k2}. At NNLO, in
principle I need three additional data points to determine θ (1),
γ (2), and C(2)

2 ; however, as we can see in Eqs. (29) and (30),
it is impossible to distinguish between chiral and CSB fitting
parameters from one scattering process with a fixed value of
m2

π . Therefore, I only need one more data point at k = k3 to
determine only C(2)

2 , and the central values of �̄(0) and ḡ(1) 2
1

are kept fixed to the NLO fitted values.
Note that keeping the NLO fitted values fixed does not

mean that �̄(0) = �(0) or ḡ(1) 2
1 = g(1) 2

1 . It means that the main
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TABLE I. Results of fitting up to NNLO LECs in the 1P1 channel to the Nijmegen PWA phase shift for two sets of data points at momenta
{k1, k2, k3}. After fitting NLO constants g(1)

1 and �(0) to the data points {k1, k2}, k3 fixes the C (2)
2 at NNLO. Note that the fitted value of �̄(0) at

NNLO is the same as the fitted value of �(0) at NLO.

1P1 {k1, k2, k3}(MeV) g(1)
1 (MeV−1) �(0) (MeV) C (2)

2 (MeV−3)
√

mN |�(0)| (MeV) η

Fit 1 350, 400, 300 0.00112 −97.8 −3.8 × 10−9 303.0 +1
Fit 2 310, 370, 280 0.00123 −149.2 −7.7 × 10−9 374.3 +1

portion of the actual values that I fit at NLO are chiral, and
a small and perturbative part of them are due to CSB parts,
which I could not resolve at NLO. At NNLO, however, effects
of these CSB parts become manifest to order m2

π , and they can
be distinguished via θ (1) and γ (2), although their combination
with chiral parts still have the same fitted values as at NLO.
In order to find values for θ (1) and γ (2) new data points are
needed either from lattice calculations of the same process
with a different value of m2

π or another mπ -sensitive process.
Since �(0) and g(1) 2

1 in Eq. (28) appear in NNLO terms, I
can replace them with �̄(0) and ḡ(1) 2

1 and use the same fitted
NLO values when I fit the total phase shift to data. A different
method of renormalization is explained in Appendix B.

Forms of the last three terms in Eq. (28) are specific com-
binations of terms in Eq. (24). Although these forms ensure
that two conditions in Eq. (26) are fulfilled, their overall effect
is more than just that. They counteract effects of nonanalytic
terms in pion interactions that arise in R(2)(k, g(1)

1 ,�(0), m2
π ).

It is remarkable that simple functions like these rectify effects
of a complicated function like R(2) in almost the entire region
of validity of the EFT.

IV. RESULTS

In order to fit EFT results, three data points are needed
for three LECs �, g1, and C2. Higher order contributions to
these LECs do not change number of parameters. I choose
two sets of data points for each channel in order to show that
final results have not been optimized by a specific choice of
momenta. Since �(0), g(1)

1 , and C(2)
2 are finite, their order of

magnitude can be estimated according to the PC and sizes of

Mlo ≈ 300 MeV and Mhi ≈ 1 GeV:√
mN �(0) ∼ Mlo ∼ 300 MeV,

g(1)
1 ∼ 1

Mhi
∼ 10−3 MeV−1,

C(2)
2 ∼ 1

Mlo M2
hi

∼ 10−9 − 10−8 MeV−3. (31)

In order to get values of �(0) and g(1)
1 , I choose two momenta

that give the best fit to data. For the third data point needed
for C(2)

2 , I can choose a data point which gives the best result
at NNLO. The total up to NNLO EFT phase shift is given
in Eq. (28), and the phase shift data is from the Nijmegen
PWA [28,29] for laboratory energies Elab � 350 MeV.

As has been shown by Fleming et al. [14,15] and Pavón
Valderrama et al. [37], while the phase shift from iterating the
OPE potential in the 1P1 channel converges quickly, it does a
poor job of describing the data above the pion mass. Adding
a dibaryon field goes a long way in solving the convergence-
to-data problem. The on-shell T matrix in the 1P1 channel at
NLO is (see Appendix A)

T
(1)(1P1 )

(k, m2
π ) = η mN g(1)

1
2

k2

k2 − mN �(0)
+ 1

�NN

[
− 3 m2

π

2 k2

+ 3 m2
π (m2

π + 2 k2)

8 k4
ln

(
1 + 4 k2

m2
π

)]
. (32)

Results of fitting the above T matrix to two data points {k1, k2}
are given in Table I and the corresponding phase shift is
plotted in Fig. 3 (blue long-dashed lines). Even at NLO, an im-
provement relative to perturbative OPE potential for momenta
above k ≈ 200 MeV is evident. I use Eqs. (23) and (27) to fit

Nijm PWA−1P1
NLO−Pion
NNLO−Pion
NLO−Fit 1
NNLO−Fit 1

100 200 300 400 k (MeV)

−30

−20

−10

(Deg)

Nijm PWA−1P1
NLO−Pion
NNLO−Pion
NLO−Fit 2
NNLO−Fit 2

100 200 300 400 k (MeV)

−30

−20

−10

(Deg)

FIG. 3. The Nijmegen PWA (red circles) vs NLO (blue long-dashed line) and NNLO (black short-dashed line) EFT results for the 1P1

channel. Also shown are results from pion-only contributions, which represent the KSW PC, at NLO (green dotted line) and NNLO (orange
double-dotted line). I use momentum sets given in Table I for fitting and graph results on the left for fit 1 and on the right for fit 2.
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TABLE II. Results for fitting up to NNLO LECs in the 3P0 channel. For notation and explanation, see Table I.

3P0 {k1, k2, k3}(MeV) g(1)
1 (MeV−1) �(0) (MeV) C (2)

2 (MeV−3)
√

mN |�(0)| (MeV) η

Fit 1 300, 400, 200 0.00250 −99.7 1.2 × 10−8 305.9 +1
Fit 2 180, 320, 380 0.00286 −168.0 2.6 × 10−8 397.2 +1

the NNLO EFT calculated phase shift to the Nijmegen PWA
at the third data point, k = k3. Results are given in Table I and
plotted in Fig. 3 (black short-dashed lines). Clearly NNLO
results are in an even better agreement with data than those
at NLO.

Another way of checking the PC is by looking at fitted
finite values of LECs. Size of fitted parameters in Table I
are close to the estimation from the PC in Eq. (31). With a
negative �(0), the denominator of the NLO T matrix vanishes
for an imaginary momentum

√
mN |�(0)|. This imaginary mo-

mentum cannot be an “imaginary” pole corresponding to a
bound and/or virtual state, because an imaginary pole appears
when there is a resummation in loop integrals and the unitary
part of loop integrals are on equal footing to the imaginary
pole, which is not the case for the perturbative approach here.
It is possible that this imaginary momentum corresponds to an
imaginary zero of amplitude, which is not visible in the real
phase shift or in k cot δ.

The interesting k2 � mN �(0), m2
π limit of the LO T

matrix is

lim
k2�mN �(0), m2

π

T
(1)(1P1 ) = η mN g(1)

1
2 + · · ·, (33)

where η = +1 for this channel means the phase shift in
Eq. (20) decreases linearly at larger momenta. This is a feature
coming from the dibaryon field, not the contact interactions.
The same feature holds for the 3P0 and 3P1 channels too.

The lower spin-triplet channels are real challenges for the
KSW PC at NNLO because of the large disagreement with
data [14]. These channels have thus been subject of many
studies; for example, see Refs. [27,38–42]. The 3P0 channel
is a special case because unlike the other uncoupled P-wave
channels its phase shift does not decrease or increase mono-
tonically and it passes zero at k ≈ 300 MeV similar to the 1S0

channel. In contrast, however, the overall size of the phase
shift is not large enough to support the idea of a pole in the T
matrix.

For the 3P0 channel, the total on-shell T matrix at NLO
can be extracted from the off-shell T matrix in the diagrams
in Fig. 1 (see Appendix A)

T
(1)(3P0 )

(k, m2
π ) = η mN g(1)

1
2

k2

k2 − mN �(0)

+ 1

�NN

[
− 1 + m2

π

4 k2
ln

(
1 + 4 k2

m2
π

)]
.

(34)

The k2 term in the numerator of dibaryon part is due to the
P-wave nature of this channel. In the denominator, when k2

is small relative to mN �(0) an expansion of the dibaryon
propagator is similar to the on-shell contact interactions in
Ref. [27].

Fitted values of g(1)
1 , �(0), and C(2)

2 from two sets of mo-
menta are given in Table II and the phase shift is plotted in
Fig. 4. As we see from graphs, the importance of the dibaryon
field shows itself in the k2 � mN �(0), m2

π limit where the T
matrix is a constant at this order

lim
k2�mN �(0), m2

π

T
(1)(3P0 ) = − 1

�NN
+ η mN g(1)

1
2 + · · ·. (35)

One can check that with η = +1 and fitted values of pa-
rameters in Table II, sum of the first two terms is positive.
Therefore, the phase shift decreases linearly at larger mo-
menta, in contrast to the quadratic behavior due to the contact
term C2 k2 [27]. Again, fitted values for this channel are
close to the estimation of the PC. The NLO EFT phase shift
shows real improvement relative to results of the KSW PC
for momenta below k ≈ 200 MeV, and the agreement with
data improves at NNLO. Similar to the 1P1 channel, there is a
possible imaginary zero in the denominator of the T matrix in
the 3P0 channel.

In the KSW PC there are no new parameters at NNLO in
the P-wave channels, and therefore these channels are good

Nijm PWA−3P0
NLO−Pion
NNLO−Pion
NLO−Fit 1
NNLO−Fit 1

100 200 300 400 k (MeV)

−30

−20

−10

10

20

(Deg)

Nijm PWA−3P0
NLO−Pion
NNLO−Pion
NLO−Fit 2
NNLO−Fit 2

100 200 300 400 k (MeV)

−30

−20

−10

10

20

(Deg)

FIG. 4. The 3P0 channel results for momentum sets of fit 1 (left) and fit 2 (right) in Table II. For notation and explanation, see Fig. 3.
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TABLE III. Results for fitting up to NNLO LECs in the 3P1 channel. For notation and explanation, see Table I.

3P1 {k1, k2, k3}(MeV) g(1)
1 (MeV−1) �(0) (MeV) C (2)

2 (MeV−3)
√

mN |�(0)| (MeV) η

Fit 1 60, 200, 300 0.00071 −13.8 7.9 × 10−9 114.0 −1
Fit 2 100, 250, 390 0.00065 −8.7 5.9 × 10−9 90.4 −1

benchmarks to test the convergence of the theory. For the 3P1

channel, phase shifts at NLO and NNLO agree well with data
only up to k ≈ 200 MeV. This is evidence that pion interac-
tions alone are not enough to get good agreement with data
in a perturbative EFT for typical momenta about 300 MeV.
Alternative options are to either include additional contact
interactions or a dibaryon field. In this paper, I consider the
latter. The on-shell NLO T matrix in the 3P1 channel is (see
Appendix A)

T
(1)(3P1 )

(k, m2
π ) = η mN g(1)

1
2

k2

k2 − mN �(0)
+ 1

�NN

[
2 k2 − m2

π

4 k2

+ m4
π

16 k4
ln

(
1 + 4 k2

m2
π

)]
. (36)

Fitted values of the LECs are given in Table III, and the phase
shift is plotted in Fig. 5. Since �(0) < 0, there is a possible
imaginary zero in this channel too, although unlike the other
two channels η = −1. Again, size of the fitted parameters are
of the same order as the estimation from the PC. In Fig. 5,
we see good agreement at NLO, which further improves at
NNLO. Note that this happens because the dibaryon field
cancels the large upturn due to the OPE box diagram in
this channel. The large-k limit of NLO T matrix for this
channel is

lim
k2�mN �(0), m2

π

T
(1)(3P1 ) = 1

2 �NN
+ η mN g(1)

1
2 + · · ·, (37)

and with the fitted parameters in Table II, it is positive up to the
first two terms. Again, this shows that phase shift decreases
linearly for large momenta in this channel too.

V. CONCLUSION

A new EFT including a dibaryon field with perturbative
pions is investigated for the uncoupled P-wave channels of
nucleon-nucleon scattering systems, and promising results up

to NNLO are observed. This is (strong) evidence that to have
a convergent perturbative EFT beyond the pion mass [16],
physics of higher energies has to be included by introducing
an auxiliary dibaryon field to make pion interactions pertur-
bative. The PC for chiral contact LECs in this theory are the
same as NDA [10,11], and the PC for CSB contact interactions
in Eq. (2) has been adapted from the KSW PC and NDA. The
PC for the chiral and CSB dibaryon LECs in Eqs. (3) and (4)
show that dibaryon interactions start perturbatively at NLO.

Calculations are carried out up to NNLO for the se-
lected P-wave channels with a new method that combines
renormalization and fitting together. All pionless and related-
to-dibaryon parts of diagrams are calculated analytically,
although the finite part of the box diagram from iteration of
the OPE potential is done numerically. No m2

π dependence
has been observed in divergent parts, and therefore there is
no need to add CSB “contact” counter terms at NNLO. The
CSB dibaryon LECs, however, start to appear at NNLO which
absorb effect of nonanalytic terms proportional to m2

π coming
from the iteration of the OPE potential. Since LECs at NLO
and the new C(2)

2 at NNLO have fixed values which do not
run with the regulator, their sizes are estimated by the new
PC in Eq. (31). According to results given in Tables I, II,
and III, fitted values of LECs are in good agreement with those
estimated by PC. The renormalization method in Sec. III is
new and useful for numerical calculations, which uses data
points instead of an interval of data. Furthermore, it produces
renormalized parts that counteract effect of nonanalytic terms
coming from pion interactions. In Appendix B, the theory has
been renormalized by using the usual method in the literature
of nuclear EFTs, so one can compare results in both renormal-
ization methods.

An advantage of including the dibaryon at NLO, instead of
using contact interactions, is that the tree level T matrix of the
dibaryon is a constant in the large-k limit (k2 � mN �(0), m2

π )
as can be seen from Eqs. (20), (33), (35), and (37). This

Nijm PWA−3P1
NLO−Pion
NNLO−Pion
NLO−Fit 2
NNLO−Fit 2

100 200 300 400 k (MeV)

−40
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NNLO−Pion
NLO−Fit 1
NNLO−Fit 1

100 200 300 400 k (MeV)

−40

−30

−20
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FIG. 5. The 3P1 channel results for momentum sets of fit 1 (left) and fit 2 (right) in Table III. For notation and explanation, see Fig. 3.
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TABLE IV. Results for fitting up to NNLO LECs of the 1P1 channel with the alternative method of renormalization. I refit total LECs given
in Eqs. (28) and (30) with the same momentum sets. The % g(1)

1 and %�(0) show the percentage of change relative to NLO values after refitting.
The units are the same as Table. I.

1P1 {k1, k2, k3} g(1)
1 ḡ(1)

1 % g(1)
1 �(0) �̄(0) %�(0) C (2)

2

√
mN |�(0) |

√
mN |�̄(0) | η

Fit 1 350, 400, 300 0.00112 0.00195 74.6 −97.8 −153.2 56.7 −4.3 × 10−9 303.0 379.2 +1
Fit 2 310, 370, 280 0.00123 0.00292 137.8 −149.2 −304.9 104.3 −1.1 × 10−8 374.3 535.0 +1

means the phase shift at NLO has a linear behavior in this
limit, which is also noticeable in the Nijmegen PWA of these
channels for larger momenta below the mass of ρ meson.

These promising results for the uncoupled P-wave chan-
nels are encouraging and motivate the application of the same
idea to the 1S0, 3S1-3D1, 3P2-3F2, and higher partial wave
channels. The S-wave channels are more challenging than
others, because they have a nonzero LO T matrix from the
resummation of C(0)

0 . Preliminary NLO calculations for higher
partial wave channels also show promising results, although

before carrying out NNLO calculations in those channels I
cannot draw solid conclusions yet.
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APPENDIX A: INGREDIENTS FOR T MATRIX CALCULATIONS

One can drive off-shell tree level pion and dibaryon diagrams by using the trace technique explained in Ref. [14]. For the 1P1,
3P0, and 3P1 channels, I get

T
(1)(1P1 )
π

(
p′, p, k, m2

π

) = 1

�NN

[
− 3 m2

π

2p p′ + 3 m2
π

(
m2

π + p2 + p′2)
8 p2 p′2 ln

(
m2

π + (p + p′)2

m2
π + (p − p′)2

)]
, (A1)

T
(1)(3P0 )
π

(
p′, p, k, m2

π

) = 1

�NN

[
− 1

2p p′
(
p2 + p′2) + m2

π (p2 + p′2) + (p2 − p′2)2

8 p2 p′2 ln

(
m2

π + (p + p′)2

m2
π + (p − p′)2

)]
, (A2)

T
(1)(3P1 )
π

(
p′, p, k, m2

π

) = 1

�NN

[
1

4p p′
(
p2 + p′2 − m2

π

) + m4
π − (p2 − p′2)2

16 p2 p′2 ln

(
m2

π + (p + p′)2

m2
π + (p − p′)2

)]
, (A3)

T
(1)(s)
d (p′, p, k) = η(s) mN g(1)(s)

1
2

p p′

k2 − mN �(0)(s)
. (A4)

Structure of dibaryon parts of off-shell T matrices are the same, but with different LECs. One can check that on-shell pion T
matrices are the same as those in Ref. [14]. Also, the numerical calculation of the T matrix for the box diagram of OPE potential
by using above off-shell T matrices and Eq. (18) agrees with results in Ref. [33].

After inserting various contributions of the off-shell T matrix in the projected LSE in Eq. (18), I use contour integration to
find divergent and finite parts of loop integrals. If I define the dimensionless loop integral as Iπd = I [div]

πd + I [fin]
πd , I get

I (1P1 )
πd = 3 m2

π

2 �NN k2

[
mπ − k

(
1 + m2

π

2k2

)
tan−1

(
2 k

mπ

)]
+ 3 i m2

π

2 �NN k

[
1 −

(
1

2
+ m2

π

4k2

)
ln

(
1 + 4 k2

m2
π

)]
, (A5)

I (3P0 )
πd = 4 L1

3 �NN
− m2

π

2 �NN k
tan−1

(
2 k

mπ

)
+ i k

�NN

[
1 − m2

π

4k2
ln

(
1 + 4 k2

m2
π

)]
, (A6)

I (3P1 )
πd = − 2 L1

3 �NN
+ m3

π

4 �NN k2

[
1 − mπ

2 k
tan−1

(
2 k

mπ

)]
+ i

2 �NN k

[
m2

π

2
− k2 − m4

π

8k2
ln

(
1 + 4 k2

m2
π

)]
, (A7)

where Lm are given in Eq. (25). It is interesting that in the 1P1 channel the cross pion-dibaryon loop integral does not contain
a divergent term, although from a naive counting one expects the opposite. The reason is the cancellation among integrand
terms in the on-shell NNLO T matrix. As we can see in above equations, real and finite parts of pion-dibaryon loop ingetrals
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TABLE V. Results for fitting up to NNLO LECs of the 3P0 channel with the alternative method of doing renormalization. For units,
notation, and explanation, see Table IV.

3P0 {k1, k2, k3} g(1)
1 ḡ(1)

1 % g(1)
1 �(0) �̄(0) %�(0) C (2)

2

√
mN |�(0) |

√
mN |�̄(0) | η

Fit 1 300, 400, 200 0.00250 0.00359 44.0 −99.7 −75.6 24.2 1.0 × 10−8 305.9 266.4 +1
Fit 2 180, 320, 380 0.00286 0.00373 29.6 −168.0 −85.5 49.1 8.5 × 10−9 397.2 283.3 +1

are complicated functions of k/mπ and also contain odd powers of mπ and negative powers of k. There are no terms in the
Lagrangian with odd powers of mπ or negative powers of k, and therefore I absorb effects of these nonanalytic terms at specific
momenta into the same order LECs in the renormalization step (see Sec. III). Another approach is to absorb effects of these
terms into a redefinition of NLO LECs during fitting (see Appendix B).

Running of NNLO contributions of NLO LECs in Sec. III with regulator � is given by

�̃(1) = �(1) + ω
(1)
2 m2

π = η g(1)
1

2
(L3 + mN �(0) L1) + θ (1) m2

π +
(
k2

1 − mN �(0)
)(

k2
2 − mN �(0)

)
g(1)

1
2

m2
N

ηC(2)
2

+
(
k2

1 − mN �(0)
)2(

k2
2 − mN �(0)

)
g(1)

1
2

m2
N k2

1

(
k2

1 − k2
2

) ηR(2)
k1

−
(
k2

1 − mN �(0)
)(

k2
2 − mN �(0)

)2

g(1)
1

2
m2

N k2
2

(
k2

1 − k2
2

) ηR(2)
k2

, (A8)

g̃(2)
1 = g(2)

1 + h(2)
3 m2

π = η

2
g(1)

1
3

mN L1 − g(1)
1 I [div]

πd + γ (2) m2
π

2 g(1)
1

+ 2mN �(0) − (
k2

1 + k2
2

)
2g(1)

1 mN

ηC(2)
2

−
(
k2

1 − mN �(0)
)2

2g(1)
1 mN k2

1

(
k2

1 − k2
2

) ηR(2)
k1

+
(
k2

2 − mN �(0)
)2

2g(1)
1 mN k2

2

(
k2

1 − k2
2

) ηR(2)
k2

, (A9)

where values of �(0), g(1)
1 , and C(2)

2 are the fitted values
in the tables. The R(2)

k1,2
≡ R(2)(k1,2, g(1)

1 ,�(0), m2
π ) functions

contain chiral and CSB parts, and therefore all the chiral terms
of right-hand sides in above equations will define �(1) and
g(2)

1 . Also, all CSB parts will define ω
(1)
2 m2

π and h(2)
3 m2

π . These
chiral and CSB LECs absorb nonanalytic parts coming from
R(2)

k1,2
[16,36].

APPENDIX B: THE SECOND METHOD
OF RENORMALIZATION

I can renormalize by not absorbing nonanalytic functions
of mπ into the NNLO LECs [6,7,14,43]. By setting square
bracket terms in Eq. (24) equal to the same form as the right-

hand side of Eq. (26) for a general k instead of k1,2, the NNLO
T matrix is

T
(2)(

k, m2
π

) = −i k
[
T

(1)(
k, m2

π

)]2 + η mN γ (2) m2
π k2

k2 − mN �(0)

+ η m2
N g(1)

1
2
θ (1) m2

π k2

(k2 − mN �(0) )2 + C(2)
2 k2

+ R(2)
(
k, g(1)

1 ,�(0), m2
π

)
. (B1)

Bare NNLO LECs are given by Eqs. (A8) and (A9), after
removing terms containing C(2)

2 and R(2)
k1,2

. The total up to
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FIG. 6. The 1P1 channel results from an alternative method of renormalization for momentum sets of fit 1 (left) and fit 2 (right) in Table IV.
For notation and explanation, see Fig. 3.
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FIG. 7. The 3P0 channel results from an alternative method of renormalization for momentum sets of fit 1 (left) and fit 2 (right) in Table V.
For notation and explanation, see Fig. 3.

NNLO phase shift also has a new form,

−δ(t )

k
= −1

k
(δ(1) + δ(2) )

= T
(1)
π (k, m2

π ) + η mN ḡ(1)
1

2
k2

k2 − mN �̄(0)

+ C(2)
2 k2 + R(2)

(
k, g(1)

1 ,�(0), m2
π

)
, (B2)

where �̄(0) and ḡ(1) 2
1 are given in Eqs. (29) and (30). The chiral

part of NNLO T matrix does not vanish at k = k1, k2, and
therefore unlike the previous method of renormalization I let
�̄(0) and ḡ(1) 2

1 change when fitting at NNLO. I use NLO fitted
values of �(0) and g(1) 2

1 in the NNLO part of the phase shift,
and �̄(0) and ḡ(1) 2

1 are used in the NLO part only. Since there
are nonanalytic terms I cannot predict effects of these terms on
refitted LECs because Q ∼ k ∼ mπ ∼ �NN . These effects can
be small or large relative to NLO values, but the only thing that
I expect is that even refitted values are within the estimation
of the PC in Eq. (31).

The results for 1P1 and 3P0 channels are given in Tables IV
and V and plots of the phase shift are shown in Figs. 6
and 7, respectively. In the 3P1 channel, the error introduced
by using data points is too high, which makes it hard to
find reasonable refitted values. For this case, it is better to
use an interval of data and for that an analytical expression
of R(2)(k, g(1)

1 ,�(0), m2
π ) is preferable. As we can see in

Tables IV and V, effects of nonanalytic terms that have been
absorbed in refitted values are not perturbative and small rela-
tive to NLO fitted values, although generally results at NNLO
are in better agreement with data than at NLO. As I expected,
refitted values are also within the estimation of PC in Eq. (31).

Note that my goal is not to find a PC in which contributions
from the OPE potential are small, and therefore it is not
appropriate to conclude from the large shift in fitted values
of LECs going from NLO to NNLO that perturbation theory
breaks down. My goal is to make effects of pion interactions
perturbative by using the dibaryon field and indeed this is
happening in the first method of renormalization. In the first
method, however, I cannot find the change to fitted NLO
parameters until I know values of γ (2) and θ (1).
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