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Influence of the nuclear symmetry energy slope on observables of
compact stars with �-admixed hypernuclear matter
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In this work, we study the effects of the nuclear symmetry energy slope on the neutron star dense matter
equation of state and its impact on neutron star observables (mass-radius, tidal response). We construct the
equation of state within the framework of covariant density functional theory implementing coupling schemes
of nonlinear and density-dependent models with viability of heavier non-nucleonic degrees of freedom. The
slope of the symmetry energy parameter (Lsym) is adjusted following the density dependence of isovector meson
coupling to baryons. We find that smaller values of Lsym at saturation favor early appearance of � resonances
in comparison to hyperons, leading to latter’s threshold at higher matter densities. We also investigate the
dependence of Lsym on tidal deformability and the compactness parameter of a 1.4M� neutron star for different
equations of state and observe similar converging behavior for larger Lsym values.
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I. INTRODUCTION

In stellar evolution, when nuclear fusion stops and the
electron degeneracy pressure cannot prevent gravitational col-
lapse, electrons happen to combine with protons and produce
neutron-rich nuclei. Eventually neutrons drip out of the nuclei,
and the matter becomes mainly composed of neutrons with
some admixture of protons and electrons. This remnant of
stellar evolution is called a neutron star (NS). Thus, after
the type-II supernova explosion the stellar remnant forms a
highly dense NS. Naturally, the matter density inside the NS
varies from subnuclear density near the surface to supranu-
clear density towards the center. Matter is composed of ions
and electrons near the surface, i.e., in the outer crust region,
and in the inner crust region neutron-rich nuclei and some
free neutrons appear. Then, in the core, matter is completely
made of free neutrons with comparatively fewer protons and
electrons. With the increase of density towards the center of
the star, exotic components of matter, viz., hyperons, heavier
non-strange baryons, Boson condensates, and even deconfined
quarks may appear, while near the surface where density is
comparatively low, up to ≈2 times nuclear saturation density
(n0), the matter is composed of only nucleons [1,2]. Hence,
the interior of NS is a good domain to study dense nuclear
matter in bulk with and without exotic degrees of freedom.
In general, we have good knowledge about finite nuclei at
n0. Hence, the theoretical idea of uniform symmetric nuclear
matter in bulk even at varied densities above n0 is just the
extrapolation and idealization of finite nuclei knowledge. On
the other hand, the observational test of bulk matter properties
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in varied density above n0 can only be obtained from astro-
physical observations of compact NSs.

One important ingredient for energy density of nucleons
inside nuclear matter is the symmetry energy (Esym). Conse-
quently, nuclear symmetry energy and its density dependence
play a salient role in comprehending dense matter behavior
[3,4]. In case of finite nuclei, the contribution of symmetry
energy to the mass of the nuclei is small compared to other
terms in the semiempirical mass formula. Hence, the exper-
imental information regarding Esym is not very sound even
at n0. As mentioned earlier, from the astrophysical properties
of NSs the nuclear matter properties at varied density can be
determined. The nuclear symmetry energy and its variation
with density affect substantially the composition and mat-
ter pressure, which consequently affects the NS properties,
especially the radius [5,6]. Although from nuclear data we
have very little knowledge of Esym, a good comprehensive
idea of the same can now be drawn from the recent radius
measurement of certain NS candidates, PSR J0030 + 0451
[7–9] and PSR J0740 + 6620 [10,11] from the NICER (Neu-
tron star Interior Composition ExplorER) space mission. The
detection of gravitational wave (GW) emissions from binary
NS mergers (GW170817 [12–14] and GW190425 [15]) by
the LIGO-Virgo Collaboration (LVC) marked an appreciable
breakthrough in the domain of multimessenger astronomy.
The GW observations set a bound on the mutual tidal de-
formability (�̃), which also depends on the matter properties
linked with Esym.

Not only that, a comprehensive idea regarding symmetry
energy behavior can be gathered via studying its effects on
other NS properties such as maximum mass, compactness,
and tidal deformability. The observational estimations of cer-
tain parameters, viz., maximum mass and radius of compact
objects, impose vital constraints on narrowing down to a
unique dense matter equation of state (EOS). For instance,
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with the observations of massive compact stars (M � 2M�)
such as PSR J1614−2230 (1.908 ± 0.016 M�) [16,17], PSR
J0348+0432 (2.01 ± 0.04 M�) [18], and PSR J0740+6620
(2.08+0.07

−0.07 M� with 68.3% credibility [19]), the soft EOSs
tend to be invalid. The mass-radius measurements of PSR
J0030+0451 [7–9] and PSR J0740+6620 [10,11] from the
NICER space mission provide a significant constraint on the
dense matter EOS. The latest NICER mass-radius measure-
ment (PSR J0740+6620) suggests repulsive matter behavior
at higher density regimes. Joint analysis of data from NICER
observations for PSR J0030+0451 and the GW170817 event
provides bounds on NS properties, viz., tidal deformability
(�1.4) and radius (R1.4) for a 1.4M� star [20].

Many recent studies have been done to constrain the val-
ues of Esym at n0 and its slope (Lsym) at n0 based on data
from various astrophysical observations as well as terrestrial
experiments [21–23]. Very recently an improved value of neu-
tron skin thickness of 208Pb was reported in the Lead Radius
EXperiment-II (PREX-2) to be Rskin = Rn − Rp = (0.283 ±
0.071) fm [24]. This evaluates the corresponding symmetry
energy and its slope to be Esym = (38.1 ± 4.7) MeV and
Lsym = (106 ± 37) MeV respectively at n0 with correlation
coefficient as 0.978 [25]. These updated values of isospin
asymmetry parameters are larger than the ones [28.5 �
Esym(n0) � 34.9 MeV, 30.6 � Lsym(n0) � 86.8 MeV] pre-
viously reported in Ref. [26], obtained by comparison of
experimental data from finite nuclei and heavy-ion collisions
with different microscopic model calculations. In this work,
we explore the influence of nuclear symmetry energy on the
dense matter EOS, and consequently on NS properties. As
a consequence, we attempt to constrain the Esym and Lsym

using the observational features of NSs. To do so, we consider
a covariant density functional (CDF) model implementing
the density dependence of isovector-vector coupling as intro-
duced in Ref. [27] and incorporating nonlinear GM1 [28] and
density-dependent DD-MEX [29] coupling parametrizations.
In the CDF scheme, the coupling constants are chosen in
such a way that the model can reproduce the experimental
quantities known at n0. Thus the observational properties of
NSs which depend on the EOS parameters, i.e., coupling
constants, will determine Esym and Lsym. In several previous
studies the symmetry energy effects on dense matter have
been considered with the matter composition being purely nu-
cleonic [30–32]. However, due to increasing Fermi energy of
nucleons in the interior of the NS, the appearance of additional
degrees of freedom such as hyperons [28,33–41], � reso-
nances [42–52], and meson (π, K̄, ρ) condensations [53–60]
are inevitable or energetically favorable for massive stars, as
recently observed [16–19]. Moreover, the appearance of these
exotic matter softens the EOS, reducing the maximum mass
of the stars, which is contrary to the observations. Hence, the
choice of EOS parametrization is limited by the observational
constraints of massive stars. For that we have chosen two
EOS parametrizations within the CDF model, viz., GM1 with
the nonlinear model and DD-MEX with a density-dependent
coupling constant, which satisfy the observational constraints
of massive stars. This work will therefore explore the novel
aspects of density-dependent isovector coupling on the dense
matter EOS with the onset of heavier strange and nonstrange

degrees of freedom and study the symmetry energy slope
effects on NS properties.

The paper is organized as follows. In Sec. II, we briefly
describe the CDF model formalism, its extension to additional
heavier degrees of freedom, and coupling parameters for con-
structing the EOS. The effects of nuclear symmetry energy on
dense matter are shown and discussed in Sec. III. Section IV
provides the summary and conclusions of this work.

Conventions. We implement the natural units G = h̄ = c =
1 throughout the work.

II. FORMALISM

A. CDF Model

This section briefly describes the CDF model imple-
mented in this work to construct the dense matter EOS.
The dense matter composition considered in this work is
the entire baryon octet (N ≡ n, p; Y ≡ �0, �±,0, �−,0) and
� resonances (� ≡ �+,�++,�0,�−) along with leptons
(l ≡ e−, μ−). In order to mediate the effective interactions
between the baryons, isoscalar-scalar σ , isoscalar-vector ω,
and isovector-vector ρ mesons are considered. An additional
hidden strangeness isoscalar-vector φ meson is also brought
into consideration to describe the hyperon-hyperon repulsive
interactions. The total Lagrangian density is given by [1,47]

L =
∑

b≡N,Y

ψ̄b
(
iγμDμ

(b) − m∗
b

)
ψb +

∑
l

ψ̄l (iγμ∂μ − ml )ψl

+
∑
�

ψ̄�ν

(
iγμDμ

(�) − m∗
�

)
ψν

� + 1

2
(∂μσ∂μσ − m2

σ σ 2)

− 1

4
ωμνω

μν + 1

2
m2

ωωμωμ − 1

4
ρμν · ρμν + 1

2
m2

ρρμ · ρμ

− 1

4
φμνφ

μν + 1

2
m2

φφμφμ − U (σ ), (1)

where the baryon octet, lepton Dirac, and � baryon
Schwinger-Rarita fields are represented by ψb, ψl , and ψ� re-
spectively. The covariant derivative is given by Dμ( j) = ∂μ +
igω jωμ + igρ jτ j3 · ρμ + igφ jφμ with j denoting the baryon
particle spectrum. The isospin projection of the third compo-
nent of isovector-vector meson field is represented by τ j3. The
scalar self-interaction term, which is present only in the non-
linear model, introduced to account for the incompressibility
[1], is given by

U (σ ) = 1
3 g2σ

3 + 1
4 g3σ

4, (2)

where g2, g3 are the coefficients of self-interactions. ωμν , ρμν ,
and φμν are the antisymmetric field tensors corresponding to
vector meson fields and are given by

ωμν = ∂μων − ∂νωμ,

ρμν = ∂μρν − ∂νρμ,

φμν = ∂μφν − ∂νφμ.

(3)

The Dirac and Schwinger-Rarita effective masses are respec-
tively given by

m∗
b = mb − gσbσ, m∗

� = m� − gσ�σ (4)

015802-2



INFLUENCE OF THE NUCLEAR SYMMETRY ENERGY … PHYSICAL REVIEW C 105, 015802 (2022)

with mb, m� representing the bare masses of the baryon-octet
and �-quartet particle spectrum respectively. In mean-field
approximation, the nonvanishing meson fields obtained by
solving the Euler-Lagrange equations are given by

σ = − 1

m2
σ

∂U

∂σ
+

∑
b

1

m2
σ

gσbns
b +

∑
�

1

m2
σ

gσ�ns
�,

ω0 =
∑

b

1

m2
ω

gωbnb +
∑
�

1

m2
ω

gω�n�,

ρ03 =
∑

b

1

m2
ρ

gρbτb3nb +
∑
�

1

m2
ρ

gρ�τ�3n�,

φ0 =
∑

Y

1

m2
φ

gφY nY . (5)

The scalar and vector (number) densities of the constituent
particle spectrum are given by ns = 〈ψ̄ψ〉 and n = 〈ψ̄γ 0ψ〉
respectively. The chemical equilibrium conditions between
species in the particle spectrum when strangeness is not con-
served is given by [42,56]

μ j = μn − q jμe, (6)

where qj is the charge of jth baryon, and μe, μn denote the
chemical potentials of the electron and neutron respectively.
The chemical potential of the jth baryon is defined as

μ j =
√

p2
Fj

+ m∗2
j + �0 + �r, (7)

with �0 = gω jω0 + gφ jφ0 + gρ jτ j3ρ03, and the re-
arrangement term necessary to maintain thermodynamic
consistency is given by

�r =
∑

b

[
∂gωb

∂n
ω0nb − ∂gσb

∂n
σns

b + ∂gρb

∂n
ρ03τb3nb

+ ∂gφb

∂n
φ0nb

]
+

∑
�

(
ψb −→ ψν

�

)
. (8)

In the case of the nonlinear coupling model for this present
work, only the isovector ρ-meson coupling contributes to the
rearrangement term.

The dense matter EOS is calculated self-consistently, tak-
ing into account two additional constraints, viz., charge
neutrality and global baryon number conservation, respec-
tively given by∑

b

qbnb +
∑
�

q�n� − ne − nμ = 0,

∑
b

nb +
∑
�

n� = n.
(9)

The total energy density is given by

ε = 1

2
m2

σ σ 2 + 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
03 + 1

2
m2

φφ2
0

+
∑

j≡b,�

2Jj + 1

2π2

[
pFj E

3
Fj

− m∗2
j

8

{
pFj EFj

+ m∗2
j ln

(
pFj + EFj

m∗
j

)}]
+ 1

π2

∑
l

[
pFl E

3
Fl

− m2
l

8

{
pFl EFl + m2

l ln
( pFl + EFl

ml

)}]
. (10)

The matter pressure is then evaluated following the Gibbs-
Duhem relation defined as

P =
∑

j≡b,�

μ jn j +
∑

l

μl nl − ε. (11)

B. NS structure and properties

The NS properties (mass-radius) are deduced from the
Tolman-Oppenheimer-Volkoff (TOV) equations for nonrotat-
ing, spherically symmetric NS configurations corresponding
to constructed EOSs which are given by [1]

dP(r)

dr
= − [ε(r) + P(r)][M(r) + 4πr3P(r)]

r2[1 − 2M(r)/r]
,

dM(r)

dr
= 4πr2ε(r),

(12)

where M(r) is the gravitational mass enclosed within radius
r. Solutions of TOV equations are obtained on applying the
boundary conditions, P(R) = M(0) = 0.

The tidal response of compact stars to an external grav-
itational field is quantified in terms of dimensionless tidal
deformability, defined as [61]

� = 2

3
k2

(M

R

)−5

, (13)

where k2 is the tidal Love number, defined as

k2 = 8C5

5
(1 − 2C2)[2 + 2C(y − 1) − y] ·

× {2C[6 − 3y + 3C(5y − 8)] + 4C3[13 − 11y

+C(3y − 2) + 2C2(1 + y)] + 3(1 − 2C2) ·
× [2 − y + 2C(y − 1)] ln(1 − 2C)}−1 (14)

and obtained by solving the differential equation [62],

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (15)

with boundary condition y(0) = 2 where the functions are
defined as

F (r) = r − 4πr3[ε(r) − P(r)]

r − 2M(r)
, (16)

Q(r) =
4πr

[
5ε(r) + 9P(r) + ε(r)+P(r)

∂P(r)/∂ε(r)

]
r − 2M(r)

− 4

[
M(r) + 4πr3P(r)

r2[1 − 2M(r)/r]

]
. (17)

In binary NS mergers, the tidal response is encoded in the
combined dimensionless tidal deformability parameter, given
by [63]

�̃ = 16

13

(M1 + 12M2)M4
1�1 + (M2 + 12M1)M4

2�2

(M1 + M2)5
. (18)
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TABLE I. Top: Parameter values of CDF coupling models considered in this work. Bottom: Coefficient values corresponding to Eqs. (19),
(21) in the DD-MEX coupling model.

Coupling g2 mσ mω mρ mφ

model gσN gωN gρN (fm−1) g3 (MeV) (MeV) (MeV) (MeV)

GM1 9.5708 10.5964 8.1957 12.2817 −8.9780 550 783 770 1019.45
DD-MEX 10.7067 13.3388 7.2380 547.3327 783 763 1019.45

Meson (i) ai bi ci di

σ 1.3970 1.3350 2.0671 0.4016
ω 1.3926 1.0191 1.6060 0.4556
ρ 0.6202

where �1, �2 are the dimensionless tidal deformabilities cor-
responding to stars with masses M1 and M2 respectively.

C. Coupling parameters

As mentioned earlier in Sec. I, in the present work, we im-
plement GM1 parametrization [28] with density dependence
of the isovector-vector ρ meson for meson-baryon couplings
[27] and DD-MEX parametrization [29]. In case of GM1
parametrization, the density-dependent coupling constant for
the isovector ρ meson is given by

gρN (n) = gρN (n0)e−aρ (x−1), (19)

where x = n/n0, while the coupling constants for σ and ω

mesons are considered to be density independent.
In the case of the density-dependent model, the isoscalar

meson-nucleon couplings are defined as

giN (n) = giN (n0) fi(x) for i = σ, ω, (20)

where the function is given by

fi(x) = ai
1 + bi(x + di )2

1 + ci(x + di )2
(21)

and the density dependence of isovector-vector ρ-meson cou-
pling is given by Eq. (19). Table I provides the parameter
values of GM1 and DD-MEX coupling parametrizations in
the nucleonic sector. In the standard GM1 parametrization
gρN is density independent, and for the standard DD-MEX
parametrization the coefficient aρ is given in Table I. For vari-
ation in Lsym, it is evaluated by calibrating the coefficient aρ

without altering the other nuclear saturation properties. Table I
provides the values of giN and gρN at n0. Since the non strange
baryons do not couple with the φ meson, gφN = gφ� = 0.

The bare masses of baryons are considered as
mN = 939 MeV, m� = 1115.68 MeV, m�+ = 1189.37 MeV,
m�0 = 1192.64 MeV, m�− = 1197.45 MeV, m�− =
1321.71 MeV, m�0 = 1314.86 MeV, and m� = 1232 MeV.
The saturation property parameters, viz., n0, saturation
energy (E0), incompressibility (K0), Esym, Lsym, curvature of
symmetry energy (Ksym), and effective nucleonic Dirac mass
(m∗

N ) corresponding to these parametrizations, are given in
Table II.

The values of coefficient aρ adjusted to estimate different
values of Lsym at n0 for GM1 and DD-MEX parametrizations
are provided in Table III, where the slope and curvature of

Esym at n0 are respectively given by

Lsym(n0) = 3n0

[
∂Esym(n)

∂n

]
n=n0

,

Ksym(n0) = 9n2
0

[
∂2Esym(n)

∂n2

]
n=n0

,

(22)

with the nuclear symmetry energy defined as

Esym = 1

2

[
∂2(ε/n)

∂α2

]
α=0

, (23)

where α = (nn − np)/n is the asymmetry parameter.
For the hyperonic sector, the vector couplings are imple-

mented according to SU(6) symmetry and the quark counting
rule [64]. For the scalar couplings, we consider the optical
potential values U N

� (n0) = −30 MeV, U N
� (n0) = +30 MeV,

and U N
� (n0) = −14 MeV [65,66] in symmetric nuclear mat-

ter (SNM). Recently, Ref. [67] reported an attractive optical
potential for � hyperons in SNM corresponding to U N

� (n0) �
−20 MeV. Table IV provides the scalar meson-hyperon cou-
pling values at n0.

For the �-resonance sector, we consider the meson-� cou-
plings as parameters. This is due to scarcity of �-nucleon
interaction experimental data. Experimental studies [68–70]
based on pion-nucleus scattering and �-quartet excitations
have reported constraining meson–�-resonance couplings.
Recent studies [42,46] have narrowed the � potential (V�) in
nuclear medium to be −30 MeV + VN � V� � VN and 0 �
Rσ� − Rω� � 0.2 with Rσ� = gσ�/gσN , Rω� = gω�/gωN .
Several works [43,47,49,52,71] have considered the vector
coupling values in the ranges Rω� ∈ [0.6 − 1.2] and Rρ� ∈
[0.5 − 3.0]. In the present discussion, we consider Rω� =
1.10 and Rρ� = 1.00 in the vector coupling sector. And in
the scalar-meson–�-resonance coupling sector, we consider
Rσ� = 1.10, 1.20.

TABLE II. The nuclear properties of the GM1 (A) and DD-MEX
(B) CDF models at n0.

n0 E0 K0 Esym Lsym Ksym

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) m∗
N/mN

(A) 0.153 −16.30 300 32.50 93.86 17.91 0.700
(B) 0.152 −16.14 267 32.27 49.58 −71.47 0.556
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TABLE III. aρ coefficient values for various estimations of
Lsym(n0 ) and corresponding Ksym(n0) for GM1 and DD-MEX cou-
pling models.

aρ Ksym(n0 ) (MeV)

Lsym(n0 ) (MeV) GM1 DD-MEX GM1 DD-MEX

35 0.5893 0.8052 −127.13 −34.44
50 0.4390 0.6148 −129.67 −72.21
65 0.2888 0.4242 −105.17 −75.72
85 0.0885 0.1702 −30.43 −27.06

III. RESULTS AND DISCUSSION

In this section, we report the numerical results for purely
nucleonic (N), hypernuclear (NY), and �-admixed hypernu-
clear (NY�) matter compositions and investigate the effects
of symmetry energy on dense matter EOS. In order to
do so, as mentioned in Sec. I, we implement the density-
dependent modification in isovector gρb couplings within the
nonlinear framework with GM1 parametrization and con-
sider the density-dependent coupling scheme with DD-MEX
parametrization. We proceed by studying the effect of varia-
tion of Lsym on different properties of matter and stars.

The behavior of nuclear symmetry energy with varying
baryon number density is plotted in Fig. 1 for different values
of Lsym. In density regime n < n0, cases with higher values of
Lsym yield lower values of Esym while the opposite is observed
in cases of higher density regimes (n > n0). The experimental
constraints on Esym(n) at subsaturation densities, shown by the
shaded region in Fig. 1 allows EOSs with Lsym(n0) � 50 MeV.
The values of Esym at n0 are the same for all values of Lsym as
they are constrained by the isovector coupling value at nuclear
saturation. This result is consistent with that of Ref. [32] found
by considering NL3 [75] parametrization. The constraint on
Esym(2n0) is broader and allows for almost all EOSs corre-
sponding to Lsym(n0) values considered in this work.

Figure 2 displays the density-dependent nature of isovector
couplings versus baryon number density for different values
of Lsym in both coupling schemes. In subsaturation densities, it
is observed that with lower Lsym values the isovector coupling
values are larger. This behavior is opposite in suprasatura-
tion density regimes. At the saturation density, gρN values
are identical owing to Eq. (19). With higher values of Lsym,
the variation of gρN with baryon number density is found to
be more steep. The gρN (n) coupling values with lower Lsym

approach zero at high density regimes resulting in similar
corresponding Esym(n) values at those densities.

TABLE IV. Scalar meson-hyperon coupling constants, RσY =
gσY /gσN (normalized to meson-nucleon coupling) for considered
parametrizations in this work.

� � �

GM1 0.6164 0.4033 0.3047
DD-MEX 0.6172 0.4734 0.3088

FIG. 1. Nuclear symmetry energy as a function of baryon num-
ber density (in units of n0) for [upper panel] GM1 and [lower panel]
DD-MEX coupling parametrizations. The shaded regions denote the
constraints on density-dependent symmetry energy from heavy-ion
collision data [72,73]. The constraint 38 � Esym(2n0)/MeV � 64
[74] at 68% confidence level obtained via analyses of data from
recent NS observables and heavy-ion collisions is denoted by the
vertical error bars. The solid lines in both the panels represent the
original coupling parametrizations. The other cases with adjusted
values of Lsym at n0 are denoted by dot-dot-dashed (Lsym = 35),
dotted (Lsym = 50), dash-dotted (Lsym = 65), and dashed (Lsym = 85)
curves respectively.

FIG. 2. Isovector coupling to nucleons as a function of baryon
number density (in units of n0) in cases of GM1 (upper panel)
and DD-MEX (lower panel) parametrizations. The different curves
represent the same cases as described in the captionof Fig. 1.
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FIG. 3. Pressure variation as a function of energy density (EOS) for T = 0 case with matter compositions as [left panels] pure nucleonic,
[middle panels] NY� (Rσ� = 1.10), and [right panels] NY� (Rσ� = 1.20), for different Lsym(n0) values in [upper panels] GM1 and [lower
panels] DD-MEX parametrizations. The different curves represent the same cases as described in the caption of Fig. 1. The matter pressure
constraint (vertical line) at n ∼ 2n0 is deduced from GW170817 [13] event data.

The EOSs for different NS matter compositions (N, NY�)
are presented in Fig. 3 for GM1 parametrization in upper
panels and for DD-MEX parametrization in lower panels. The
EOSs with modified isovector couplings within the nonlinear
GM1 model as well as with DD-MEX parametrization are
observed to lie well within the bounds of the matter pres-
sure constraint from GW170817 event data [13], shown by
the vertical arrows in Fig. 3. This is true for all the matter
composition cases. The prominent differences in EOSs are
observed in low density regimes (n � 0.4 fm−3).

Tables V and VI provide the threshold densities of heavier
baryons in NY and NY� matter with GM1 and DD-MEX
coupling parametrizations respectively. It is observed that low
values of Lsym shift the onset of hyperons to higher den-
sity regimes, while the opposite behavior is seen in case of

TABLE V. Threshold densities nu (in units of n0) for hyperons
and � quartets in NY and NY� matter with varying Lsym(n0) values
in GM1 parametrization.

Rσ� = 0 Rσ� = 1.10 Rσ� = 1.20

Model nY
u (n0) nY

u (n0) n�
u (n0) nY

u (n0) n�
u (n0)

GM1 2.25 2.25 2.89 2.29 2.11
Lsym = 35 2.54 2.68 2.22 2.95 1.87
Lsym = 50 2.49 2.57 2.27 2.84 1.90
Lsym = 65 2.42 2.43 2.35 2.66 1.94
Lsym = 85 2.30 2.30 2.61 2.39 2.04

� resonances. Higher values of normalized scalar-meson–�

couplings denote attractive � potentials in SNM which result
in early appearance of � quartets in NS matter. Onset of �

resonances delays the appearance of hyperons in NS matter.
It is observed that onset of heavier baryons softens the

EOSs, marked by changes in slope, as shown in Fig. 3. Now at
high matter densities, gρb(n) coupling values tend to approach
zero, resulting in less contribution to EOSs from ρ-meson
fields. With increase in attractive � potential, the onset of �−
shifts towards lower density regimes as marked by the kinks
in Fig. 3.

The mass-radius relationships obtained by solving TOV
equations for nonrotating, spherically symmetric stars cor-
responding to the EOSs for N, NY� (Rσ� = 1.10, 1.20)
matter with GM1 and DD-MEX parametrizations are dis-
played in different panels of Fig. 4. For the crust region, the
Baym-Pethick-Sutherland (BPS) [77] EOS is implemented

TABLE VI. Similar to Table V but with DD-MEX parametrization.

Rσ� = 0 Rσ� = 1.10 Rσ� = 1.20

Model nY
u (n0) nY

u (n0) n�
u (n0) nY

u (n0) n�
u (n0)

DD-MEX 2.13 2.27 1.79 2.47 1.46
Lsym = 35 2.15 2.31 1.77 2.51 1.44
Lsym = 50 2.13 2.27 1.79 2.47 1.46
Lsym = 65 2.09 2.19 1.82 2.39 1.47
Lsym = 85 2.03 2.07 1.89 2.24 1.50
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FIG. 4. Solutions of TOV equations corresponding to [left panels] pure N matter, [middle panels] NY� (Rσ� = 1.10), and [right panels]
NY� (Rσ� = 1.20) EOSs displayed in Fig. 3, for [upper panels] GM1 and [lower panels] DD-MEX parametrizations. The different curves
represent the same cases as described in the caption of Fig. 1. The astrophysical observable constraints from GW190814 [76], PSR J0740+6620
[10,11], PSR J0348+0432 [18], and PSR J0030+0451 [7,8] are represented by shaded regions. The horizontal lines represent the joint radius
constraints from PSR J0030+0451 and the GW170817 event data for a typical 1.4M� NS [9,20].

maintaining thermodynamic consistency with modeling the
crust-core transition following Ref. [78]. It can be observed
that almost all EOSs (in N and NY� matter compositions) fit
within the limits of recent astrophysical constraints. However,
the joint constraints on radius of a 1.4M� NS [9,20] are
satisfied by EOS models with Lsym � 65 MeV. Incorporation
of � quartets further softens the EOS at lower density in
addition to high density regimes, leading to NS configurations
with smaller radii, as is evident from middle and right panels
of Fig. 4. The nature of the secondary compact component
involved in GW190814 as a NS is still not completely re-
solved [79,80], hence the maximum mass constraint from
this candidate is not so stringent. The variation of symme-
try energy slope has slight impact on maximum mass NS
configurations owing to the similar values of Mmax (refer
to Table VII). The softening of EOSs due to inclusion of
� resonances is more prominent in the density-dependent
scenario. The effect of varying Lsym is least for pure nucle-
onic matter and large for NY� matter (with more attractive
� potential). For DD-MEX coupling parametrization, the
maximum mass NS configuration with purely nucleonic mat-
ter reaches ∼2.55M�, satisfying the mass constraint from
the GW190814 event. This is consistent with the results in
Ref. [81].

The particle abundances in NY� matter composition
(Rσ� = 1.20) with GM1 (without density-dependent gρN )
and with Lsym(n0) = 50 MeV coupling parametrization

models are shown in Fig. 5. It is observed that in the case of
density-dependent gρN (n) coupling (lower panel), the onset
of hyperons is shifted to higher densities and early ap-
pearance of � resonances is favored. This results in faster
decrease of lepton populations in comparison to the constant
gρN (n0) coupling case (upper panel). In the gρN (n0) case, the
�−, �−, e−, μ− composition provides the negative charge
to balance the proton charge resulting in appearance of �

hyperons. In high density regimes, this negative particle com-
position leads to onset of �0 and �0 baryons. In the case of
gρN (n) couplings, the onset of �0 baryons is due to the charge
neutrality condition maintained by �−, e− with protons. Fig-
ure 6 displays the particle populations as a function of baryon
number density similarly to Fig. 5 but with the DD-MEX
parametrization for NY� matter. In this too, it is observed
that with decreasing value of Lsym the onset of hyperons is
shifted to higher densities while early onset of � quartets
is favoured. At subsaturation densities, the charged particle
abundances are enhanced with lower value of Lsym. In case of
Lsym = 49.57 MeV (upper panel), the lepton populations are
seen to decrease at a faster rate with rising matter density in
comparison to the Lsym = 85 MeV (lower panel) case. This is
because in the latter case �− abundances fall short to maintain
the charge neutrality condition, with protons causing lepton
populations to remain up to higher density regimes.

In order to see the effect of varying Lsym on hyperons, we
plot the strangeness fraction as a function of baryon number
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TABLE VII. NS properties evaluated from the EOS considering various matter compositions (N, NY, NY�) with varying Lsym(n0) values
with nonlinear (GM1) and density-dependent (DD-MEX) coupling schemes. The maximum gravitational mass NS and its corresponding radius
are denoted by Mmax (in units of M�) and R (in units of km) respectively; central number density, central energy density, and central matter
pressure are represented by nc (in units of fm−3), εc, and Pc (in units of MeV/fm3). Matter pressures at 2 and 6 times saturation densities
are denoted by P(2n0) and P(6n0) respectively. The global properties such as radius, compactness parameter, tidal Love number, and tidal
deformability for a 1.4M� NS are given by R1.4 (in units of km), C1.4, k2(1.4), and �1.4 respectively.

atter Mmax R nc εc Pc P(2n0) P(6n0) R1.4

composition CDF model (M�) (km) (fm−3) (MeV/fm3) (MeV/fm3) (MeV/fm3) (MeV/fm3) (km) C1.4 k2(1.4) �1.4

GM1 2.36 11.93 0.865 1116.75 500.67 30.48 574.12 13.77 0.150 0.100 882
Lsym = 85 2.33 11.77 0.888 1145.36 512.52 28.62 553.83 13.53 0.153 0.098 785

NL Lsym = 65 2.31 11.51 0.917 1185.47 547.87 25.54 549.66 13.06 0.158 0.096 640
Lsym = 50 2.32 11.45 0.919 1186.87 555.04 24.22 554.15 12.79 0.162 0.096 581

Pure Lsym = 35 2.33 11.42 0.916 1180.98 553.01 23.59 556.13 12.58 0.164 0.102 568

nucleonic DD-MEX 2.56 12.33 0.776 1000.40 487.24 32.26 704.96 13.29 0.156 0.106 773
matter Lsym = 85 2.55 12.50 0.767 988.90 469.57 34.70 698.51 13.84 0.149 0.105 939

DD Lsym = 65 2.55 12.36 0.777 1003.21 486.80 32.74 703.14 13.49 0.153 0.104 821
Lsym = 50 2.56 12.33 0.776 1000.68 487.42 32.27 704.93 13.30 0.155 0.105 772
Lsym = 35 2.56 12.31 0.773 995.26 484.09 32.31 705.36 13.14 0.157 0.108 748

GM1 1.99 11.97 0.926 1126.57 317.96 30.48 312.09 13.77 0.150 0.101 882
Lsym = 85 1.98 11.72 0.964 1179.58 345.34 28.62 310.77 13.53 0.153 0.098 785

NL Lsym = 65 1.98 11.41 1.001 1233.99 382.86 25.54 317.59 13.06 0.158 0.095 639
Lsym = 50 2.00 11.37 0.994 1222.21 379.64 24.22 320.41 12.79 0.162 0.096 581

Hypernuclear Lsym = 35 2.01 11.36 0.983 1203.98 371.28 23.59 321.37 12.58 0.164 0.102 568

matter DD-MEX 2.18 12.00 0.875 1082.30 362.19 32.26 395.89 13.29 0.156 0.106 777
Lsym = 85 2.16 12.14 0.876 1085.95 357.77 34.70 390.54 13.83 0.149 0.105 937

DD Lsym = 65 2.17 12.02 0.882 1093.24 367.13 32.74 395.07 13.49 0.153 0.104 821
Lsym = 50 2.18 12.00 0.876 1082.86 362.48 32.27 395.88 13.30 0.155 0.105 774
Lsym = 35 2.19 11.99 0.869 1071.27 356.43 32.31 396.04 13.14 0.157 0.108 748

GM1 1.99 11.95 0.928 1130.21 320.17 30.48 312.53 13.77 0.150 0.101 882
Lsym = 85 1.97 11.63 0.980 1204.54 360.38 28.62 312.22 11.63 0.153 0.098 785

NL Lsym = 65 1.97 11.19 1.045 1302.99 428.33 25.54 324.02 13.05 0.158 0.095 637
�-admixed Lsym = 50 1.99 11.13 1.042 1297.38 429.21 24.22 328.62 12.77 0.162 0.095 570
hypernuclear Lsym = 35 2.00 11.11 1.031 1278.87 420.59 23.59 330.15 12.55 0.165 0.100 551

matter DD-MEX 2.18 11.75 0.911 1138.96 405.08 28.03 406.19 13.19 0.157 0.102 717
(Rσ� = 1.10) Lsym = 85 2.16 11.92 0.909 1138.40 395.67 33.15 398.31 13.83 0.149 0.104 935

DD Lsym = 65 2.17 11.76 0.918 1152.14 411.28 29.43 405.19 13.43 0.154 0.102 788
Lsym = 50 2.18 11.75 0.911 1139.52 405.38 28.06 406.18 13.20 0.157 0.102 720
Lsym = 35 2.19 11.74 0.904 1127.36 398.93 27.51 406.38 13.02 0.159 0.104 686

GM1 1.99 11.78 0.962 1179.86 345.22 30.48 313.94 13.77 0.150 0.101 881
Lsym = 85 1.96 11.34 1.037 1290.93 410.47 28.62 316.04 13.50 0.153 0.097 773

NL Lsym = 65 1.97 10.87 1.102 1392.46 488.48 24.65 332.45 12.82 0.161 0.089 541
�-admixed Lsym = 50 1.98 10.82 1.094 1377.87 485.28 22.32 338.37 12.43 0.166 0.086 449
hypernuclear Lsym = 35 2.00 10.81 1.083 1358.24 476.19 20.88 340.33 12.18 0.169 0.083 395

matter DD-MEX 2.19 11.48 0.938 1177.66 439.80 18.67 416.19 12.59 0.164 0.090 505
(Rσ� = 1.20) Lsym = 85 2.15 11.62 0.945 1193.37 436.81 24.49 405.46 13.41 0.154 0.094 720

DD Lsym = 65 2.18 11.48 0.947 1194.49 447.69 20.08 414.88 12.84 0.161 0.089 565
Lsym = 50 2.19 11.48 0.938 1177.94 439.93 18.69 416.17 12.59 0.164 0.090 506
Lsym = 35 2.20 11.47 0.930 1165.22 433.33 18.30 416.43 12.43 0.166 0.093 487

density in Fig. 7, defined as [82]

fs = 1

3

∑
Y |sY |nY

n
, (24)

where sY , nY denote the strangeness and number density of
Y th hyperon respectively. It is seen that fs is sensitive to
varying Lsym and decreases with lowering Lsym values. The

shifting of hyperon threshold densities to higher densities with
lower values of Lsym (as seen in Figs. 5 and 6) is also evi-
dent from Fig. 7. The similar strangeness fraction for Lsym =
65, 50, 35 MeV cases at high densities relates with the almost
similar values (approaching zero) of gρN (n) (refer to Fig. 2).
In both the coupling parametrization cases, similar fs values
at high density regimes relate to the almost vanishing values
of ρ-meson coupling. The delaying appearance of hyperons
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FIG. 5. Particle populations ni (in units of n) as a function
of baryon number density for NY� matter (Rσ� = 1.20) with
[upper panel] Lsym(n0) = 93.86 MeV (original) and [lower panel]
Lsym(n0 ) = 50 MeV cases within the nonlinear coupling (GM1)
parametrization.

into NS matter with onset of � quartets is also apparent in
Fig. 7.

Due to the utmost dependence of matter pressure explic-
itly over energy density in NS matter, it is noteworthy that
the EOSs follow the causality condition (i.e., adiabatic speed
velocity vs to be subluminal) given by vs < c. Fig. 8 displays
the adiabatic speed of sound as a function of energy density
for different matter compositions with variation in Lsym values
within nonlinear and density-dependent CDF models. It is
observed that the EOSs considered in this work satisfy the
causality condition. The effect of Lsym is more prominent in
the lower density regimes. This can be attributed to the diverse
gρN coupling values at lower densities. Lower values of Lsym

result in reduced vs at lower matter densities. Kinks in the
lower panels denote onset of heavier baryons in NS matter.

Now we move to examine the effect of Lsym on star prop-
erties. The properties of NSs for variation of Lsym along with
matter properties with different EOSs considered in this work
are displayed in Table VII. Lsym has practically no effect
on the maximum mass of the star family. However, Lsym

variation has a commendable impact on the radius of NS
configurations. This feature is already clear from Fig. 4. We
have tabulated the comparative values of radius for typical
1.4M� mass NSs (R1.4). With increasing value of Lsym the
R1.4 increases. Consequently, the compactness C1.4 decreases.
Similar impact is also observed in case of tidal deformability

FIG. 6. Similar to Fig. 5 but with [upper panel] Lsym(n0 ) =
49.57 MeV (original) and [lower panel] Lsym(n0) = 85 MeV cases
within the density-dependent coupling (DD-MEX) parametrization.

�1.4: with increase of Lsym softness decreases. A recent study
[83] based on the joint analysis GW170817 and GW190425
events data reported a radius bound of 10.94 � R1.4/km �
12.61 at 90% confidence level. From the EOSs considered in
this work, it can be inferred that, to satisfy the said R1.4 range,
the conditions of �-resonances onset into NS matter com-
position and Lsym(n0) � 50 MeV are favorable. Following
the 69 � Lsym(n0)/MeV � 143 range deduced from recent
PREX-2 data, it is to be noted that the DD-MEX parametriza-
tion satisfies the �1.4 upper bound (GW170817 event) for
Lsym(n0) � 85 with Rσ� = 1.20.

The variations of compactness parameter and tidal de-
formability of a 1.4M� NS with Lsym considering various
matter compositions are shown in Fig. 9. The softness de-
creases in both parametrizations following a similar trend
of convergence towards higher Lsym values. This relates to
the fact that decreasing Lsym shifts the onset of � quartets
to lower density regimes thus increasing compactness and
decreasing tidal deformability. The quadratic fit of the com-
pactness parameter and tidal deformability as a function of
Lsym for different matter compositions with GM1 and DD-
MEX parametrizations is given by

C1.4 or �1.4 = a L2
sym + b Lsym + c, (25)

where the coefficient a, b, and c values are provided in
Table VIII.

Figure 10 shows the variation of dimensionless tidal de-
formability with NS mass corresponding to different values of
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FIG. 7. Strangeness fraction, fs as a function of baryon number density for matter composition as [upper panels] NY and [lower panels]
NY� (Rσ� = 1.20) with varying Lsym for [left panels] GM1 and [right panels] DD-MEX parametrizations. The different curves represent the
same cases as described in the caption of Fig. 1.

the density-dependent Lsym parameter. As already mentioned,
we observe that with higher values of Lsym the tidal deforma-

FIG. 8. Adiabatic sound velocity (in units of c) as a function of
energy density for [upper panels] pure nucleonic and [lower panels]
�-admixed hypernuclear matter (Rσ� = 1.20), with [left panels]
nonlinear (GM1) and [right panels] density-dependent (DD-MEX)
coupling models. The different curves represent the same cases as
described in the caption of Fig. 1.

bility parameter value increases as the matter stiffens. The
effects of Lsym are significant only in the case of lower mass
stars; for massive stars, these effects are inconsequential. In
addition, the inclusion of heavier nonstrange baryons softens
the EOS at lower density regimes consequently decreasing �

or assembling NS matter to be more compact. This agrees with
the results from Refs. [48,71].

FIG. 9. Upper panel: Compactness parameter. Lower panel:
Tidal deformability as a function of Lsym considering matter com-
position to be pure N, NY� (Rσ� = 1.20) with nonlinear (GM1)
and density-dependent (DD-MEX) coupling models. The different
curves denote the EOS models as labeled.
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TABLE VIII. Coefficient values of the quadratic fits in Eq. (25).
The coefficient of determination R2 ∼ 0.999 for all the fits consid-
ered in this work.

CDF Model a b c

GM1 (N) −1.83 × 10−6 −2.10 × 10−6 0.1663
GM1 (NY�) −2.01 × 10−6 −6.51 × 10−5 0.1738

C1.4 DD-MEX (N) −1.53 × 10−6 2.38 × 10−5 0.1581
DD-MEX (NY�) −3.31 × 10−6 0.0002 0.1646

GM1 (N) 0.1023 −7.884 719.10
GM1 (NY�) 0.1082 −5.617 458.70

�1.4 DD-MEX (N) 0.0623 −3.676 800.80
DD-MEX (NY�) 0.0998 −7.339 622.40

IV. SUMMARY AND CONCLUSIONS

In this work, we discuss the density-dependent symmetry
energy effects on dense matter EOSs with different matter
compositions, viz., pure nucleonic, hypernuclear, and �-
admixed hypernuclear, within the CDF theory framework. We
consider different values of symmetry energy slope Lsym to
introduce variation of symmetry energy with density. The
Lsym value at saturation is taken to be within the range of
35–85 MeV. The NS configurations evaluated from the EOSs
considered in this work within this range of Lsym satisfy
the recent astrophysical observable constraints obtained from

FIG. 10. Tidal deformability as a function of NS mass for [left
panels] pure nucleonic and [right panels] NY� (Rσ� = 1.20) matter,
with varying Lsym values in [upper panels] GM1 and [lower panels]
DD-MEX parametrizations. The different curves represent the same
cases as described in the caption of Fig. 1. The vertical lines denote
the bounds on �1.4 deduced in Refs. [13,20].

NICER (PSR J0030+0451 [7,8], PSR J0740+6620 [10,11])
and GW [12,15] observations.

We find that, with smaller values of Lsym, the EOS is
evaluated to be softer around density range of (1–2)n0. This
is because of the corresponding lower values of Esym in the
said density regimes. This results in smaller radii alongside,
making the matter tidally less deformable for intermediate
mass NSs, viz., 1.4M�. Although the range of Lsym considered
in this work is consistent with the astrophysical observations,
the lower values of Lsym are more favorable for the radius
observations from NICER [7,8,10,11] as well as estimate of
tidal deformability from GW observations. In the high density
regimes, the EOS is similar for all Lsym values. This attributes
to the vanishing ρ meson fields due to small (approaching
zero) gρN coupling values.

Different values of Lsym also have substantial effect on the
appearance of exotic components of matter. The lower values
of Lsym shift the threshold density for appearance of hyperons
to the higher side and favor early appearance of �-quartet
particles. The early appearance of � particles is also one of
the causes for higher threshold density for the appearance of
hyperons with lower values of Lsym. The early appearance of
� particles for lower values of Lsym makes the EOS softer
in the lower density, attributed to the smaller radius for stars
having mass ∼1.4 M�. Consequently, the compactness of
the stars increases and the deformability decreases with the
decreasing values of Lsym. The different values of Lsym do not
practically affect the maximum mass of the NS family as, in
the higher density regime, the effect of different values of Lsym
on the EOS is negligible. This agrees with the results from
Refs. [82,84]. As for higher values of Lsym, the EOSs do not
differ much, and the values of compactness and tidal deforma-
bility merge at higher values of Lsym. Hence the possibility of
exotic matter appearance with lower values of Lsym is most
favorable from all astrophysical observations.

However, the recent update from nuclear physics sector
(PREX-2) suggests higher values of Lsym(n0), which is in
tension with the astrophysical observables, viz., tidal de-
formability and radius of a canonical 1.4M� NS. Considering
the viability of inclusion of nontrange � baryons into the NS
dense matter EOS is seen to be a reasonable option. Moreover,
different choices of coupling models and parametrizations
might or might not provide a feasible solution to this tension
and so may have to be recalibrated. Further analysis regarding
this aspect is beyond the scope of this work and will be
discussed in future studies.

The particle population of protons in β-equilibrated matter
largely depends on the variation of nuclear symmetry energy
with density. This in turn influences the threshold densities
of nucleonic direct Urca processes consequently in cooling
processes. Several studies [38,71,78,85] have been done to
understand the effects of Lsym on this aspect. Such analysis
with non-nucleonic matter composition following the recent
update in isospin asymmetry parameter andLsym range will
also be addressed in future works.
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