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Kaon meson condensate in neutron star matter including hyperons
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The recent measurement of the mass of neutron stars (PSR J1614−2230, PSR J0348+0432, MSP
J0740+6620) restricts the lower limit ∼2M� of the maximum mass of such compact stars, making it possible for
dense matter to exist in massive stars. The relativistic mean-field theory with parameter sets FSUGold including
kaon condensation is used to describe the properties of neutron stars in β equilibrium. Through careful choice
of the parameter of the σ -cut cσ , we are able to produce a maximum mass neutron star with kaon condensation
heavier than 2M�, and we find that the parameter �ν of the ρ − ω interaction term in this model has a significant
effect on K− condensation. In the case of using the σ -cut scheme, K− condensation occurs only when the ρ − ω

interaction �ν is switched off.
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I. INTRODUCTION

Born as a result of supernova explosions, neutron stars
are highly condensed stellar remnants. A typical neutron star
has a mass of the order of the solar mass, but its radius is
only around 10 ∼ 12 km. The internal matter composition
and equation of state (EOS) of compact stars are restricted by
recent gravitational wave observations. The massive NSs ob-
served, e.g., PSR J1614−2230 with M = 1.908 ± 0.016M�
[1–4], have established strong constraints on the EOS of nu-
clear matter. PSR J0348+0432 with M = 2.01 ± 0.04M� [5],
MSP J0740+6620 with M = 2.08+0.07

−0.07M� [6,7], and radius
12.39+1.30

−0.98 km obtained from NICER data [8], have strength-
ened the already stiff constraints on the EOS. The observation
of gravitational waves is another crucial source of information
about NS matter; the recent GW190814 event observed by
the LIGO–Virgo Collaboration (LVC) from a coalescence of a
black hole and a lighter companion sets the mass of the former
to be 23.2+1.1

−1.0 M� and that of the latter to be 2.59+0.08
−0.09 M� [9].

It is unclear whether the lighter companion star is a neutron
star or a black hole. So far, the study of neutron stars has been
used as one of the important methods for studying strong in-
teractions in dense nuclear matter, and it is still a research hot
spot of nuclear celestial bodies [10,11]. It has gradually been
discovered that only considering basic nucleon, neutrons, and
protons is not enough in the study of neutron stars. In fact,
the inner cores of the neutron stars are sources of speculation,
some of the possibilities being the appearance of hyperons
[12,13], only quarks [14–18], or kaon condensates [19–22].

Kaplan and Nelson have suggested that the ground state of
hadronic matter might form a negatively charged kaon Bose-
Einstein condensation above a certain critical density [23,24].
In the interior of a neutron star, as the density of neutrons
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increases, the electronic chemical potential will increase to
keep the matter in β equilibrium. When the electronic chemi-
cal potential exceeds the mass of muons, muons appear. And
when the vacuum mass of the meson (pion, kaon) is exceeded,
as the density increases, negatively charged mesons begin to
appear, which helps to maintain electrical neutrality. However,
the s-wave πN scattering potential repels the ground-state
mass of the π meson and prevents the generation of the π

meson [25]. The effective mass of the K− meson is decreased
because of the interaction with the nucleon. If the K− me-
son energy intersects with the electron chemical potential at
a certain density, then K− will be more advantageous than
electrons as a neutralizer for positive charges. The very in-
teraction that reduces the kaon energy modifies the nucleons
with which they interact, and this will open the possibility of
the appearance of kaon condensates.

Although many scholars have proposed various phe-
nomenological models based on density functional theory
and realistic nuclear potential to explain, the interaction of
particles at such high densities is not known precisely. To
get the EOS of the neutron star matter, the RMF theory is
usually applied [26], which describes the interaction between
baryons via the exchange of mesons [24,27,28]. The model
determines the coupling parameters through the saturation
properties of the nuclear matter and extends it to high density.
It has achieved great success in the study of the nuclei and
nuclear matter. There are many theoretical models within the
RMF framework. In this paper, we are going to adopt the
FSUGold model as an example [29]. The RMF theory with
the parameter set FSUGold was proposed by Todd-Rutel and
Piekarewicz [30–33]. It has achieved great success in study
of the nuclear matter and the ground-state properties of some
spherical nuclei [32]. However, when it is applied to study the
EOS including hyperons, the maximum mass of the neutron
stars obtained by this model is too small; the problem is that
the EOS generated by the FSUGold model [13] is too soft.
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To describe nuclear matter at high density with the FSUGold
model, some researchers have proposed a σ -cut scheme [34].
This scheme points out that if the mean-field self-interaction
potential rises sharply in a narrow vicinity n0 ∼ n of the value
of mean fields corresponding to nuclear densities n∗ [34], the
nucleon effective mass saturates and the EOS stiffens, where
n0 is the nuclear saturation density. This procedure offers
a simple way to stiffen the EOS at high densities without
altering it at densities n � n0. However, the effect of hyperons
on neutron star matter is not included in study [34]. It is well
known that the introduction of hyperon degrees of freedom
leads to a softer EOS, thus producing a neutron star with a
small mass. It leaves the open question of whether the σ -
cut scheme is still effective when hyperons are considered.
In addition, some scholars pointed out that exotic EOS can-
not be ruled out by the observation of a 2M� compact star
[35]. In this article, we use the FSUGold model to study NS

matter including hyperons and kaon condensates with the
σ -cut scheme.

This paper is organized as follows. First, the theoretical
framework is presented. Then we will study the effects of the
σ -cut scheme. The kaon condensation will be considered, too.
Finally, some conclusions are provided.

II. THEORETICAL FRAMEWORK

In this section, we introduce the FSUGold model to study
the properties of the phase transition from hadronic to kaon
condensed matter. For the baryons matter we have consid-
ered nucleons (n and p), and hyperons (�,	, and 
). The
exchanged mesons include the isoscalar scalar meson (σ ), the
isoscalar vector meson (ω), and the isovector vector meson
(ρ); the starting point of the extended FSUGold model is the
Lagrangian density:

L =
∑

B

ψ̄B[iγ μ∂μ − mB + gσBσ − gωBγ μωμ − gρB

2
γ μ�τ · �ρμ]ψB + 1

2
∂μσ∂μσ

− 1

2
m2

σ σ 2 − κ

3!
(gσNσ )3 − λ

4!
(gσNσ )4 − 1

4
FμνFμν + 1

2
m2

ωωμωμ + ξ

4!

(
g2

ωNωμωμ
)2

+ 1

2
m2

ρ �ρμ · �ρμ − 1

4
�Gμν �Gμν + �ν

(
g2

ρN �ρμ · �ρμ
)(

g2
ωNωμωμ

) +
∑

l

ψ̄l [iγ
μ∂μ − ml ]ψl ,

(1)

where �ν is introduced to modify the density depen-
dence of symmetry energy. All the eight lightest baryons
(p,n,�0, 	+, 	0, 	−, 
0, 
−) are included, as the two lep-
tons, electron and muon. The terms mσ , mω, and mρ are
the masses of σ , ω, and ρ mesons, respectively. The anti-
symmetric tensors of vector mesons take the forms Fμν =
∂μων − ∂νωμ, Gμν = ∂μρν − ∂νρμ. The isoscalar meson self-
interactions (via κ , λ, and ξ terms) are necessary for the
appropriate EOS of symmetric nuclear matter. gσN , gωN , and
gρN are the coupling constants between baryon and σ meson,
baryon and ω meson, and baryon and ρ meson, respectively.
In this paper, the operators of meson fields are replaced by
their expectation values by the mean-field approximation.

With the increase of the density, the kaon condensation
does appear in the interior of the neutron stars. We take
the Lagrangian of kaon condensation as the same that is in
Refs. [36,37], which reads

LK = D∗
μK∗DμK − m∗2

K K∗K, (2)

where Dμ = ∂μ + igωKωμ + i gρK

2 τK · ρμ is the covariant
derivative and the kaon effective mass is defined as m∗

K =
mK − gσKσ . The coupling constants between the vector me-
son and the kaon gωK , gρK are determined by the meson SU(3)
symmetry as gωK = gωN/3, gρK = gρN [35]. The scalar cou-
pling constant gσK is fixed to the optical potential of the K− at
saturated nuclear matter:

UK (ρ0) = −gσKσ (ρ0) − gωKω(ρ0), (3)

which characterizes the kaon-nucleon interaction. Experiment
studies show that the kaons experience a repulsive interaction

in nuclear matter whereas antikaons experience an attractive
potential [38,39]. Waas and Weise found an attractive po-
tential for the K− at the saturation nuclear density of about
UK (ρ0) = −120 MeV [40]. Coupled channel calculations at
finite density have yielded a value of UK (ρ0) = −100 MeV
[41]. More recent self-consistent calculations with a chiral
Lagrangian [42,43] and coupled channel calculation including
a modified self-energy of the kaon [44] indicate that the kaon
may experience an attractive potential with its depth about
−80 MeV to even −50 MeV at the saturation density. Another
calculation from the hybrid model [45] suggests the value of
K− optical potential to be in the range 180 ± 20 MeV at
saturation density. In this paper, we carry out our calculations
with a series of optical potentials ranging from −160 MeV to
−120 MeV.

For the meson-hyperon couplings, we take those in the
SU(6) quark model for the vector couplings constants:

gρ� = 0, gρ	 = 2gρ
 = 2gρN , (4)

gω� = gω	 = 2gω
 = 2

3
gωN . (5)

The scalar couplings are usually fixed by fitting hyperon po-
tentials with U (N )

Y = gωY ω0 − gσY σ0, where σ0 and ω0 are the
values of the scalar and vector meson strengths at saturation
density [46]. The �-N interaction was well studied and U N

� =
−30 MeV was obtained with bound � hypernuclear states
[47,48]. One of the unsettled issues in hypernuclear physics is
the 	-N interaction in nuclear matter. An attractive potential
was generally used in the past for 	 to be bounded in nuclear
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TABLE I. gσK determined for several UK values in the FSUGold
model.

UK (MeV) −120 −140 −160
gσK 0.6030 1.1775 1.7521

matter. However, a detailed scan for 	 hypernuclear states
turned out to give negative results. The study of 	− atoms also
showed strong evidence for a sizable repulsive potential in the
nuclear core at ρ = ρ0. Therefore, for the 	-N interaction, we
consider U (N )

	 = −30 MeV, as used in Ref. [48]. In addition,
the 
-N interaction in nuclear matter is attractive with the
potential U (N )


 = −18 MeV [35]. We take then such a value
in our calculation. The gσK can be related to the potential
of kaon at the saturated density through Eq. (3). gσK values
corresponding to several values of UK are listed in Table I.

By solving the Euler-Lagrangian equation of kaon we ob-
tain equation of motion: [DμDμ + m∗2

K ]K = 0. We can then
derive the dispersion relation for the Bose condensation of K−,
which reads

ωK = mK − gσKσ − gωKω − gρK

2
ρ. (6)

With the increase of density, the energy ωK of a test kaon
in the pure normal phase can be computed as a function of
the nucleon density. The kaon energy will decrease while the
potential of kaon (ωK = μe) increases with the density. When
the condition ωK = μe is achieved, the kaon will occupy a
small fraction of the total volume. The new meson field equa-
tions are then different from the normal phase because of the
additional source terms and can be written explicitly as

m2
σ σ + 1

2
κg3

σNσ 2 + 1

6
λg4

σNσ 3 =
∑

B

gσBρS
B + gσKρK ,

m2
ωω + ξ

6
g4

ωNω3 + 2�νg2
ρN g2

ωNρ2ω =
∑

B

gωBρB (7)

−gωKρK

m2
ρρ+2�νg2

ρN g2
ωNω2ρ =

∑
B

gρBτ3BρB−gρK

2
ρK ,

where ρN and ρS
N are the nucleon density and the scalar den-

sity, respectively and the kaon density ρK = 2(ωK + gωKω +
gρK

2 ρ)K∗K .
For the neutron matter with baryons and charged leptons,

the β-equilibrium conditions are guaranteed with the follow-
ing relations of chemical potentials for different particles:

μp = μ	+ = μn − μe, (8)

μ� = μ	0 = μ
0 = μn, (9)

μ	− = μ
− = μn + μe, (10)

μμ = μe, (11)

and the charge neutrality condition is fulfilled by

np + n	 = ne + nμ− + n	− + n
− . (12)

The chemical potential of baryons and leptons reads

μB =
√

kB2
F + m∗2

B + gωBω + gρBτ3Bρ, (13)

μl =
√

kl2
F + m2

l , (14)

where kB
F is the Fermi momentum and the m∗

B is the effective
mass of baryon B, which can be related to the scalar meson
field as m∗

B = mB − gσBσ , and kl
F is the Fermi momentum of

the lepton l (μ, e).
The total energy density of the system with kaon conden-

sation reads then ε = εN + εK , where εN is the energy density
of normal nuclear matter and can be given as

εB =
∑

B

2

(2π )3

∫ KB
F

0

√
m∗

B + k2d3k + 1

2
m2

ωω2

+ ξ

8
g4

ωNω4 + 1

2
m2

σ σ 2 + κ

6
g3

σNσ 3 + λ

24
g4

σNσ 4

+ 1

2
m2

ρρ
2 + 3�νg2

ρN g2
ωNω2ρ2

+ 1

π2

∑
l

∫ kl
F

0

√
k2 + m2

l k2dk, (15)

where kB
F is the Fermi momentum and m∗

B is the effective mass
of baryons, which can be related to the scalar meson field
as m∗

B = mB − gσBσ . And the energy contributed by the kaon
condensation εK is

εK = 2m∗2
K K∗K = m∗

KρK . (16)

The kaon does not contribute directly to the pressure as it is
a (s-wave) Bose condensate so that the expression of pressure
reads

P =
∑

B

1

3

2

(2π )3

∫ KB
F

0

k2√
m�2

B + k2
dk3 + 1

2
m2

ωω2

+ ξ

24
g4

ωNω4 − 1

2
m2

σ σ 2 − κ

6
g3

σNσ 3 − λ

24
g4

σNσ4

+ 1

2
m2

ρρ
2 + �νg2

ρN g2
ωNω2ρ2

+ 1

3π2

∑
l

∫ kl
F

0

k4√
k2 + m2

l

dk. (17)

With the obtained ε and P, the mass-radius relation and other
relevant quantities of the neutron star can be obtained by
solving the Oppenheimer and Volkoff equation [10,49,50].

dP(r)

dr
= −GM(r)ε

r2

(
1 + P

εC2

)(
1 + 4πr3P

M(r)C2

)

×
(

1 − 2GM(r)

rC2

)−1

, (18)

dM(r) = 4πr2ε(r)dr, (19)

where G is the gravitational constant and C is the velocity of
light, and the EOS for neutron matter is given by Eq. (15) and
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TABLE II. Parameter sets for the FSUGold model discussed in the text and the meson masses Mσ = 491.5 MeV, Mω = 782.5 MeV,
Mρ = 763 MeV.

Model g2
σ g2

ω g2
ρ κ λ ξ �ν

FSUGold 112.19 204.54 138.47 1.42 0.0238 0.06 0.03/0

Eq. (17); we can study the physical behavior of neutron stars
for the extended model.

The σ -cut scheme [34], which is able to stiffen the EOS
above saturation density, adds in the original Lagrangian den-
sity, the function [34,51,52]

�U (σ ) = α ln(1 + exp[β( f − fs,core )]), (20)

where f = gσN/MN and fs,core = f0 + cσ (1 − f0). MN is the
nucleon mass. f0 is the value of f at saturation density, equal
to 0.31 for the FSUGold model. cσ is a positive parameter
that we can adjust. The smaller cσ is, the stronger the effect
of the σ -cut scheme becomes. However, we must be careful
that this scheme will not affect the saturation properties of
nuclear matter. In this paper, we want to find a suitable value
for the parameter cσ that is able to satisfy the maximum mass
constraint. α and β are constants, taken to be 4.822 × 10−4M4

N
and 120 as in Ref. [34]. This scheme stiffens the EOS by
quenching the decreasing of the effective mass of the nucleon
M∗

N = MN (1 − f ) at high density.
Before giving our numerical results, we list parameters for

the FSUGold model in Table II. The parameter of the models
can be found in Refs. [30,33,53] in detail.

III. RESULTS

First, we want to find the range for cσ in which the sat-
uration properties of nucleon matter are not affected by the
σ -cut scheme, by examining the effective mass of nucleons
under the σ -cut scheme. In Fig. 1, we plot the ratio of the
effective mass to the rest mass as a function of the baryon
density, where ρ0 is the saturation density 0.148 fm−3. We

FIG. 1. Effective mass of nucleons versus baryon density in NS
matter using and not using the σ -cut scheme. (Left panel) n, p,
leptons, hyperons, K−; (right panel) only n, p, leptons.

can see that, when ρ � ρ0, the effect mass is almost the same
as nucleons-only matter and unchanged by the σ -cut scheme;
when ρ>ρ0, the effect mass dropped to around 0.55MN .

In Fig. 2, we plot the σ meson field strength as a function
of the baryon density with and without the σ -cut scheme. We
must make sure that the σ potential is not affected by the
σ -cut scheme at saturation density. It is clear that when the
baryon density is below the saturation density, the σ meson
field strength is almost the same as nucleons-only matter and
unchanged by the σ -cut scheme. So we can conclude that, for
ρ >ρ0, the σ meson field strength is quenched at high baryon
density, and the σ -cut scheme will not affect the saturation
properties. This is what we want by using the σ -cut scheme.
The smaller cσ is, the stronger the quenching becomes.

Figure 3 shows the kaon energy(ωk) and electron chemi-
cal potential(ue) as a function of baryon density with UK =
−120,−140,−160 MeV for the parameters �ν = 0 and
�ν = 0.03. K− condensation initiates once the value of ωK

reaches that of the electron chemical potential. For �ν =
0.03, there is no intersection when UK = −120 MeV.

Figure 4 shows the relative population of particles
versus baryon density with kaon optical potential UK =
−120,−140,−160 MeV and �ν = 0.03. When UK = −120
MeV, there is no K−. For UK = −140 MeV, the mixed phase
initiates with the onset of K− at ∼3.5ρ0 and terminates at
∼8.7ρ0; for UK = −160 MeV, with the appearance of K− at
∼2.7ρ0 and ceasing of electron population around ∼8.9ρ0, the
proton and K− population becomes equal following the charge
neutrality condition. 	− will decrease and also 
− will be
delayed.

FIG. 2. σ meson field strength as a function of baryon density in
NS matter using and not using the σ -cut scheme. (Left panel) n, p,
leptons, hyperons, K−; (right panel) only n, p, leptons.
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FIG. 3. Kaon energy(ωk) and electron chemical potential(ue) as
a function of baryon density. (Left panel) �ν = 0.03; (right panel)
�ν = 0. The solid curve shows UK = −160 MeV, dotted lines show
UK = −140 MeV, and dashed lines show UK = −120 MeV.

Next we examine the effect of the σ -cut scheme on the
kaon energies. This is plotted in Fig. 5. For �ν = 0.03, there
is no intersection between ωK and μe. The bigger cσ is, the
closer ωK and μe are. For �ν = 0, the kaon condensation will
occur when UK = −140,−160 MeV. The smaller cσ is, the

FIG. 4. Relative population of particles versus baryon den-
sity without the σ -cut scheme and K− potential depth of UK =
−120, −140, −160 MeV. �ν = 0.03; dashed lines denote K−.

FIG. 5. Kaon energy(ωk) and electron chemical potential(ue)
as functions of baryon density with the σ -cut scheme. (Left
panel) �ν=0.03; (right panel) �ν=0. The solid curve shows UK =
−160 MeV, dotted lines show UK = −140 MeV, and dashed lines
show UK = −120 MeV.

smaller σ meson field strength becomes; this will reduce the
appearance of K−. The isoscalar-isovector coupling (�ν) term
in Eq. (1) is used to modify the density dependence of the
symmetry energy and the neutron skin thicknesses of heavy
nuclei; we can clearly find that �ν has a significant impact
on the appearance of K−. When �ν = 0, this will increase the
chemical potential of the electron and promote the appearance
of K−.

It is interesting to know how the σ -cut scheme affects
the relative populations of particles. In Fig. 6, the relative
populations as a function of the baryon density are plotted

FIG. 6. Relative population of particles versus baryon density
with and without the σ -cut scheme. K− optical potential depth of
UK = −160 MeV, �ν = 0. (Upper panel) without the σ -cut scheme;
(lower panel) cσ = 0.15; dashed lines denote K−.
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TABLE III. Threshold densities ncr (in units of fm−3) for kaon
condensation in dense nuclear matter for different values of K−

optical potential depths UK (in units of MeV) without the σ -cut
scheme and cσ = 0.15.

UK ncr (K−) (no σ -cut scheme) ncr (K−)(cσ = 0.15)
(MeV) �ν = 0.03 �ν = 0 �ν = 0.03 �ν = 0

−120 None 0.34 None None
−140 0.54 0.3 None 0.36
−160 0.41 0.27 None 0.28

with K− optical potential UK = −160 MeV, we are interested
in the occurrence of K−, so we choose �ν = 0. We can find
that the percentage of K− is decreased by the σ -cut scheme,
and the relative populations of some hyperons are influenced
significantly by the σ -cut scheme when �ν = 0. The σ -cut
scheme increases the percentages of 
− and 
0, while it
decreases the percentages of 	− and 	0. We list the threshold
densities ncr for kaon condensation for different values of K−
optical potential depths UK in Table III.

Then we can discuss some properties of the neutron
star. Figure 7 shows the matter pressure as a function
of energy density for the kaon optical potential UK =
−120,−140,−160 MeV and without the σ -cut scheme. The
appearance of kaon to a great extent softens the EOS. As the
energy density increases, the EOS of NS matter that contains
K mesons will exceed that of only nucleons and hyperons.

The parameter �ν describing the interaction between ρ

meson and ω meson in the FSUGold model is introduced
to soften the symmetry energy. It can affect the macroscopic
properties of the neutron stars. In Fig. 8 the EOS is displayed
for �ν = 0 and �ν = 0.03. We can find that the EOS with
parameter �ν = 0 is softer than the case of �ν = 0.03, by

FIG. 7. Pressure versus energy density without the σ -cut scheme.
The solid line is for n, p, leptons, and hyperons whereas others are
with additional K−. Dotted line shows UK = −120 MeV, dashed line
shows UK = −140 MeV, and dash-dotted line shows UK = −160
MeV.

FIG. 8. Pressure versus energy density with and without the σ -
cut scheme. The solid lines curve with �ν = 0.03, dashed lines curve
with �ν = 0, the black lines are without the σ -cut scheme, and the
red lines are with cσ = 0.15.

using the σ -cut scheme; the EOS is significantly stiffened
when cσ = 0.15. The results of the mass-radius relation
for static spherical stars from the solution of the Tolman-
Oppenheimer-Volkoff (TOV) equation discussed here are
shown in Fig. 9. The mass measurements of PSR J1614−2230
[1–4], PSR J0348+0432 [5], MSP J0740+6620, and PSR
J0030−0451 are indicated by the horizontal bars. We find that
this scheme can significantly increase the maximum mass of
the neutron star. The smaller cσ is, the stronger the effect of
this scheme is. The parameter �ν will not significantly affect

FIG. 9. Mass-radius relation using and not using the σ -cut
scheme in NS matter including hyperons and K−. The solid lines
denote �ν = 0.03, dashed lines denote �ν = 0, and UK = −160
MeV. The horizontal bars indicate the observational constraints of
PSR J1614−2230 [1,4], PSR J0348+0432 [5], MSP J0740+6620
[6,7], and PSR J0030−0451 [54].
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TABLE IV. The maximum mass (in units of solar mass M�) and radius (in units of km) of neutron stars using and not using the σ -cut scheme.

�ν = 0.03 �ν = 0 MSP J0740+6620 PSR J0030−0451
M R M R M R M R

No cσ -cut scheme(n, p, H ) 1.31 11.6 1.32 13.3

2.08 ± 0.07 12.39+1.3
−0.98 1.34+0.15

−0.16 12.71+1.14
−1.19

cσ = 0.1(n, p, H, K−) 2.07 14.1 2.07 15.1
cσ = 0.15(n, p, H, K−) 1.99 13.6 1.96 14.4
cσ = 0.2(n, p, H, K−) 1.9 13.1 1.86 13.7

the maximum mass of the neutron star, but will increases the
radius; note that there is no appearance of K− when �ν =
0.03 from Fig. 5. We list the simultaneous measurement of
radius for MSP J0740 + 6620 [6,7] and PSR J0030−0451
[54] by the NICER data and maximum mass of the neutron
star for various values of cσ and �ν in Table IV.

IV. SUMMARY

In this paper, we have discussed the K− meson condensa-
tion inside the neutron star under the FSUGold model. This
model predicts a limiting neutron star mass of 1.72M� [29].
The maximum mass changes to 1.3M� when hyperons are

included [13]. Adding kaon meson will further soften the
EOS. In this work we used the σ -cut scheme; by adjusting
the parameter cσ , we got the maximum mass heavier than
2M� within the range of observed mass measurements. We
also compared the radius of NS with the recent NICER re-
sults; the ρ-ω coupling constant �ν has a significant effect
on the radius with the appearance of K− and when using the
σ -cut scheme. The kaon condensation cannot exist in the NS
matter for �ν = 0.03; for �ν = 0, as the ρ − ω interaction is
switched off, the electron chemical potential will increase and
make it possible for K− condensation to occur in the neutron
star.

[1] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J.
Hessels, Shapiro delay measurement of a two solar mass neu-
tron star, Nature (London) 467, 1081 (2010).

[2] Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, S. Chamberlin,
S. Chatterjee, B. Christy, J. M. Cordes, N. J. Cornish, F.
Crawford, H. T. Cromartie et al., The nanograv 11-year data set:
High-precision timing of 45 millisecond pulsars, Astrophys. J.
Suppl. Ser. 235, 37 (2018).

[3] E. Fonseca, T. T. Pennucci, J. A. Ellis, I. H. Stairs, D. J. Nice,
S. M. Ransom, P. B. Demorest, Z. Arzoumanian, K. Crowter,
T. Dolch et al., The nanograv nine-year data set: Mass and geo-
metric measurements of binary millisecond pulsars, Astrophys.
J. 832, 167 (2016).

[4] F. Özel, D. Psaltis, S. Ransom, P. Demorest, and M. Alford, The
massive pulsar PSR J1614–2230: Linking quantum chromody-
namics, gamma-ray bursts, and gravitational wave astronomy,
Astrophys. J. Lett. 724, L199 (2010).

[5] J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch,
M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T.
Driebe et al., A massive pulsar in a compact relativistic binary,
Science 340, 1233232 (2013).

[6] E. Fonseca, H. Cromartie, T. T. Pennucci, P. S. Ray, A. Y.
Kirichenko, S. M. Ransom, P. B. Demorest, I. H. Stairs, Z.
Arzoumanian, L. Guillemot et al., Refined mass and geometric
measurements of the high-mass PSR J0740+ 6620, Astrophys.
J. Lett. 915, L12 (2021).

[7] H. T. Cromartie, E. Fonseca, S. M. Ransom, P. B. Demorest,
Z. Arzoumanian, H. Blumer, P. R. Brook, M. E. DeCesar,
T. Dolch, J. A. Ellis et al., Relativistic Shapiro delay mea-
surements of an extremely massive millisecond pulsar, Nat.
Astronomy 4, 72 (2020).

[8] T. E. Riley, A. L. Watts, P. S. Ray, S. Bogdanov, S. Guillot,
S. M. Morsink, A. V. Bilous, Z. Arzoumanian, D. Choudhury,

J. S. Deneva et al., A nicer view of the massive pulsar PSR
J0740+ 6620 informed by radio timing and xmm-newton spec-
troscopy, Astrophys. J. Lett. 918, L27 (2021).

[9] R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley,
C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos
et al., GW190814: Gravitational waves from the coalescence of
a 23 solar mass black hole with a 2.6 solar mass compact object,
Astrophys. J. Lett. 896, L44 (2020).

[10] N. K. Glendenning, Compact Stars: Nuclear Physics, Particle
Physics and General Relativity (Springer Science & Business
Media, Berlin, Heidelberg, 2012).

[11] F. Weber, R. Negreiros, P. Rosenfield, and M. Stejner, Pulsars
as astrophysical laboratories for nuclear and particle physics,
Prog. Part. Nucl. Phys. 59, 94 (2007).

[12] J. Schaffner and I. N. Mishustin, Hyperon rich matter in neutron
stars, Phys. Rev. C 53, 1416 (1996).

[13] C. Wu and Z. Ren, Strange hadronic stars in relativistic mean-
field theory with the FSUGold parameter set, Phys. Rev. C 83,
025805 (2011).

[14] S. Pal, M. Hanauske, I. Zakout, H. Stoecker, and W. Greiner,
Neutron star properties in the quark meson coupling model,
Phys. Rev. C 60, 015802 (1999).

[15] N. K. Glendenning and F. Weber, Nuclear solid crust on rotating
strange quark stars, Astrophys. J. 400, 647 (1992).

[16] N. K. Glendenning, A Crystalline quark - hadron mixed phase
in neutron stars, Phys. Rept. 264, 143 (1996).

[17] H. Li, X.-L. Luo, Y. Jiang, and H.-S. Zong, Model study of a
quark star, Phys. Rev. D 83, 025012 (2011).

[18] H. Li, X.-L. Luo, and H.-S. Zong, Bag model and quark star,
Phys. Rev. D 82, 065017 (2010).

[19] V. B. Thapa and M. Sinha, Dense matter equation of state of a
massive neutron star with anti-kaon condensation, Phys. Rev. D
102, 123007 (2020).

015807-7

https://doi.org/10.1038/nature09466
https://doi.org/10.3847/1538-4365/aab5b0
https://doi.org/10.3847/0004-637X/832/2/167
https://doi.org/10.1088/2041-8205/724/2/L199
https://doi.org/10.1126/science.1233232
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.1038/s41550-019-0880-2
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1016/j.ppnp.2006.12.008
https://doi.org/10.1103/PhysRevC.53.1416
https://doi.org/10.1103/PhysRevC.83.025805
https://doi.org/10.1103/PhysRevC.60.015802
https://doi.org/10.1086/172026
https://doi.org/10.1016/0370-1573(95)00034-8
https://doi.org/10.1103/PhysRevD.83.025012
https://doi.org/10.1103/PhysRevD.82.065017
https://doi.org/10.1103/PhysRevD.102.123007


FU MA, WENJUN GUO, AND CHEN WU PHYSICAL REVIEW C 105, 015807 (2022)

[20] T. Maruyama, T. Tatsumi, D. N. Voskresensky, T. Tanigawa, T.
Endo, and S. Chiba, Finite size effects on kaonic pasta struc-
tures, Phys. Rev. C 73, 035802 (2006).

[21] G. E. Brown, C.-H. Lee, H.-J. Park, and M. Rho, Study of
Strangeness Condensation by Expanding About the Fixed Point
of the Harada-Yamawaki Vector Manifestation, Phys. Rev. Lett.
96, 062303 (2006).

[22] G.-y. Shao and Y.-x. Liu, Influence of the isovector-scalar
channel interaction on neutron star matter with hyper-
ons and antikaon condensation, Phys. Rev. C 82, 055801
(2010).

[23] D. B. Kaplan and A. E. Nelson, Strange goings on in dense
nucleonic matter, Phys. Lett. B 175, 57 (1986).

[24] A. E. Nelson and D. B. Kaplan, Strange condensate realign-
ment in relativistic heavy ion collisions, Phys. Lett. B 192, 193
(1987).

[25] N. K. Glendenning, Neutron stars are giant hypernuclei?
Astrophys. J. 293, 470 (1985).

[26] J. D. Walecka, A Theory of highly condensed matter, Ann.
Phys. 83, 491 (1974).

[27] D. Vautherin and D. M. Brink, Hartree-Fock calculations with
Skyrme’s interaction. 1. Spherical nuclei, Phys. Rev. C 5, 626
(1972).

[28] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Relativistic
equation of state of nuclear matter for supernova and neutron
star, Nucl. Phys. A 637, 435 (1998).

[29] B. G. Todd-Rutel and J. Piekarewicz, Neutron-Rich Nuclei and
Neutron Stars: A New Accurately Calibrated Interaction for
the Study of Neutron-Rich Matter, Phys. Rev. Lett. 95, 122501
(2005).

[30] F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G.
Shen, Relativistic effective interaction for nuclei, giant res-
onances, and neutron stars, Phys. Rev. C 82, 055803
(2010).

[31] J. Piekarewicz, Why is Tin so soft? Phys. Rev. C 76, 031301(R)
(2007).

[32] J. Piekarewicz, Validating relativistic models of nuclear struc-
ture against theoretical, experimental, and observational con-
straints, Phys. Rev. C 76, 064310 (2007).

[33] F. J. Fattoyev and J. Piekarewicz, Relativistic models of the
neutron-star matter equation of state, Phys. Rev. C 82, 025805
(2010).

[34] K. A. Maslov, E. E. Kolomeitsev, and D. N. Voskresensky,
Making a soft relativistic mean-field equation of state stiffer at
high density, Phys. Rev. C 92, 052801(R) (2015).

[35] P. Char and S. Banik, Massive neutron stars with antikaon
condensates in a density dependent hadron field theory, Phys.
Rev. C 90, 015801 (2014).

[36] N. K. Glendenning and J. Schaffner-Bielich, First order kaon
condensate, Phys. Rev. C 60, 025803 (1999).

[37] N. K. Glendenning and J. Schaffner-Bielich, Kaon Condensa-
tion and Dynamical Nucleons in Neutron Stars, Phys. Rev. Lett.
81, 4564 (1998).

[38] G.-Q. Li, C. H. Lee, and G. E. Brown, Kaons in dense matter,
kaon production in heavy ion collisions, and kaon condensation
in neutron stars, Nucl. Phys. A 625, 372 (1997).

[39] S. Pal, C. M. Ko, Zi-wei Lin, and B. Zhang, Antiflow of kaons
in relativistic heavy ion collisions, Phys. Rev. C 62, 061903(R)
(2000).

[40] T. Waas and W. Weise, S wave interactions of anti-K and eta
mesons in nuclear matter, Nucl. Phys. A 625, 287 (1997).

[41] V. Koch, K−-proton scattering and the � (1405) in dense matter,
Phys. Lett. B 337, 7 (1994).

[42] M. Lutz, Nuclear kaon dynamics, Phys. Lett. B 426, 12 (1998).
[43] A. Ramos and E. Oset, The Properties of anti-K in the nuclear

medium, Nucl. Phys. A 671, 481 (2000).
[44] L. Tolos, A. Ramos, and A. Polls, The Anti-kaon nuclear poten-

tial in hot and dense matter, Phys. Rev. C 65, 054907 (2002).
[45] E. Friedman, A. Gal, and J. Mares, K- Nucleus relativistic mean

field potential consistent with kaonic atoms, Phys. Rev. C 60,
024314 (1999).

[46] J. Schaffner, C. B. Dover, A. Gal, C. Greiner, D. J. Millener,
and H. Stoecker, Multiply strange nuclear systems, Ann. Phys.
235, 35 (1994).

[47] D. J. Millener, C. B. Dover, and A. Gal, Lambda nucleus single
particle potentials, Phys. Rev. C 38, 2700 (1988).

[48] T. Malik, S. Banik, and D. Bandyopadhyay, Equation-of-state
table with hyperon and antikaon for supernova and neutron star
merger, Astrophys. J. 910, 96 (2021).

[49] M. Baldo, I. Bombaci, and G. F. Burgio, Microscopic nuclear
equation of state with three-body forces and neutron star struc-
ture, Astron. Astrophys. 328, 274 (1997).

[50] J. R. Oppenheimer and G. M. Volkoff, On massive neutron
cores, Phys. Rev. 55, 374 (1939).

[51] M. Dutra, O. Lourenço, and D. P. Menezes, Stellar properties
and nuclear matter constraints, Phys. Rev. C 93, 025806 (2016);
94, 049901(E) (2016).

[52] E. E. Kolomeitsev, K. A. Maslov, and D. N. Voskresensky,
Hyperon puzzle and the RMF model with scaled hadron masses
and coupling constants, J. Phys.: Conf. Ser. 668, 012064
(2016).

[53] F. J. Fattoyev and J. Piekarewicz, Sensitivity of the moment of
inertia of neutron stars to the equation of state of neutron-rich
matter, Phys. Rev. C 82, 025810 (2010).

[54] T. E. Riley, A. L. Watts, S. Bogdanov, P. S. Ray, R. M. Ludlam,
S. Guillot, Z. Arzoumanian, C. L. Baker, A. V. Bilous, D.
Chakrabarty, K. C. Gendreau, A. K. Harding, W. C. G. Ho, J. M.
Lattimer, S. M. Morsink, and T. E. Strohmayer, A nicer view
of PSR J0030−0451: Millisecond pulsar parameter estimation,
Astrophys. J. 887, L21 (2019).

015807-8

https://doi.org/10.1103/PhysRevC.73.035802
https://doi.org/10.1103/PhysRevLett.96.062303
https://doi.org/10.1103/PhysRevC.82.055801
https://doi.org/10.1016/0370-2693(86)90331-X
https://doi.org/10.1016/0370-2693(87)91166-X
https://doi.org/10.1086/163253
https://doi.org/10.1016/0003-4916(74)90208-5
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1016/S0375-9474(98)00236-X
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevC.82.055803
https://doi.org/10.1103/PhysRevC.76.031301
https://doi.org/10.1103/PhysRevC.76.064310
https://doi.org/10.1103/PhysRevC.82.025805
https://doi.org/10.1103/PhysRevC.92.052801
https://doi.org/10.1103/PhysRevC.90.015801
https://doi.org/10.1103/PhysRevC.60.025803
https://doi.org/10.1103/PhysRevLett.81.4564
https://doi.org/10.1016/S0375-9474(97)00489-2
https://doi.org/10.1103/PhysRevC.62.061903
https://doi.org/10.1016/S0375-9474(97)00487-9
https://doi.org/10.1016/0370-2693(94)91434-6
https://doi.org/10.1016/S0370-2693(98)00299-8
https://doi.org/10.1016/S0375-9474(99)00846-5
https://doi.org/10.1103/PhysRevC.65.054907
https://doi.org/10.1103/PhysRevC.60.024314
https://doi.org/10.1006/aphy.1994.1090
https://doi.org/10.1103/PhysRevC.38.2700
https://doi.org/10.3847/1538-4357/abe860
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRevC.93.025806
https://doi.org/10.1103/PhysRevC.94.049901
https://doi.org/10.1088/1742-6596/668/1/012064
https://doi.org/10.1103/PhysRevC.82.025810
https://doi.org/10.3847/2041-8213/ab481c

