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Bayesian reconstruction of nuclear matter parameters from the
equation of state of neutron star matter
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The nuclear matter parameters (NMPs), those underlie in the construction of the equation of state (EoS) of
neutron star matter, are not directly accessible. A Bayesian approach is applied to reconstruct the posterior
distributions of NMPs from the EoS of neutron star matter. The constraints on lower-order parameters as
imposed by the finite nuclei observables are incorporated through appropriately chosen prior distributions.
The calculations are performed with two sets of pseudo data on the EoS whose true models are known. The
median values of second- or higher-order NMPs show sizable deviations from their true values, and associated
uncertainties are also larger. The sources of these uncertainties are identified as (i) the correlations among various
NMPs and (ii) leeway in the EoS of symmetric nuclear matter, symmetry energy, and neutron-proton asymmetry
which propagates into the posterior distributions of the NMPs.
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I. INTRODUCTION

The bulk properties of neutron stars are instrumental in
constraining the equation of state (EoS) of dense matter [1,2].
The conditions of charge neutrality and β-equilibrium im-
posed on the neutron star matter renders it highly asymmetric,
leading to a neutron-proton ratio much larger than unity. The
nuclear part of the EoS can be decomposed into two main
components: the EoS of symmetric nuclear matter (SNM) and
density-dependent symmetry energy. The knowledge of the
EoS of neutron star matter may provide an alternative probe
to understand the behavior of underlying symmetric nuclear
matter and symmetry energy over a wide range of density
which may not be readily accessible in the terrestrial labora-
tory. Usually, the components of the neutron star matter EoS
are expressed in terms of nuclear matter parameters (NMPs),
namely, the energy per nucleon for symmetric nuclear mat-
ter, symmetry energy, and their density derivatives evaluated
at the saturation density (ρ0 � 0.16 fm−3). The lower-order
NMPs, governing the behavior of the neutron star EoS at
low densities are determined by nuclear models calibrated to
the bulk properties of finite nuclei [3–7]. The higher-order
NMPs are generally estimated by using observed maximum
neutron star mass together with radius and tidal deformability
corresponding to the neutron star with canonical mass [8–10].
Such investigations due to the lack of availability of enough
experimental data or for sake of simplicity are restricted to a
small subspace of NMPs.
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Gravitational-wave astronomy through the observations of
gravitational wave signals emitted during the merging of bi-
nary neutron stars promises unprecedented constraints on the
EoS of neutron star matter. The tidal deformability inferred
from these gravitational wave events encodes information
about the EoS. For the first time, gravitational wave event
GW170817 was observed by LIGO-Virgo detector from a
low-mass compact binary neutron star (BNS) merger with the
total mass of the system 2.74+0.04

−0.01M� [11,12]. Another grav-
itational wave signal likely originating from the coalescence
of BNS GW190425 was observed [13]. These two events have
already triggered many theoretical investigations to constrain
the EoS of neutron star matter [13–22]. The upcoming runs
of LIGO-Virgo and the Einstein Telescope are expected to
observe many more gravitational wave signals emitted from
coalescing neutron stars. The mass and radius of neutron stars,
observed either in isolation or in binaries, by the Neutron star
Interior Composition Explorer [23–25] have offered comple-
mentary constraints on the EoS. A sufficiently large number of
such observations may be employed to constrain the NMPs di-
rectly which underlie in the construction of the EoS of neutron
star matter. Since one needs to estimate simultaneously the
values of about ten NMPs, investigations along this direction
require computationally efficient statistical tools which allow
the evaluation of the likelihood function for the experimental
data that may require appropriate marginalization.

A Bayesian approach is often applied to analyze
gravitational-wave signals, which involves nearly fifteen pa-
rameters, to infer their source properties [26]. It has been
also extended to investigate the properties of short γ -ray
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burst [27], neutron stars [28–30], the formation history of
binary compact objects [31–35], population using hierarchi-
cal inference [11,36], and to test general relativity [37–40].
Recently, the Bayesian approach has become a useful statisti-
cal tool for parameter estimation in the field of nuclear and
nuclear-astrophysics. It allows one to obtain joint posterior
distributions of the model parameters and the correlations
among them for a given set of data. Various constraints on
the parameters known a priori are incorporated through their
prior distributions.

Extraction of nuclear matter properties from the chiral
effective-field theory (EFT), in particular, the issue of overfit-
ting by appropriately choosing the prior, is described in great
detail in Ref. [41]. Recently, Bayesian techniques have also
been employed to constrain symmetry energy [42], masses,
and radii of neutron stars [43] using the bounds obtained from
chiral EFT. To obtain the symmetry energy parameters from
the lower bound on neutron matter-energy [44], to extract the
crustal properties of neutron stars [45,46], to limit the bounds
on cold neutron star matter EoS from observational con-
straints [47–49], to test the compatibility of the GW170817
event with multiphysics data [50,51], to constrain neutron
star matter from existing and upcoming constraints on the
gravitational wave and pulsar data [52], to limit the neutron
star EoS with microscopic and macroscopic collisions [53],
to filter models based on astrophysical observations [54], or
to limit the reach of nucleonic hypothesis in the astrophys-
ical context [22,55], Bayesian techniques have been used
extensively.

It is common to study different correlations in the posterior
involving parameters and observables alike within a Bayesian
analysis [21,45,50,56]. The origin of these uncertainties is
embedded either in the underlying models used or in the
variances of the data employed. Existing correlations and un-
certainties among the extracted nuclear matter properties from
a plethora of nuclear physics data both from the laboratory as
well as from the heavens and theoretical calculations at low
densities are often left for interpretation [21,45,50]. It is also
quite useful to test the limit of a certain type of data on phys-
ical quantities which are extracted by employing Bayesian
analyses. How far the constraints on the static properties of
a neutron star can pinpoint the nuclear matter parameters is
still a question of great interest. The same applies to the data
from heavy-ion collisions which can probe nuclear matter at
suprasaturation densities [57–59]. These studies can be done
only in a controlled environment, as the present observations
associate large uncertainties on the data. We have tried to
do this by employing theoretical modeling to mimic data on
neutron star matter, as well as symmetric matter and symmetry
energy.

We first build the EoS of the neutron star matter by
expanding it around symmetric nuclear matter within the
quadratic approximation as most commonly employed. The
EoS of symmetric nuclear matter and density-dependent sym-
metry energy, the two main components, are further expanded
around saturation density within the Taylor and n

3 expansions.
The expansion coefficients in the former case are the individ-
ual NMPs and their linear combinations in the latter case. A
suitable set of NMPs is chosen so that the resulting neutron

star matter EoS is consistent with the currently observed max-
imum mass of ≈2M� and satisfies the causality condition. As
test cases, we employ these EoSs as pseudodata in a Bayesian
analysis. The true values of NMPs for the pseudodata are thus
known a priori. The constraints imposed on the lower-order
nuclear matter parameters by the experimental data, for the
bulk properties of finite nuclei, are incorporated through ap-
propriate choice of the prior distributions. The median values
of marginalized posterior distributions of NMPs and the as-
sociated uncertainties on them as obtained for both the EoS
models show similar trends. The inherent nature of the model
responsible for the deviations in the median values of NMPs
from their true values and uncertainties on them has been
identified.

The paper is organized as follows: The Taylor and n
3 expan-

sions for the EoS of neutron star matter are briefly outlined
in Sec. II. A Bayesian approach is also discussed in the
same section. The results for the posterior distributions of
NMPs obtained from the EoS of symmetric nuclear matter,
density-dependent symmetry energy, and the EoS of neutron
star matter is presented in Sec. III. The main outcomes of the
present investigation are summarized in the last section.

II. METHODOLOGY

The nuclear part of the energy per nucleon for neutron
star matter, ε(ρ, δ), at a given total nucleon density ρ and
asymmetry δ can be decomposed into the energy per nucleon
for the SNM, ε(ρ, 0), and the density-dependent symmetry
energy, J (ρ) in the parabolic approximation as,

ε(ρ, δ) = ε(ρ, 0) + J (ρ)δ2 + · · · , (1)

where δ = ( ρn−ρp

ρ
) with ρn and ρp being the neutron and

proton densities, respectively. The value of δ at a given ρ is
determined by the condition of β equilibrium and the charge
neutrality. Once δ is known, the fraction of neutron, proton,
electron, and muon can be easily evaluated. In the following,
we expand ε(ρ, 0) and J (ρ) appearing in Eq. (1) using Taylor
and n

3 expansions. The coefficients of expansion in case of the
Taylor correspond to the individual nuclear matter parameters.
In the latter case, they are expressed as linear combinations
of the nuclear matter parameters. These EoSs are used as
pseudodata in a Bayesian approach to reconstruct the posterior
distributions of nuclear matter parameters.

A. Taylor’s expansion

ε(ρ, 0) and J (ρ) can be expanded around the saturation
density ρ0 as [60–64]

ε(ρ, 0) =
∑

n

an

n!

(
ρ − ρ0

3ρ0

)n

, (2)

J (ρ) =
∑

n

bn

n!

(
ρ − ρ0

3ρ0

)n

, (3)

so that

ε(ρ, δ) =
∑

n

1

n!
(an + bnδ

2)

(
ρ − ρ0

3ρ0

)n

, (4)
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where the coefficients an and bn are the nuclear matter pa-
rameters. We truncate the sum in Eqs. (2) and (3) at fourth
order, i.e., n = 0–4. Therefore, the coefficients an and bn

correspond to

an ≡ ε0, 0, K0, Q0, Z0, (5)

bn ≡ J0, L0, Ksym,0, Qsym,0, Zsym,0. (6)

In Eqs. (5) and (6), ε0 is the binding energy per nucleon, K0

the incompressibility coefficient, J0 is the symmetry energy
coefficient, its slope parameter is L0, Ksym,0 is the symmetry
energy curvature parameter, Q0 (Qsym,0) and Z0 (Zsym,0) are
related to third- and fourth-order density derivatives of ε(ρ, 0)
[J (ρ)]. The subscript zero indicates that all the NMPs are
calculated at the saturation density.

It may be noticed from Eq. (4) that the coefficients an and
bn may display some correlations among themselves provided
the asymmetry parameter depends weakly on the density. Fur-
thermore, Eq. (4) may converge slowly at high densities, i.e.,
ρ � 4ρ0. This situation is encountered for the heavier neutron
stars. The neutron stars with a mass around 2M� typically
have central densities ≈4ρ0–6ρ0.

B. n
3 expansion

An alternative expansion of ε(ρ, δ) can be obtained by
expanding ε(ρ, 0) and J (ρ) as [65,66]

ε(ρ, 0) =
6∑

n=2

(a′
n−2)

(
ρ

ρ0

) n
3

, (7)

J (ρ) =
6∑

n=2

(b′
n−2)

(
ρ

ρ0

) n
3

, (8)

ε(ρ, δ) =
6∑

n=2

(a′
n−2 + b′

n−2δ
2)

(
ρ

ρ0

) n
3

. (9)

We refer this as the n
3 expansion. It is now evident from

Eqs. (7) and (8) that the coefficients of expansion are no longer
the individual nuclear matter parameters, unlike in case of
Taylor’s expansion. The values of the NMPs can be expressed
in terms of the expansion coefficients a′ and b′ as

⎛
⎜⎜⎜⎝

ε0

0
K0

Q0

Z0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 1 1 1 1
2 3 4 5 6

−2 0 4 10 18
8 0 −8 −10 0

−56 0 40 40 0

⎞
⎟⎟⎟⎠

⎛
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a′
0

a′
1

a′
2

a′
3

a′
4

⎞
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, (10)

⎛
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Ksym,0

Qsym,0

Zsym,0

⎞
⎟⎟⎟⎠ =

⎛
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1 1 1 1 1
2 3 4 5 6

−2 0 4 10 18
8 0 −8 −10 0

−56 0 40 40 0

⎞
⎟⎟⎟⎠

⎛
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b′
0

b′
1

b′
2

b′
3

b′
4

⎞
⎟⎟⎟⎟⎟⎠

. (11)

The relations between the expansion coefficients and the NMPs are governed by the nature of the functional form for ε(ρ, 0)
and J (ρ). The off-diagonal elements in the above matrices would vanish for the Taylor’s expansion of ε(ρ, 0) and J (ρ) as given
by Eqs. (2) and (3), respectively. Therefore, each of the expansion coefficients are simply the individual NMPs given by Eqs. (5)
and (6). Inverting the matrices in Eqs. (10) and (11) we have

a′
0 = 1

24
(360ε0 + 20K0 + Z0), a′

1 = 1

24
(−960ε0 − 56K0 − 4Q0 − 4Z0), a′

2 = 1

24
(1080ε0 + 60K0 + 12Q0 + 6Z0),

a′
3 = 1

24
(−576ε0 − 32K0 − 12Q0 − 4Z0), a′

4 = 1

24
(120ε0 + 8K0 + 4Q0 + Z0), (12)

b′
0 = 1

24
(360J0 − 120L0 + 20Ksym,0 + Zsym,0), b′

1 = 1

24
(−960J0 + 328L0 − 56Ksym,0 − 4Qsym,0 − 4Zsym,0),

b′
2 = 1

24
(1080J0 − 360L0 + 60Ksym,0 + 12Qsym,0 + 6Zsym,0), b′

3 = 1

24
(−576J0 + 192L0 − 32Ksym,0 − 12Qsym,0 − 4Zsym,0),

b′
4 = 1

24
(120J0 − 40L0 + 8Ksym,0 + 4Qsym,0 + Zsym,0). (13)

Each of the coefficients a′ and b′ are the linear combinations of
nuclear matter parameters in such a way that the lower-order
parameters may contribute dominantly at low densities. The
effects of higher-order parameters become prominent with the
increase in density.

C. Bayesian estimation of nuclear matter parameters

A Bayesian approach enables one to carry out a detailed
statistical analysis of the parameters of a model for a given set
of fit data. It yields joint posterior distributions of model pa-
rameters which can be used to study not only the distributions
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of given parameters but also to examine correlations among
model parameters. One can also incorporate prior knowledge
of the model parameters and various constraints on them
through the prior distributions. This approach is mainly based
on the Bayes theorem which states that [67]

P(θ|D) = L(D|θ)P(θ)

Z , (14)

where θ and D denote the set of model parameters and the fit
data. P(θ|D) is the joint posterior distribution of the parame-
ters, L(D|θ) is the likelihood function, P(θ) is the prior for the
model parameters, and Z is the evidence. The posterior distri-
bution of a given parameter can be obtained by marginalizing
P(θ|D) over the remaining parameters. The marginalized pos-
terior distribution for a parameter θi can be obtained as

P(θi|D) =
∫

P(θ|D)
∏
k �=i

dθk . (15)

We use Gaussian likelihood function defined as

L(D|θ) =
∏

j

1√
2πσ 2

j

e
− 1

2

(
d j −m j (θ)

σ j

)2

. (16)

Here the index j runs over all the data, dj and mj are the data
and corresponding model values, respectively. The σ j are the
adopted uncertainties. The evidence Z in Eq. (14) is obtained
by complete marginalization of the likelihood function. It is
relevant when employed to compare different models. How-
ever, in the present work Z is not very relevant. To populate
the posterior distribution of Eq. (14), we implement a nested
sampling algorithm by invoking the Pymultinest nested sam-
pling [68] in the Bayesian Inference Library [26].

III. BAYESIAN RECONSTRUCTION OF NUCLEAR
MATTER PARAMETERS

We have considered Taylor and n
3 expansions in the previ-

ous section to express the EoS for symmetric nuclear matter
and the density-dependent symmetry energy in terms of the
NMPs. The EoS for neutron star matter can thus be con-
structed for a given set of NMPs using Eqs. (4) and (9) in a
straightforward way. On the contrary, it is not evident that it is
known how reliably the values of NMPs can be extracted once
the EoS for the neutron star matter. To illustrate, we construct
EoSs for the neutron star matter using Taylor and n

3 expan-
sions for a known set of NMPs. These EoSs are then employed
as pseudodata to reconstruct the marginalized posterior distri-
butions of the underlying NMPs through a Bayesian approach.
Since the true models for the pseudodata are known, the
sources of uncertainties associated with reconstructed NMPs
may be analyzed more or less unambiguously. A significant
part of the uncertainties on the model parameters usually
arises from the intrinsic correlations among them [15,69]. The
intrinsic correlations among the NMPs are the manifestation
of the various constraints imposed by the fit data [9,45].
These correlations may also depend on the choice of forms
of the functions for the EoS of symmetric nuclear matter and
density-dependent symmetry energy.

TABLE I. The values of nuclear matter parameters (in MeV)
which are employed to construct various pseudodata using the Taylor
and n

3 expansions. The parameters ε0, K0, Q0, and Z0 describes the
EoS of the symmetric nuclear matter part and J0, L0, Ksym,0, Qsym,0,
and Zsym,0 describes density-dependent symmetry energy. The index
“N” denotes the order of a given NMP.

Symmetric nuclear Symmetry
N matter energy

0 ε0 −16.0 J0 32.0
1 L0 50.0
2 K0 230 Ksym,0 −100
3 Q0 −400 Qsym,0 550
4 Z0 1500 Zsym,0 −750

A. Likelihood function and prior distributions

To obtain the marginalized posterior distributions of model
parameters within a Bayesian approach one simply requires
a set of fit data, a theoretical model, and a set of priors for
the model parameters as discussed in Sec. II C. The like-
lihood function for a given set of fit data is evaluated for
a sample of model parameters populated according to their
prior distributions. The joint posterior distributions of pa-
rameters are obtained with the help of the product of the
likelihood function and the prior distributions, Eq. (14). The
posterior distribution for individual parameters can be ob-
tained by marginalizing the joint posterior distribution with
the remaining model parameters. If the marginalized posterior
distribution of a parameter is more localized compared with
its prior distribution, then, the parameter is said to be well
constrained by the fit data.

Our fit data are essentially the pseudodata for the EoS of
symmetric nuclear matter, density-dependent symmetry en-
ergy, and the EoS for neutron star matter constructed from
a suitable choice of NMPs as listed in Table I. The values
of lower-order NMPs are close to those obtained from the
SLy4 parametrization of the Skyrme force calibrated to the
bulk properties for a few selected finite nuclei [70,71]. The
values of second or higher-order NMPs are modified so that
the EoS for the neutron star matter remains causal for both the
Taylor and n

3 expansions. Furthermore, the maximum mass
of neutron stars for both the expansions satisfies the current
lower bound of ≈2M�. The likelihood function is obtained
using Eq. (16) for pseudodata and the corresponding model
values with the standard deviation, σ equal to unity at all
densities ranging from 0.5ρ0 to 6ρ0. The present investigation
may not be sensitive to the choice of the NMPs.

The calculations are performed for two different sets of
priors. In Table II, we provide the details for the prior sets
P1 and P2. Usually, if the parameters are known only poorly,
their prior distribution is taken to be uniform. But, in case, if
some information about a parameter is known a priori, one
simply assumes Gaussian distributions for the corresponding
parameter. The priors for ε0 and J0 are taken to be Gaussian
with their means and standard deviations consistent with the
constraints imposed by the finite nuclei properties. For most
of the remaining NMPs, the prior set P1 assumes uniform
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TABLE II. Two different sets P1 and P2 for the prior distributions
of the nuclear matter parameters (in MeV). The parameters of Gaus-
sian distribution (G) are μ (mean) and σ (standard deviation). The
parameters “Min” and “Max” denote the minimum and maximum
values for the uniform distribution (U). The saturation density ρ0 is
taken to be 0.16 fm−3.

P1 P2

μ σ μ σ

Parameters Pr-Dist Min Max Pr-Dist. Min Max

ε0 G −16 0.3 G −16 0.3
K0 G 240 100 G 240 50
Q0 U −2000 2000 G −400 400
Z0 U −3000 3000 U −3000 3000
J0 G 32 5 G 32 5
L0 U 20 150 G 50 50
Ksym,0 U −1000 1000 G −100 200
Qsym,0 U −2000 2000 G −550 400
Zsym,0 U −3000 3000 U −3000 3000

distributions. The prior set P2 further imposes stronger con-
straints on the lower-order parameters such as K0 and L0

which are consistent with those obtained from finite nuclei
properties. The higher-order parameters are assumed to have
wide Gaussian distributions. We also impose an additional
constraint on the symmetry energy so that it always increases
monotonically with density.

B. Symmetric nuclear matter and symmetry energy

The EoS of the symmetric nuclear matter ε(ρ, 0) and the
density-dependent symmetry energy J (ρ) are the two main
components which govern the symmetric part and the de-
viations from it in the EoS of the neutron star matter. The
NMPs which are required in the constructions of ε(ρ, 0) are
ε0, K0, Q0, and Z0 and those for J (ρ) are J0, L0, Ksym,0, Qsym,0,
and Zsym,0. The nuclear matter parameters that appear in the
expansions of ε(ρ, 0) might be correlated with those NMPs
appearing in the expansion of J (ρ) [cf. Eqs. (4) and (9)].
These correlations might prevent the NMPs from being de-
termined accurately. Moreover, the accurate values of NMPs
may also be masked by the strong correlations of symmetry
energy with the asymmetry parameter δ which determines the
fractions of different baryons and leptons at a given density.
The sources of uncertainties in the NMPs are intrinsically
present in a EoS model. To avoid some of these uncertainties,
we first consider a Bayesian estimation of the NMPs for a
given ε(ρ, 0) and J (ρ) separately, before embarking on their
estimations from a EoS of the neutron star matter.

We perform a Bayesian analysis using Gaussian likelihood
[cf. Eq. (16)] which can be easily evaluated for a set of fit
data together with corresponding model values obtained for a
sample of each parameter. We construct two sets of pseudo-
data for ε(ρ, 0) and J (ρ) each. These pseudodata correspond
to the Taylor and n

3 expansions referred to hereafter as models
M1 and M2, respectively. The values of NMPs used for these
pseudodata are the same as listed in Table I. So, the true values
of NMPs for a given pseudodata are known. The marginalized

TABLE III. The median values and the 1σ errors for the nuclear
matter parameters (in MeV) from their marginalized posterior distri-
butions. The distributions of ε0, K0, Q0, and Z0 are reconstructed from
the EoS of the symmetric nuclear matter and those for J0, L0, Ksym,0,
Qsym,0, and Zsym,0 from the density-dependent symmetry energy. The
results are presented for the Taylor (M1) and n

3 (M2) expansions
obtained using prior sets P1 and P2.

NMPs M1-P1 M1-P2 M2-P1 M2-P2

ε0 −16.0+0.2
−0.2 −16.0+0.2

−0.2 −16.0+0.2
−0.2 −16.0+0.2

−0.2

K0 230+8
−8 230+8

−8 230+14
−15 230+13

−14

Q0 −402+35
−35 −401+35

−35 −403+128
−124 −403+122

−116

Z0 1502+53
−53 1501+53

−53 1515+756
−773 1517+711

−739

J0 32.0+0.4
−0.4 32.0+0.4

−0.4 32.0+0.5
−0.5 32.0+0.4

−0.4

L0 50.0+2.6
−2.8 50.0+2.6

−2.6 50.0+2.6
−2.6 50.0+2.5

−2.5

Ksym,0 −100+18
−18 −100+18

−18 −100+27
−27 −100+24

−24

Qsym,0 551+58
−59 549+58

−59 548+184
−193 551+163

−166

Zsym,0 −750+80
−75 −749+78

−77 −734+1064
−1034 −759+936

−906

posterior distributions (PDs) for the NMPs which underlie in
the constructions of ε(ρ, 0) and J (ρ) are obtained separately.

The median values of NMPs and associated 1σ uncer-
tainties from the marginalized PDs as listed in Table III are
obtained for the models M1 and M2 for two different prior
sets. The median values of NMPs obtained for all the different
cases are very close to their true values as listed in Table I. The
uncertainties on the NMPs obtained for both the prior sets
are quite similar to each other for a given model. However,
the uncertainties are significantly larger for the third- and
fourth-order NMPs in the case of model M2 in comparison
to those for M1. The uncertainties for third-order NMPs for
M2 are about five times larger than those for M1. It increases
to more than ten times for the fourth-order NMPs.

The 1σ uncertainties obtained from the marginalized PDs
for NMPs as listed in Table III are significantly smaller than
those corresponding to their prior distributions. The prior
distribution for a given NMP thus appears relatively uni-
form compared with its marginalized PD, as will be seen
later. The marginalized PDs and the confidence ellipses for
the NMPs, which determine ε(ρ, 0) and J (ρ), obtained for
models M1 and M2 are displayed as corner plots in Figs. 1
and 2. These results correspond to prior set P2 which assumes
very wide Gaussian distributions for the higher-order NMPs
(see Table II). The one-dimensional marginalized PDs for
the NMPs are displayed along the diagonals of the corner
plots (light blue full lines) together with the corresponding
prior distributions (light green lines). These PDs for all the
NMPs are quite symmetric around their median values or
they represent Gaussian distribution. The PDs for most of the
NMPs are localized compared with the corresponding prior
distributions. As a result, the prior distributions for most of
the NMPs appear to be flat in comparison to those for the
marginalized PDs. This is also the reflection of the constraints
imposed by the pseudodata. The median values of NMPs are
very close to their true values. The confidence ellipses are
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FIG. 1. Corner plots for marginalized posterior distributions of
the NMPs which appear in the expansion of the EoS for the symmet-
ric nuclear matter (top) and those in the density-dependent symmetry
energy (bottom). The results are obtained for the model M1 with
the prior set P2. One-dimensional posterior distributions (light blue)
plotted along the diagonal plots are also compared with the corre-
sponding prior distributions (light green). The vertical lines indicate
the 68% confidence interval of the NMPs. The confidence ellipses
for two-dimensional posterior distributions are plotted with 1σ , 2σ ,
and 3σ confidence intervals.

FIG. 2. Same as Fig. 1, but for model M2.

plotted along with the off-diagonal elements of the corner
plots corresponding to 1σ , 2σ , and 3σ confidence intervals.
The width and inclination of the confidence ellipses for a pair
of NMPs depend on their covariance, which determines the
nature of the linear correlations among them [69,72]. It may
be noted that the correlation patterns obtained for both models
are only marginally different. However, the uncertainties in
the higher-order parameters are significantly larger for the
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FIG. 3. The EoS for symmetric nuclear matter (top) and the
symmetry energy (bottom) as a function of density obtained within
95% confidence interval from the posterior distributions of nuclear
matter parameters for models M1 and M2 for the prior set P2. The
pseudodata for M1 and M2 are shown by triangles and squares,
respectively.

model M2. This fact may be attributed to some complex in-
trinsic correlations among the NMPs. It is clear from Eqs. (12)
and (13) that the expansion coefficients for the model M2
are the linear combinations of the NMPs unlike those in M1.
Furthermore, it can be seen that the higher-order terms in
model M2 relative to the lower-order ones have less impact
as compared with those in M1.

In Fig. 3, the variations of ε(ρ, 0) and J (ρ) as a function of
density with 95% confidence intervals are plotted. The 95%
confidence interval lies in a very narrow range which once
again points to the fact that the large uncertainties on the
NMPs are predominantly due to the correlations among them.
The results presented in Figs. 1–3 provides firm ground to
perform the analysis of the NMPs obtained in the following
subsection, using the EoS of neutron star matter, which in-
volves ε(ρ, 0) and J (ρ), simultaneously. On passing, we may
also remark that, although the values of ε(ρ, 0) and J (ρ) for
the models M1 and M2 are obtained using the same set of
NMPs, their behavior at high densities is significantly dif-
ferent. The lower-order NMPs, which govern the low-density
behavior of ε(ρ, 0) and J (ρ), maybe model independent.

C. Neutron star matter

We now apply a Bayesian approach to reconstruct the
marginalized PDs for the NMPs using the EoS for the neutron
star matter which satisfies the conditions of β equilibrium and
charge neutrality. The EoS for neutron star matter ε(ρ, δ) can
be obtained using Eq. (1) for a given ε(ρ, 0) and J (ρ). We
construct two sets of pseudodata for ε(ρ, δ) corresponding to
the models M1 and M2 obtained using NMPs of Table I in

TABLE IV. Same as Table III, but the posterior distributions for
all the nuclear matter parameters are reconstructed simultaneously
from the EoS for the neutron star matter.

NMPs M1-P1 M1-P2 M2-P1 M2-P2

ε0 −16.0+0.3
−0.3 −16.0+0.3

−0.3 −16.0+0.3
−0.3 −16.0+0.3

−0.3

K0 187+65
−56 221+36

−28 213+47
−40 230+28

−25

Q0 −367+196
−220 −471+113

−123 −327+243
−198 −412+159

−123

Z0 1518+258
−236 1632+152

−157 1307+1069
−1656 1637+835

−1206

J0 31.8+2.5
−2.6 32.0+2.6

−2.7 32.0+2.5
−2.5 32.0+2.6

−2.4

L0 52.8+25
−19 55.5+17

−16 53.1+23.8
−19.3 51.0+14.0

−13.9

Ksym,0 −34+142
−178 −108+76

−72 −114+113
−138 −106+70

−70

Qsym,0 220+755
−563 486+257

−264 562+572
−488 522+248

−241

Zsym,0 807+1341
−1527 100+876

−668 −60+1944
−1921 −323+1920

−1643

Eqs. (4) and (9), respectively. The marginalized distributions
of all the nine NMPs are reconstructed simultaneously from
the pseudodata for ε(ρ, δ), since it consists of ε(ρ, 0) and
J (ρ). A Bayesian analysis is performed with models M1 and
M2 for prior sets P1 and P2. The median values of the NMPs
obtained from the marginalized PDs and the corresponding 1σ

errors are listed in Table IV. The NMPs are somewhat better
estimated for the prior set P2. The symmetry energy slope pa-
rameter L0 seems to be a special case because its counterpart
in the symmetric nuclear matter vanishes [cf. Eqs. (5) and (6)].
It may be noticed that the uncertainties on Ksym,0, Qsym,0, and
Zsym,0 are much larger than their counterparts in the EoS for
symmetric nuclear matter. The errors on Ksym,0 are, however,
similar to those derived from bulk properties of finite nuclei
or other correlation systematics [73–75], although we have
allowed larger variations of K0 and L0. Once the sufficiently
accurate values of ε(ρ, δ) are determined from various astro-
physical observations, they can be combined with finite nuclei
constraints to obtain L0 and Ksym,0 in tighter limits.

The results for NMPs in Table IV, obtained from the EoS
of neutron star matter are substantially different from those of
Table III, which were determined separately from the EoS of
symmetric nuclear matter and the density-dependent symme-
try energy. In general, these differences can be summarized
as follows: (i) the median values of NMPs in Table IV show
larger deviations from their true values compared with those in
Table III, (ii) the uncertainties on the NMPs determined from
the EoS of neutron star matter are several times larger for most
of the NMPs, (iii) the uncertainties on the Z0 and Zsym,0 in
Table IV are somewhat asymmetric about their median values
reflecting their non-Gaussian nature, and (iv) the ratios of un-
certainties between the models M1 and M2 obtained for third-
and fourth-order NMPs listed in Table IV are significantly
smaller than those in Table III. This already provides us some
clue that there are additional sources of uncertainties on the
NMPs determined from the EoS of the neutron star matter.

It may be pointed out that there are several additional
sources of uncertainties on the NMPs which were avoided by
reconstructing them separately from the ε(ρ, 0) and J (ρ) as
shown in Figs. 1 and 2. These sources of uncertainties are
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FIG. 4. Corner plots for the marginalized posterior distributions
of nuclear matter parameters (in MeV) obtained from the EoS for the
neutron star matter for the model M1 with prior set P2. The prior
distributions (light green) are also plotted for the comparison.

(i) intercorrelations of NMPs corresponding to ε(ρ, 0) with
those for J (ρ), (ii) compensation in the change of J (ρ) with
the asymmetry parameter δ and ε(ρ, 0) in such a way that the
EoS of neutron star matter remains more or less unaltered. We
analyze them in detail in the following.

The corner plots for the marginalized PDs for the NMPs in
one and two dimensions for the models M1 and M2 obtained
for prior set P2 are displayed in Figs. 4 and 5, respectively.
The difference between the one-dimensional PDs for the
NMPs and corresponding prior distributions reflect the role
of pseudodata in constraining the NMPs. These marginalized
posterior distributions of the NMPs are at variance with those
obtained separately from the EoS for the symmetric nuclear
matter and the density-dependent symmetry energy, as shown
in Figs. 1 and 2. The shapes and the orientations of the
confidence ellipses suggest that the correlations among most
of the pairs of NMPs have disappeared or weakened. Strong
correlations exist only between K0-Q0, Q0-Z0, and L0-Ksym,0

pairs with correlation coefficient r ≈ 0.8 for model M1. How-
ever, in model M2 the K0-Q0 correlation disappeared. The
intercorrelations of the NMPs corresponding to ε(ρ, 0) with
those for the J (ρ) are almost absent. Z0 and Zsym,0 show
almost no correlation with the remaining NMPs. Overall re-
duction occurs in the correlations among the NMPs which are
reconstructed from the EoS of the neutron star matter, but
increase in their uncertainties at the same time seem to be
somewhat counterintuitive. Other sources of uncertainties as
mentioned earlier need to be addressed.

We now examine the uncertainties in the NMPs which
might arise due to the allowed variations in the ε(ρ, 0), J (ρ),
and δ for a given ε(ρ, δ). The value of asymmetry parameter

FIG. 5. Same as Fig. 4, but for the model M2.

δ is mainly governed by the symmetry energy at a given
density. As the symmetry energy increases, the δ decreases.
Thus, the symmetry energy and δ may balance each other in
such a way that the asymmetric part of the EoS of neutron
star matter remains unaffected. Moreover, the variations in the
asymmetric part of ε(ρ, δ) may also be compensated by the
symmetric nuclear matter ε(ρ, 0). In short, for a given ε(ρ, δ),
the values of J (ρ), ε(ρ, 0) and δ may have some leeway. We
use the marginalized PDs for the NMPs to obtain 68% and
95% confidence intervals for ε(ρ, δ), ε(ρ, 0), and J (ρ) . The
results are plotted only for the M2-P2 case in Fig. 6. Other
cases show similar qualitative trends and are not shown here.
The value of ε(ρ, δ) (top) vary in a narrow bound at a given
density, but, ε(ρ, 0) (middle) and J (ρ) (bottom) have larger
uncertainties. The 95% confidence intervals for ε(ρ, 0) and
J (ρ) are little asymmetric with respect to those for the 68%
due to the non-Gaussian nature of higher-order NMPs as can
be seen from Table IV and Fig. 5. The spread in the values
of J (ρ) increases with density rapidly beyond 2ρ0. For 68%
confidence interval, spread in J (ρ) at 4ρ0 is ≈36 MeV which
increases to ≈160 MeV at 6ρ0, whereas, the spread in ε(ρ, 0)
remains almost the same (≈15 MeV) for the density in the
range 4ρ0 to 6ρ0. The larger spread in J (ρ) is balanced by
asymmetry parameter δ as well as by change in ε(ρ, 0) such
that the EoS for neutron star matter remains almost unaffected.
These features are intrinsic in nature which is present in all
the models for neutron star matter [cf. Eq. (1)]. The marginal-
ized PDs for the NMPs, plotted in Figs. 4 and 5, effectively
correspond to the values of ε(ρ, 0) and J (ρ) displayed in
Fig. 6. To probe further, the confidence ellipses are plotted
in Fig. 7 for the 68% confidence intervals for ε(ρ, 0), and δ

as a function of J (ρ) at fixed densities ρ = 4ρ0 and 6ρ0. J (ρ)
is anticorrelated with δ and ε(ρ, 0). The spread in the values
of J (ρ) is predominantly due to its anticorrelation with δ. The
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FIG. 6. Plots of 68% and 95% confidence intervals for the EoS
for neutron star matter (top), the symmetric nuclear matter (middle),
and the symmetry energy (bottom) as a function of scaled density
for model M2 with prior set P2. The results are obtained from the
posterior distributions of the NMPs which are reconstructed from the
pseudodata for the EoS of neutron star matter( triangles). The spread
in ε(ρ, 0) and J (ρ ) are consistent with those for ε(ρ, δ).

uncertainties in ε(ρ, 0) and J (ρ) propagate into the NMPs.
That is why the marginalized posterior distributions of NMPs
displayed in Figs. 4 and 5 are significantly different in com-
parison with those shown in Figs. 1 and 2. This also explains
the reason behind the larger uncertainties on the higher-order
NMPs, which govern the high-density behavior of J (ρ). As
the uncertainties in ε(ρ, 0) are smaller than those in J (ρ), they
get reflected in the uncertainties of the corresponding NMPs
(see Table IV). It seems that the EoS of neutron star matter,
usually constrained by using several astrophysical observables
alone, may not be sufficient to determine the NMPs in narrow
bounds. The more reliable determination would also require
additional constraints on the EoS of symmetric nuclear matter
as well as on the density-dependent symmetry energy. The
experimental data on the EoS of symmetric nuclear matter
from the heavy-ion collision and the symmetry energy beyond
the saturation density from the isobaric-analog states may help
in constraining the NMPs further [76–80].

We modify the prior distributions to simulate the influence
of the constraints on the NMPs derived from the data on
the microscopic systems such as heavy-ion collisions and
the bulk properties of finite nuclei. These data are expected
to constraint the behavior of symmetric nuclear matter and
symmetry energy over a wide range of densities ranging from
subsaturation density to supra saturation densities up to 2ρ0

to 3ρ0. The empirical values of pressure of the symmetric
nuclear matter at suprasaturation densities may constrain the
value of Q0. The data on iso-vector giant dipole resonance
and neutron-skin thickness in heavy nuclei may constraint the

FIG. 7. Plots of confidence ellipses with 1σ interval for the EoS
for symmetric nuclear matter (top) and asymmetry parameter (bot-
tom) as a function of symmetry energy at densities ρ = 4ρ0 and 6ρ0.
The symbol tilde denotes that the corresponding quantity is obtained
with respect to its median value.

value of L0 [80]. Once the values of J0 and L0 are constrained,
Ksym,0 may also be somewhat constrained [44,74]. We repeat
our calculations by reducing the width of Gaussian priors for
Q0, L0, and Ksym,0 in the prior set P2. For Q0 and L0, the
values of width are reduced by a factor of four, whereas for
Ksym,0 by a factor of two. In Table V, we present the values of
correlation coefficients among some selected pairs of NMPs
obtained with the modified priors with those for the prior
set P2. In general, the correlations become weaker with the
modified prior. Consequently, the uncertainties on the NMPs
have decreased, as can be seen from Table VI. In particular,
the uncertainties on Z0 have now become almost half for both
the models M1 and M2. The spread in the values of ε(ρ, 0)
and J (ρ) become smaller by less than 10% for the densities
around 2ρ0, but their spreads at higher densities remain practi-
cally unaltered. The issue presented in this paper needs further
investigation. In the present work, we have used the most
commonly employed EoS expanded around the symmetric
nuclear matter. Some alternative representation of the EoS of

TABLE V. Values of correlation coefficients among selected
pairs of nuclear matter parameters obtained with the modified prior
set P2′. The width of Gaussian priors for Q0 and L0 are reduced
by a factor of four and that for Ksym,0 by factor of two for P2′ in
comparison to the prior set P2.

Parameters M1-P2 M1-P2′ M2-P2 M2-P2′

K0 − Q0 −0.9 −0.75 −0.5 −0.15
Q0 − Z0 −0.97 −0.87 −0.88 −0.63
Ksym,0 − L0 −0.76 −0.44 −0.86 −0.62
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TABLE VI. Same as IV, but for a modified priors set P2′.

NMPs M1-P2′ M2-P2′ NMPs M1-P2′ M2-P2′

ε0 −16.0+0.3
−0.3 −16.0+0.3

−0.3 J0 32.0+2.0
−2.0 32.0+2.2

−2.1

L0 51.6+7.4
−7.5 50.0+7.2

−6.9

K0 212+24
−21 225+27

−21 Ksym,0 −87+45
−44 −105+43

−41

Q0 −425+63
−55 −408+62

−59 Qsym,0 489+219
−222 544+213

−209

Z0 1561+75
−80 1650+573

−647 Zsym,0 −96+775
−604 −332+1857

−1621

neutron star matter may be employed. One such form is the
expansion of the EoS around the neutron matter in powers of
the proton fraction [81].

IV. SUMMARY AND OUTLOOK

A Bayesian approach has been applied to reconstruct the
underlying nuclear matter parameters which describe the EoS
of the neutron star matter. The calculations are performed
using the EoS for neutron star matter by expanding it around
symmetric nuclear matter within the parabolic expansion, as
commonly employed. The EoS of symmetric nuclear matter
and density-dependent symmetry energy required for such an
EoS are expanded by using Taylor and n

3 expansions. The ex-
pansion coefficients for the former are the individual nuclear
matter parameters and linear combinations of them for the
n
3 case. The pseudodata for the EoS for symmetric nuclear
matter, neutron star matter, and density-dependent symmetry
energy are constructed using both expansions. This pseudo-
data enable us to identify the various sources of uncertainties
associated with the marginalized posterior distributions of
NMPs, since the true models are known. The posterior dis-
tributions of the nuclear matter parameters are obtained using
two different sets of priors. One of the prior sets assumes that
most of the parameters are unknown, except for the lowest
order ones which are the binding energy per nucleon for the
symmetric nuclear matter and the symmetry energy coeffi-
cient at the saturation density.

The marginalized posterior distributions for the NMPs re-
constructed separately from the EoS of symmetric nuclear
matter and density-dependent symmetry energy are very much
localized around their true values. But the posterior distri-
butions for all the NMPs determined simultaneously from
the EoS of neutron star matter are at variance. The me-
dian values significantly deviate from their true values and
associated uncertainties are also larger, in particular for
second- or higher-order NMPs. The main sources of uncer-

tainties are found to be (i) the correlations among higher-order
parameters describing the EoS of symmetric nuclear matter
and similar correlations in the case of density-dependent sym-
metry energy, and (ii) the larger uncertainties in the symmetry
energy at a given density due to its anticorrelation with asym-
metry parameter and the EoS of symmetric nuclear matter
such that neutron star matter EoS remains mostly unaffected.
These are intrinsic in nature for the EoS of neutron star matter
obtained by expanding it around the symmetric nuclear matter.
The EoS of neutron star matter alone may not be sufficient
to determine the higher-order NMPs in narrow bounds. The
higher-order NMPs are correlated to the lower-order ones,
thus, the low-density ab initio predictions for the EoS of
symmetric nuclear matter and pure neutron matter from the
chiral effective-field theory should also be considered for the
improved parametrizations. The experimental data on the EoS
of symmetric nuclear matter from the heavy-ion collision and
the symmetry energy beyond the saturation density from the
isobaric-analog states may further help in constraining the
nuclear matter parameters.

We have also performed the calculations by imposing strin-
gent constraints on prior distributions for Q0, L0, and Ksym,0,
which led to the reduction of the correlations among the
NMPs. Consequently, the uncertainties on some of the NMPs
become smaller. The spread in the EoS of symmetric nuclear
matter and symmetry energy become smaller by less than 10%
for the densities around 2ρ0. But their spreads at higher densi-
ties remain practically unaltered. It remains to be understood
whether the sources of various uncertainties identified in the
present work are due to the expansion of the EoS around the
symmetric nuclear matter. It may be interesting to perform an
investigation using the EoS expanded around the pure neutron
matter instead of symmetric nuclear matter [81].
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