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Modified Brink-Axel hypothesis for astrophysical Gamow-Teller transitions
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Weak interaction charged current transition strengths from highly excited nuclear states are fundamental ingre-
dients for accurate modeling of compact object composition and dynamics, but are difficult to obtain either from
experiment or theory. For lack of alternatives, calculations have often fallen back upon a generalized Brink-Axel
hypothesis, that is, assuming the strength function (transition probability) is independent of the initial nuclear
state but depends only upon the transition energy and the weak interaction properties of the parent nucleus ground
state. Here we present numerical evidence for a modified “local” Brink-Axel hypothesis for Gamow-Teller
transitions for p f -shell nuclei relevant to astrophysical applications. Specifically, while the original Brink-Axel
hypothesis does not hold globally, strength functions from initial states nearby in energy are similar within
statistical fluctuations. This agrees with previous work on strength function moments. Using this modified
hypothesis, we can tackle strength functions at previously intractable initial energies, using semiconverged initial
states at arbitrary excitation energy. Our work provides a well-founded method for computing accurate thermal
weak transition rates for medium-mass nuclei at temperatures occurring in stellar cores near collapse. We finish
by comparing results to previous calculations of astrophysical rates.
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I. INTRODUCTION

Despite its unassuming moniker, the weak nuclear force is
a prime driver of stellar evolution. It facilitates nuclear energy
generation and the long (≈10 Gyr) hydrogen-burning lives for
stars like the sun, but it is also key to understanding some of
the most violent astrophysical events in the universe [1–8].
In fact, a cabal of the weak interaction and gravitation join
forces to bring down stars with masses considerably greater
than that of the sun. The evolution of stars with initial masses
greater than ≈8 M� is dominated by the weak interaction,
specifically by entropy and lepton number loss, in part through
nuclear electron capture and positron decay processes. The
escaping neutrinos produced by these and other neutrino emis-
sion processes “refrigerate” the cores of these massive stars,
lowering the entropy to s ≈ 1, in units of Boltzmann’s con-
stant k per baryon, and thereby ensuring that nucleons reside
primarily in nuclei and that the pressure support for the star
stems from degenerate electrons with relativistic kinematics.
Self-gravitating configurations are trembling on the verge of
instability whenever they are supported by the pressure of
particles moving near the speed of light. Collapse of the cores
of these stars is inevitable.

*Corresponding author: cjohnson@sdsu.edu

The detailed history of nuclear weak transition processes
like electron capture and positron decay in the precollapse
evolution of these massive stars determines the entropy, tem-
perature, and lepton fraction that governs the initial mass of
the collapsing core [5,9]. In fact, not only are nuclear weak
interaction processes instrumental in determining the thermo-
dynamic conditions and composition at the onset of collapse,
they are also important during the collapse itself, largely de-
termining the mean nuclear mass, and electron lepton fraction
and entropy generation. Despite the low entropy of the precol-
lapse configurations, the temperature at the onset of collapse
can be high, with kT ≈ 1 MeV, implying that the baryonic
component will be in nuclear statistical equilibrium (NSE)
and composed of iron peak nuclei. As the core collapses and
density rises, and the temperature rises modestly, NSE shifts
to nuclei of even higher mass number. These heavier nuclei
also have higher neutron excess, reflecting the cumulative
effect of electron capture and electron lepton number loss as
neutrinos (at first) escape.

The predominant weak interaction process near and during
collapse is electron capture on protons, both free protons and
protons inside these heavy nuclei. The weak nuclear matrix
elements for electron capture on free protons far exceed the
effective “per-proton” matrix elements for protons inside nu-
clei. Consequently, the overall rate of electron capture, the
neutronization rate, depends sensitively on the mass fraction
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in free protons. In turn, that quantity depends sensitively on
temperature and entropy. The primary entropy source during
collapse is electron capture on nuclei. This process leaves a
hole in the degenerate electron energy distribution, plus the
weak interaction selection rules and strength function charac-
teristics favor leaving the daughter nucleus in an extrathermal
excited state. Both of these outcomes represent an increase
in entropy per baryon. Higher entropy favors a higher free
proton fraction and so faster neutronization. This entropy
production and free proton fraction feedback loop plays out
during collapse against a backdrop of electron capture and
density rise induced increase in mean nuclear mass. That
increase eventually leads to the trapping of neutrinos through
neutral current neutrino coherent scattering on nuclei and
to rapid subsequent thermalization of the neutrinos through
neutrino-electron scattering and through inelastic neutrino-
nucleus scattering [10–14]. The electron fraction (number
of electrons per baryon) Ye is determined by the integrated
history of electron capture and lepton number loss through
escaping neutrinos. The mass of the homologous core scales
like Y 2

e . This core serves as the “piston” that drives the initial
supernova shock with an energy that scales like Y 10/3

e . That
shock losses energy and eventually stalls at a radius ≈200 km,
but can be re-energized through neutrinos radiated by the hot
protoneutron star and captured in the matter behind the shock,
all aided by hydrodynamic transport [7,8]. In addition, it has
been recently argued that the neutrino radiance from nearby
stars may give us advance warning of a core-collapse super-
nova [15]. All of these considerations highlight the central role
of nuclear weak interactions in core collapse and in compact
object composition, dynamics, and nucleosynthesis [16].

As a consequence, researchers need reliable weak nuclear
transition probabilities, also called transition strengths. From
experiments, one either has data from β decays and electron
captures, primarily although not exclusively from the ground
state, or allowed transitions strengths, again from the ground
state, through (p, n) and (n, p) type reactions [17,18]. But
extremes of temperature and pressure mean the nuclei in the
cores of massive starts can be excited by many MeV, so
that astrophysical calculations require many transitions where
both the initial and final states are highly excited. Not only are
such transitions difficult or impossible to access experimen-
tally, they are also challenging to model theoretically.

What does one do then for weak transitions between highly
excited states? The most frequent resolution is to invoke a
generalization of the Brink-Axel hypothesis [19] for Gamow-
Teller (axial vector) transitions, inspired by an analogy to
the distribution of Fermi vector weak transition strength to
isobaric analog states and by an analogy to electromagnetic
collective modes.

Originally Brink [20], and independently Axel [21], hy-
pothesized that giant electric dipole resonances built upon
excited states should resemble the giant electric dipole res-
onance built upon the ground state. This hypothesis arose in
part from the picture of an electric dipole resonance arising
from the nuclear proton component and the neutron com-
ponent collectively oscillating against one another, with the
argument that such a simple picture should be insensitive to
the detailed structure of the initial state. Later the Brink-Axel

hypothesis was generalized to other kinds of collective nuclear
transitions, in part because of the lack of practical alternatives.
Given its lack of rigor, the generalized Brink-Axel hypothesis
has remained controversial (see the discussion in Ref. [22]).

Building upon prior work, in this paper we provide strong
numerical evidence for a modified Brink-Axel hypothesis for
Gamow-Teller strength functions: We find strength functions
from initial states nearby in energy are statistically similar.
This “energy-localized” Brink-Axel hypothesis allows us to
extract useful strength functions from states with high initial
energies. Because strength functions from initial states close
in energy are similar, we do not need fully converged initial
states. Instead we can use semiconverged states, which are
superpositions of states nearby in energy, as proxies for fully
converged initial states, and from them generate statistically
typical strength functions.

In the next section, we discuss the astrophysical context
for weak transitions, followed by a review of the Brink-
Axel hypothesis and a brief overview of prior calculations
of astrophysical weak transitions in medium-mass nuclides,
especially around the crucial iron region. After outlining how
one computes strength functions from realistic shell model
calculations, we provide evidence for our energy-localized
Brink-Axel hypothesis (ELBAH) for cases where we can ex-
tract strength functions from fully converged states up to high
energy. In particular, we use running sums of Gamow-Teller
strengths and take binned averages; we find that the fluctu-
ations are not very sensitive to the size of the initial energy
bin, which we interpret as meaning that we can usefully treat
the strength functions as statistically similar. Building upon
this, we use a novel thick-restart Lanczos algorithm, described
in the Appendix, which produces semiconverged states at
high energy and extract Gamow-Teller strength functions for
several nuclides. The strength function themselves are also
computed using another variant of the Lanczos algorithm.
Finally we use the ELBAH to generate astrophysical rates for
57Co → 57Fe and compare to prior calculations.

II. BACKGROUND: THE ASTROPHYSICAL CONTEXT
OF WEAK TRANSITIONS

As is well understood, a massive star’s prodigious required
pressure support against gravitation necessitates high temper-
atures and densities. The high temperatures help overcome
Coulomb barriers and enable exothermic fusion [23]. In this
work, we are concerned with the events leading up to the grav-
itational collapse of the core of a massive star and how weak
nuclear reaction rates affect and accelerate this process [8].
Medium-mass nuclides around iron are especially relevant.

While the core of our Sun has a density of about 150 g/cm3

and a temperature of 15 × 106 K, a massive star in the final
stages of its life will have core densities of 108–1010 g/cm3

and temperatures up to a few times 1010 K [8]. This means
the precollapse astrophysical environment has energies in the
range from 1 keV to several MeV, and during collapse can
be even hotter. Because in presupernova cores the degenerate
electron pressure eventually dominates over thermal pressure
and determines the Chandrasekar mass [9], the density of
electrons is crucial to know. This electron density is usually
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cast in terms of the lepton fraction Ye, the ratio of electrons to
baryons.

For any weak process, the astrophysical rate as a function
of temperature T and mass density ρ is

λ(ρ, T ) =
∑

i

Pi

∑
f

λi f

=
∑

i

(2Ji + 1)e−Ei/kT

G(T )

∑
f

Bi f (O)�i f (Qi f , ρ, T ).

(1)

Here i labels initial levels and f final levels, both of which are
eigenstates of the nuclear Hamiltonian with energies Ei, E f ,
respectively. The partial transition rate from i to f ,

λi f = Bi f �i f , (2)

depends upon the transition probability (or transition strength)
Bi f and the phase-space factor �i f ; we discuss the latter in
more detail in Sec. V.

The effect of temperature plays out in the initial state
thermal occupation probability and in the nuclear partition
function

G(T ) =
∑

i

(2Ji + 1)e−E−i/kT , (3)

where Ji is the angular momentum of the initial level i and k
is Boltzmann’s constant. Then Pi = (2Ji + 1)e−Ei/kT /G(T ) is
the occupation probability for initial state i.

But at high temperature nuclei can be highly excited. How
high does one have to go, and how many levels need to be
included? In the Fermi gas approximation [2], at a temperature
T the average excitation energy is

Ex = a(kT )2, (4)

where a ≈ A
8 MeV is the level density parameter parameter in

terms of the nuclear mass number A. For example, if A = 57
and T = 12 × 109 K or kT = 1 MeV, then a typical excitation
energy Ex ≈ 7 MeV.

To illustrate in more detail, consider the product of the in-
creasing level density ρlev(Ei ) and the decreasing Boltzmann
factor exp(−Ei/kT ). The modeling of the level density is
itself a thorny issue, one which we will not resolve here. We
take two models: as a good approximation to the shell model,
a Gaussian distribution

ρlev(E ) = N

σ
√

2π
e− 1

2 ( E−Ē
�E )2

, (5)

where N is the total number of levels, Ē is the energy centroid,
and �E is the width [24,25]; and the back-shifted Fermi gas
model,

ρlev(E ) = exp (2
√

a(E − δ))

12
√

2σa1/4(E − δ)5/4
(6)

where a is the level density parameter, δ is the backshift
parameter, and σ is a spin-cutoff factor [26]. In Sec. V A, we
make a case study for the thermal rates of 57Co → 57Fe, and
so here we take specific numbers for 57Co: N = 980 million
is the total number of levels, �E = 12.55 MeV, and Ē = 63.4
MeV above the ground state for the Gaussian shell model
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FIG. 1. Product of the Boltzmann factor exp(−E/kT ) times the
level density ρlev(E ) for two models of level densities, a Gaussian
with parameters taken from the shell model (solid line), and the back-
shifted Fermi gas model (dashed line), at temperatures (a) = 3 × 109

K; (b) = 10 × 109 K; and (c) = 30 × 109 K. Note the different
energy scales at different temperatures.

level density. For the Fermi gas model, we use the parameters
a = 6.5 MeV and δ = 0.7 MeV from Mishra et al. [27]; as the
spin-cutoff parameter σ is not given, we use σ = 3.96 from
p f -shell calculations [28], which found σ to be approximately
constant over a wide range of energies.

We plot ρlev(E ) × exp(−E/kT ) in Fig. 1 at three different
temperatures and for the two models for level densities. There
are two lessons to be learned here. The first is that while
up to a few billion degrees Kelvin [see Fig. 1(a)] one will
only excite the lowest levels; but once one reaches 10 billion
degrees Kelvin [Fig. 1(b)] one excites levels at a few MeV, and
by 30 billion degrees Kelvin [Fig. 1(c)] one can excited to tens
of MeV. The other lesson, of course, is that this depends upon
the model of level densities. The shell model space is finite
and so the product ρlev(E ) exp(−E/kT ) for the shell model
falls off more quickly than for the backshifted Fermi gas
model, which includes levels outside the shell model space;
these latter are called “intruders.” Whether strength functions
from such intruder states follow the same patterns as the shell
model strength functions found below is a question we do not
attempt to answer here.

Nonetheless, it is clear that, no matter how one models
the level densities, at high astrophysical temperatures one can
access highly excited states. How to accurately model the
strength functions of these highly excited states is the main
topic of this paper.

A. Strength functions and the Brink-Axel hypothesis

The transition strength or B value is the transition matrix
element squared, averaged over initial states, and summed
over final states, and it can be written in terms of a reduced
matrix element [29],

Bi f (O) = 1

2Ji + 1
|〈Jf Tf ||Ô||Ji Ti〉|2 (7)
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where Ô is the transition operator; here we focus on the
Gamow-Teller operator gA �στ .

To characterize transition strengths, one introduces the
strength function,

B(Ei, Etr ) =
∑

f

δ(Etr − E f + Ei )Bi f . (8)

Often this is written as S(Ei, Etr ), while Bi f is used for single
transitions, but we will use B for consistency.

A central problem is this: While there exist efficient meth-
ods for computing the strength function for the ground state
with the Lanczos algorithm (see also the Appendix), and
while one can in some cases measure the strength function
off the ground state [17,18], strength functions for highly
excited states are generally not achievable experimentally and
are challenging theoretically. Hence one often turns to the
Brink-Axel hypothesis (BAH), which, put simply, is the as-
sumption that B(Ei, Etr ) is independent of the initial state, that
is, does not depend upon the initial energy Ei. The hypothesis
is known to fail in systematic ways, especially as one goes up
in the excited state energy spectrum [22,30–32].

As a test of the Brink-Axel hypothesis in calculations,
one can consider moments or sum rules of the strength func-
tion, specifically the non-energy-weighted sum rule or total
strength, S0(Ei ) = ∫

B(Ei, Etr ) dEtr , and the energy-weighted
sum rule, S1(Ei ) = ∫

EtrB(Ei, Etr ) dEtr . Both are convenient
to write as expectation values and so one can efficiently eval-
uate the sum rules for many states [22,33]. If the Brink-Axel
hypothesis were true, the sum rules would be independent
of the initial energy Ei. For example, by looking at the first
few transitions, one finds the centroids at consistently the
same location for both electric dipole [34] and Gamow-Teller
transitions [35]. Yet, by going up to systematically higher
initial energies, recent work on several transition operators
(electric quadrupole, magnetic dipole, and Gamow-Teller) has
provided both numerical evidence and mathematical argu-
ments that the sum rules are not and cannot be independent
of energy. However, it is crucial to note that the sum rules
evolve smoothly with energy, exhibiting robust fluctuations,
by which we mean that the fluctuations calculated in an energy
bin are insensitive to the bin size [22,33]. This observation
leads to a modification of the Brink-Axel hypothesis, as we
discuss in the next section.

B. A brief history of calculating astrophysical weak rates,
and the goal of this paper

Where possible, measured values of Gamow-Teller transi-
tion strengths are used in calculations of astrophysical weak
rates. But such experimental data comprise only a fraction
of the input needed, especially for hot, dense environments
where nuclei inhabit highly excited initial states to a signifi-
cant proportion. The rest must be supplied by theory.

The foundational work of Fuller, Fowler, and Newman
(FFN) [19,36–38] computed stellar weak rates for mass num-
ber A = 17–60 on temperature and density grids appropriate
to precollapse massive stars. FFN used a variety of nuclear
data, for example, measured energy levels and measured
f t values for weak transitions, isopsin symmetry where ex-

ploitable, and extant sd-shell model calculations of wave
functions and Gamow-Teller matrix elements. FFN employed
an independent particle model to estimate remaining strength
in, and the excitation energy centroid of, Gamow-Teller (GT)
resonances. They applied the Brink-Axel hypothesis to ap-
proximate the centroid excitation energies of Gamow-Teller
resonances built on excited states.

Later works used large-scale configuration-interaction
shell model calculation, relying upon increasing compu-
tational power, starting with the 1994 updates of weak
transitions in sd-shell nuclei, A = 17–39, by Oda et al. [39].
By computing at least 100 levels in sd-shell parent nuclei,
they could capture virtually all of the relevant thermal weak
transition strengths. These rates were appropriate for the
oxygen, neon, and magnesium burning stars of intermediate
mass below 10 solar masses. (There have been some recent
updates [40,41].) For massive stars of 10 solar masses and
higher, p f -shell nuclides dominate, but the required model
spaces are significantly larger and computationally much
more challenging.

Following on the heels of a preliminary configuration-
interaction study by Aufderheide et al. [42], the 1999 study
of Caurier, Langanke, Martinez-Pinedo, and Nowacki [43]
(CLMPN) found that configuration-interaction calculations
in the p f shell, using the KB3 shell-model interaction of
Poves and Zuker [44], yield better placement of the Gamow-
Teller centroid than the FFN independent particle model.
Furthermore, while the independent particle model puts all
the Gamow-Teller strength at one place in the final spectrum,
configuration-interaction calculations correctly fragment the
Gamow-Teller strength over many final states, a consequence
of SU(4) symmetry breaking.

A year later, Langanke and Martinez-Pinedo (LMP) [35]
updated rates for the p f -shell nuclides with A = 45–65. While
LMP included heavy p f -shell nuclides beyond those in FFN,
they only computed states 4 to 12 parent eigenstates, limiting
excitation energy to 1 MeV for odd-A and odd-odd nuclides,
and to 2 MeV for even-even nuclei. Following FFN, however,
LMP supplemented these calculations with the Brink-Axel
hypothesis. Pruet and Fuller followed up by looking at nu-
clides with A = 65–80, using experimental data, trends in
Gamow-Teller systematics, and explicit shell model calcula-
tions [45].

As an alternative, the quasiparticle random-phase ap-
proximation (QRPA) can compute Gamow-Teller transitions
strengths in larger model spaces than those accessible by
configuration-interaction calculations, especially when using
a solvable schematic interaction [31,46,47]. Such schematic
calculations, however, tend to have significantly different
strength functions even from random phase approxima-
tion calculations using realistic shell model forces [48].
Related thermal QRPA calculations using Skyrme interac-
tions [49–51] can also reach highly excited transitions, but
may underestimate the total rates due to missing correla-
tions [52]. (In ground-state proton-neutron RPA calculations,
fragmentation of the Fermi surface due to breaking of axial
symmetry can also increase Gamow-Teller strength; further-
more, at least in the lower p f shell, breaking of rotational
symmetries has a stronger effect than breaking particle
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number in spherical proton-neutron QRPA calculations [53].
However, it is not clear how this would be reflected in finite
temperature calculations.)

Following earlier work on the systematics of Gamow-
Teller strengths [30] and moments of strength functions [22],
Misch et al. examined the validity of the Brink-Axel hypoth-
esis in sd-shell nuclei, where with more powerful computers,
they were easily able to obtain initial states of up to 28 MeV.
They found the BAH fails at low and moderate initial exci-
tation energy but may have validity at high initial excitation
energy [32]. Our work here can be considered an extension of
that earlier study.

Today’s desktop computers are able to obtain many hun-
dreds of eigenpairs in the sd shell, i.e., nuclides between
16O and 40Ca, after many thousands of Lanczos iterations,
allowing one to directly compute transitions of interest even
between highly excited states. But in the p f shell, that is,
nuclides between 40Ca and 80Zr, the problem is much more
challenging. Although using supercomputers one can obtain
low-lying states, direct access to highly excited states in p f -
shell nuclides is generally still out of reach.

In this work, we explore the regularities in Gamow-Teller
strength functions à la Brink-Axel for several transitions in
the iron region:

53Fe → 53Mn, 55Fe → 55Mn,

55Cr → 55Mn, 56Fe → 56Mn, 57Co → 57Fe. (9)

While the Brink-Axel hypothesis does not strictly hold, a gen-
eralization does: Strength functions from initial states nearby
in energy behave similarly, a finding which tracks previous
work on GT strength functions [32] and moments of strength
functions [22]. Exploiting this energy-localized Brink-Axel
hypothesis, we are able to obtain transitions strengths for
highly excited, semiconverged states, which can be then di-
rectly applied in thermal Gamow-Teller (GT) transition rate
computations in massive stellar cores.

From our strength functions for 57Co → 57Fe we com-
pute thermal weak rates at temperatures and densities found
in massive star core conditions preceding collapse. We find
very good agreement with LMP thermal Gamow-Teller rates
through most of the density and temperature range up to a
temperature of 1010 K. Beyond this temperature, there is a
sudden uptick in the rates and their growth that could have
significant astrophysical implications. More broadly, however,
our modification to the Brink-Axel hypothesis opens a path to
more microscopic foundations for computing weak rates in
extreme environments.

III. METHODS: CALCULATION OF WEAK TRANSITIONS
USING THE NUCLEAR SHELL MODEL

We work in the interacting shell model [54,55], a sub-
set of configuration-interaction methods. The many-body
Schrödinger equation is written as a matrix eigenvalue prob-
lem by expanding in a convenient orthonormal basis, |�〉 =∑

α vα|α〉. Here the basis states {|α〉} are antisymmeterized
products of single-particle wave functions, usually written
in second quantization, that is, the occupation representa-

tion of Slater determinants. The single-particle basis itself is
organized into orbitals defined by good angular momentum
quantum numbers. The interacting shell model has the advan-
tage of handling even and odd numbers of particles equally
well. Most importantly, one can generate many excited states,
and in principle can obtain every eigenstate in the model
space; this contrasts with methods primarily designed to find
the ground state.

The downside of the interacting shell model is the expo-
nential explosion of the basis dimensionality. Calculations
in the the sd-valence space, that is, nuclei with a 16O core
and valence particles restricted to the 1s1/2-d3/2-0d5/2 space,
have a maximum basis dimension of 93 000 in the M scheme
(that is, fixed z component of angular momentum or M); but
calculations in the p f shell, that is, nuclei with a 40Ca core and
1p1/2-1p3/2-0 f5/2-0 f7/2 valence space, have M-scheme basis
dimensions up to 2 billion.

Shell model codes routinely rely upon the Lanczos algo-
rithm [56] or a related variant to efficiently obtain low-lying
states. The Lanczos algorithm constructs Krylov subspaces by
repeated application of the Hamiltonian matrix on vectors, and
approximate Hamiltonians are diagonalized within succeed-
ing subspaces. As the subspace increases with each iteration,
the extremal eigenpairs of the truncated Hamiltonian, the
most relevant here being the low-lying eigenpairs, converge
to those of the full Hamiltonian. While low-lying states of
all the p f -shell nuclides are accessible, at least with the help
of supercomputers, obtaining highly excited states remains a
significant challenge. In the Appendix, we give more details of
our use of Lanczos, including a modified Lanczos algorithm
to sample highly excited states. To carry out our calculations
we use the BIGSTICK code [57,58], which has full Message
Passing Interface (MPI) and OpenMP parallelization, making
it suitable for applications on large supercomputers.

We use the semi-empirical p f -shell interaction
GXPF1A [59], which has smaller and more uniform
deviations in low-lying excitation energies compared to
the classic KB3 family interactions [44,60]. The GXPF1
family of p f -shell residual interactions has also been
shown to follow more closely experimental Gamow-Teller
distributions in terms of the location of resonance peaks
and fragmentation of the distribution [61]. For the transition
57Co → 57Fe, we use initial excited states going up to
80 MeV, requiring the significant memory and processing
capability of supercomputers. Compared to LMP, we include
many more initial states, up to 100 to 200 converged states,
roughly up to about 5–8 MeV in excitation energy. As in Oda
et al. [39], for most temperatures and densities this suffices
to converge most of the thermal Gamow-Teller strength. But
for temperatures above 1010 K, even more excited states
are needed. For those highly excited states, we utilized our
energy-localized Brink-Axel hypothesis, described in more
detail below.

A. Computing strength functions

In this paper, we consider three methods to generate
strength functions. The first is to painstakingly compute tran-
sition strengths between individual eigenstates. Any one-body
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transition operator (such as the Gamow-Teller operator) with
angular momentum rank K and z-projection M can be ex-
panded

ÔKM =
∑
a,b

Oab
1√

2K + 1
[ĉ†

a ⊗ c̃b]KM, (10)

where ĉ†
a represents a creation operator for a particle in a

spherical single-particle state, that is, a state with good or-
bital and total angular momentum, labeled by a, and c̃b is
a (time-reversed) annihilation operators for a state labeled
by b; the square brackets denote coupling up to a good
total angular momentum K with z-component M. Finally,
Oab = 〈a||ÔK ||b〉 is the reduced matrix element between
single-particle states. This is useful because from the reduced
one-body density matrix between an initial state ψi and a final
state ψ f ,

ρ
f i
K (ab) =

√
1

(2K + 1)

∑
ab

〈ψ f ||[ĉ†
a ⊗ c̃b]K ||ψi〉, (11)

the reduced transition strength is simply

〈ψ f ||ÔK ||ψi〉 =
∑

ab

ρ
f i
K,T (ab)Oab. (12)

The B value is given by Eq. (7). Note that this assumes that
the states i and f have good angular momentum and are
numerically exact eigenstates, i.e., they are fully converged in
the Lanczos algorithm. While this method is ironclad, because
it requires converged eigenstates it can only be used between
relatively low-lying states. Nonetheless, it is a useful check of
other methods.

The second method, widely used, starts with a con-
verged initial state and then efficiently constructs a strength
function to final states using a modified Lanczos algo-
rithm [55,62,63]. This Lanczos technique was used to study
Gamow-Teller strength distributions for some iron peak iso-
topes of astrophysical interest [64]. Because this method
assumes converged initial states, it is still limited to initial
states of relatively low excitation energy when the basis di-
mension of the initial nuclide is especially large; in the p f
shell eigenstates up to 5–10 MeV excitation energy may be
possible but require thousands of Lanczos iterations. Once
an initial state is obtained, however, it takes relatively few
iterations to converge a good distribution of strengths to fi-
nal states. For example, LMP used 33 iterations to generate
strength functions; in our calculations we took 100 iterations.
While not all of the final states will be converged (the ex-
tremal ones will be), this approach nonetheless obtains the
moments of the strength function to a very high order [65],
which can be and have been checked against the first method.
This application of Lanczos for strength functions has long
been a workhorse for computing Gamow-Teller transitions for
astrophysical applications.

Finally, we carry out calculations using semiconverged
initial states (generated using a different variant of Lanczos,
also described in the Appendix) at much higher initial en-
ergy, and then compute the strength function following the
Lanczos moments methods. This approach works due to the
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FIG. 2. Strength functions from two adjacent initial states (filled
and open bars) with excitation energies near 4.5 MeV, for (a) 53Fe →
53Mn; (b) 55Fe → 55Mn; (c) 56Fe → 56Mn; and (d) 57Co → 57Fe.

energy-localized Brink-Axel hypothesis: Because initial states
nearby in energy have similar strength functions, even an
initial state that is a linear combination of nearby states (i.e.,
has a small if nonzero dispersion in energy) can serve as a
useful proxy for fully converged states. (These ideas were
partially anticipated by Langanke and Martínez Pinedo [35],
who also included a few semiconverged “averaged GT states”
at moderate excitation energy. They argued that at high tem-
perature and densities, variations in low-lying strength would
tend to cancel, leading to a recovery of the Brink-Axel hypoth-
esis. Our work here is a more in-depth and more systematic
investigation of these ideas.)

As a small technical point: In BIGSTICK all calculations
must be carried out in a basis with fixed M and MT . Charge-
changing transitions are computed first as charge-conserving
(but isospin changing) transitions, always in the basis of
smallest MT . For example, for 57Co (MT = 7/2) → 57Fe
(MT = 5/2), we work in the basis for 57Fe but compute tran-
sitions from and to the isobar analogs of states of 57Co. We
can access these as initial states by adding −λT (T + 1) to
the Hamiltonian to bring them down in energy. Afterward, we
use isospin Clebsch-Gordan coefficients to obtain the charge-
changing matrix elements.

IV. RESULTS: GAMOW-TELLER TRANSITION
STRENGTHS AND THE BRINK-AXEL HYPOTHESIS

In order to compute thermal rates in stellar environments,
we need the reduced transition probabilities, B(GT ), defined
in Eq. (7), or the related strength function, Eq. (8), which
depend upon both the initial state and the transition energy,
Etr = E f − Ei. When possible one uses the experimental final
and initial energies, E f and Ei, respectively, but these are often
not available. In that case, one adopts

Etr = Q0 + ESM
f − ESM

i , (13)

where ESM
f , ESM

i refer to the excitation energies as computed
in the configuration-interaction shell model, and Q0 = mre −
mpr is the Q value, the experimental difference in mass of
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the reactants and products in their ground states. Note that
in our strength function plots we use the shell-model Q value,
although for the thermal rates we use the experimental Q0; the
difference is just an overall shift in energy.

The central idea in this paper is an energy-localized Brink-
Axel hypothesis, namely that the Gamow-Teller strength
function from states nearby in energy are similar. An illus-
tration of this is in Fig. 2, showing four of the five transitions
listed in Eq. (9). For each set of nuclides, we show the strength
function from two nearby initial states at around 4.5 MeV in
excitation energy.

While one can see that the strength functions look similar,
the fragmentation of strength can make comparison difficult.
One strategy for comparison is to fold strengths with an ap-
propriate resolution function [66]. We instead use the running
sum of the strength function:

R(GT )[Ei, E f ] =
∑
f ′� f

Bi f ′ (GT ). (14)

As shown in Fig. 10 in the Appendix, the running sum quickly
converges as the number of Lanczos iterations increases, mak-
ing for reliable comparisons.

As discussed in Sec. II A, the Brink-Axel hypothesis does
not hold rigorously for Gamow-Teller transitions. Yet work
on summed strengths [22] provides powerful evidence for
a secular evolution of strength functions. In that work, the
total Gamow-Teller strength, which is just the integral of the
strength function, was calculated for every initial state; this
was done efficiently as an expectation value. The summed
strengths were then put into bins of initial energy and the aver-
age and the width (standard deviation) in each bin calculated.
The widths were largely insensitive to the size of the energy
bins, and both the average and the widths evolved smoothly
with energy.

These observations instruct our work here and lead us to
suggest the energy-localized Brink-Axel hypothesis, namely
that strengths from initial states nearby in energy are similar,
within well-defined statistical fluctuations. This was already

observed in full calculations of Gamow-Teller strength func-
tions in the sd shell [32]. In the rest of this paper, we provide
further evidence for this ELBAH in p f -shell nuclides. We
also invoke the ELBAH for a practical calculation of strength
functions from highly excited states: If strength functions
from nearby initial eigenstates of the initial Hamiltonian are
similar, we do not need fully converged states. Instead, we
only need semiconverged initial states that are a superposition
of states nearby in energy.

Following Ref. [22], we compute the statistics of the run-
ning sums R(GT ) as follows: Given a chosen initial energy Ēi,
we take running sums with initial energies in a bin of size �E ,
that is, Ēi − �E/2 � Ei � Ēi + �i. We then take the running
sums to final energies E f in fixed bins of width 1.0 MeV,
and compute the averages and widths (standard deviation). We
then plot the averages and widths for several different initial
energy bin sizes �E . Our results, as exemplified in following
figures, show that the averages and the widths are largely
insensitive to the size of the initial energy bin, meaning the
running sums (and thus the original strength functions) are
similar within fluctuations; if the strength functions were not
similar, we would expect a sensitive dependence upon the size
of the initial energy bin.

A. Converged initial states: The standard approach

Up until now, even in calculations [35] using the Lanc-
zos strength function “trick” [55,62,63] (the second of the
three approaches discussed in Sec. III A), one almost al-
ways used initial states that had converged under the original
Lanczos algorithm; by this we mean eigenstates of the nu-
clear Hamiltonian found within the numerical accuracy of
the code. (The exception is LMP, who used some “averaged”
states [35], presaging the work discussed in the next section.)
Here we give two examples with converged initial states in
Fig. 3 for the 53Fe → 53Mn transition centered at 3.96 MeV
and 56Fe → 56Mn transition centered at 4.25 MeV. In both
cases, the total Gamow-Teller strengths (using gA = 1) have
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FIG. 3. Running sums, Eq. (14), for (a) 53Fe → 53Mn for converged initial states around 3.96 MeV. Data are in initial energy bins of
size from 0.3 to 1.25 MeV; shown are the average (large connected symbols) and standard deviation (small, unconnected symbols); and
(b) 56Fe → 56Mn with converged initial states around 4.25 MeV, in energy bins from 0.3 to 1.25 MeV.
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variances of around 0.5–0.6. A peak occurs at the inflection
point, around 11 MeV for Fig. 3(a) and 14 MeV for Fig. 3(b).

The problem with this approach is the computational bur-
den to reach higher energies. For example, for 49Cr, which
has an M-scheme dimension of only 6 million basis states,
the first 100 levels only gets one to 5.5 MeV in excitation
energy, and the first 500 levels, which requires about 7000
iterations using thick-restart Lanczos [67], only gets one to
8.28 MeV in excitation energy. While for many astrophysical
calculation these initial excitation energies may be sufficient,
they also require heroic computational efforts. Fortunately
the energy-localized Brink-Axel hypothesis suggests a way
forward.

B. Semiconverged initial states

As we just discussed, for even modest excitation energy
it can take many Lanczos iterations to converge states (and
in general the problem of finding interior eigenpairs is noto-
riously difficult). This is arguably because of the high level
densities, or conversely the small energy differences between
levels. Yet the high level density, hand in hand with the EL-
BAH, leads to an alternate, less demanding approach. Since
ELBAH tells us that states nearby in energy have similar
strength functions, we do not need fully converged initial
states. Instead we can use semiconverged states, that is, states
that are linear combinations of eigenstates (corresponding
to fully converged states) nearby in energy. As the strength
functions from nearby states are statistically similar, we can
use admixtures of nearby states as proxies for the “true”
eigenstates.

Thus, we introduce a third approach for strength functions
outlined in Sec. III A. It is only necessary to have semicon-
verged states with a relatively modest variance in the energy
〈Ĥ2〉 − 〈Ĥ〉2, around (0.5 MeV)2 to (1.0 MeV)2. These states
we find by a variant of thick-restart Lanczos, which we term
targeted thick-restart Lanczos and which we describe in the
Appendix. These semiconverged states will not have good
quantum numbers J (angular momentum) or T (isospin) but
we can use, again, the Lanczos algorithm to project out com-
ponents with good quantum numbers [68–70].

In Fig. 4, we plot strength functions (not running sums)
from initial states nearby in energy at several different energy
regimes. We selected fully converged states from around 2
MeV in initial energy in Fig. 4(a), and from around 6 MeV in
Fig. 4(c): We give both the initial energies and the initial an-
gular momenta J . We used semiconverged states from around
4.5 MeV in Fig. 4(b), 10 MeV in Fig. 4(d), and 20 MeV in
Fig. 4(e), and projected out states of good J and isospin T .
We give J and the fraction (probability) these states are of the
original semiconverged states; as not all J values are shown,
the probabilities do not sum to 1.

What should be apparent is first, there is a steady overall
evolution of the strength function, with, second, different ini-
tial states having similar albeit not identical strength functions
and, third, no obvious difference in the behavior between the
strength function plots of converged and semiconverged initial
states.
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FIG. 4. Evolution of the strength function for 53Fe → 53Mn as
one goes higher in initial excitation energy. Panels (a) and (c) are
for selected fully converged states, with initial energies and angular
momenta J given. Panels (b), (d), and (e) are for semiconverged
initial states around energies 4.5, 10, and 20 MeV, respectively.
The probabilities are the fraction of the semiconverged state; not all
components of different J are shown, and hence the probabilities here
do not sum to 1.

The running sums, R(GT ), yield similar conclusions. Fig-
ure 5 compares running sums of strength functions from
both binned averages and widths of R(GT ) from converged
states, and R(GT ) from individual semi-converged initial
states around 4–5 MeV, for 53Fe → 53Mn in Fig. 5(a), and
for 55Cr → 55Mn in Fig. 5(b). The running sums from the
semiconverged states broadly follow the statistical behavior
of the converged initial states.

Because of computational constraints, one cannot gener-
ally go much beyond 5 to 8 MeV in initial energy if fully
converged states are used. Thus, for higher excitation ener-
gies we use only projected semiconverged states; we give
examples from 55Cr → 55Mn, from initial states around 10
MeV in Fig. 6(a), and from initial states around 20 MeV in
Fig. 6(b). At these higher energies, the running sums become
nearly identical, echoing an earlier finding in the sd shell [32].
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FIG. 5. (a) Comparison of running sums, Eq. (14), for converged states average around 4.5 MeV excitation (filled circles with error bars)
and individual semiconverged states also around 4.5 MeV excitation (colored, connected lines) in the 53Fe → 53Mn transition. (b) Comparison
of running sums for converged states average around 4 MeV excitation (fill circles with error bars) and individual semiconverged states around
5 MeV excitation (colored, connected lines) in the 55Cr → 55Mn transition.

We did note a slight but consistent trend of initial states with
higher J having smaller total strength, though only at the few
percent level.

Finally, as an example of the power and applicability of
this method, in Fig. 7, we give sample strength function
distributions from 57Co → 57Fe from initial semiconverged
states at around 20, 40, 60, and 80 MeV in initial excitation
energy. These strength function are used in the next section.
One can see a clear evolution in the strength function, both
in total strength and in the location of the centroid. We note,
however, as discussed in Sec. II, the average excitation energy
for 57Co in this space is only 63 MeV; the lowering of the
strength function centroids as one goes up in initial excitation
energy is a necessary consequence of this. The fact that the
total strength also evolves, however, cannot be explained by a
finite model space.

Thus, we have strong empirical evidence both for the EL-
BAH as well as the effectiveness of its application.

V. APPLICATION TO MASSIVE STELLAR
THERMAL RATES

In astrophysical applications, such as computing the com-
position of precollapse massive stars, temperatures in billions
of degrees Kelvin mean higher energy initial states can con-
tribute significantly to thermal rates. Of relevance here, weak
allowed rates determine the lepton to baryon ratio and the
neutrino flux, vital inputs to the final collapse dynamics of
a star and its products.

The partial transition rate from initial level i to final level f ,
λi f = Bi f �i f (Qi f , ρ, T ), depends upon the transition strength
Bi f , which has been the focus of most of this paper, and the
phase space factor �i f . The phase space factor depends not
only on the Q value but also on the process, such as electron
capture (we assume no energy or momentum dependence
in the matrix element, consistent with an allowed transition,
specifically Gamow-Teller or Fermi in the cases considered
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FIG. 6. Transition strength running sums, Eq. (14), for 55Cr → 55Mn for semiconverged initial states around (a) 10 and (b) 20 MeV.
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57Fe for semiconverged initial states at high initial excitation
energy Ei.

here):

�
(ec)
i j (μe, T )

=
∫ ∞

Wmin

W
√

W 2 − 1(Qi j + W )F (Z,w) f (T, μe,+ε)dW,

(15)

or β+ decay (positron emission),

�
(pd )
i j (μe, T ) =

∫ Wmax

1
W

√
W 2 − 1(Qi j − W )F

× (−(Z − 1),w) f (T, μe,−ε)dW, (16)

with Wmax = Qi j and Wmin = 1 (in units where mec2 = 1),
if Qi j > −1, or else Wmin = |Qi j |. As usual, F (Z,W ) is the
Fermi function accounting for the attraction (repulsion) of the
electron (positron) and the nucleus:

F (Z,w) = 2(1 + γ )(2pR)−2(1−γ ) |�(γ + iαZw/p)|2
|�(2γ + 1)|2 (17)

with γ =
√

1 − (αZ )2, where α is the fine structure constant,
and R is the nuclear radius. Finally f (T, μe;W mec2) are the
Fermi-Dirac statistics for the electron and/or positron:

f (T, μe, ε) = 1

exp
(

ε−μe

kT

) + 1
(18)

Here μe is the electron chemical potential and p = √
W 2 − 1

is the momentum, again in units of the electron mass, while
the total energy of the electron, including the rest mass, is ε =
W mec2. We assume the positron chemical potential is zero.
For the transition energy in Eq. (13), Q0 = Mp − Md in units
of mec2 with Mp and Md being the masses of the initial and
final nuclei, respectively. The chemical potential was derived

from the integral equation

ρYe = (mec)3

π3h̄3NA

∫ ∞

1
W

√
W 2 − 1[ f (T, μe, ε)

− f (T,−μe, ε)]dW, (19)

where NA is Avogadro’s number.
Phase space factors account for the final states of the elec-

tron and/or positron and the neutrino, where the Q value,
Qi j , goes to their mass and kinetic energy depending on the
reaction type. As we have demonstrated, within initial energy
windows from 0.3–1.3 MeV strength functions have similar
behavior, with decreasing fluctuations as one goes up in initial
energy. This is particularly true and useful for initial state
excitations above 5 MeV, where the capability to obtain con-
verged eigenstates is limited. In this region, we exploit the
ELBAH and assume that within 2-MeV energy windows the
reduced transition probabilities B(GT ) are identical. Because
at high excitation energy we do not explicitly include all
transitions, but use the strength functions from sampled, semi-
converged states as a proxy for the average strength function,
we must include the number of levels in any energy window.
Therefore, the level density plays a significant role in these
calculations.

A. Case study: 57Co → 57Fe

As an application of our approach, we calculated the ther-
mal Gamow-Teller rates for electron capture and positron
emission in 57Co → 57Fe, a case with nearly 1 billion M-
scheme basis states; not only is this system a good test of the
BIGSTICK code [58], but it is also expected to be important in
precollapse stellar evolution, in particular in its contribution
to the precollapse neutrino luminosity [15]. We compare the
rates derived from our strength functions to those of Fuller,
Fowler, and Newman (FFN) [37] and Langanke and Martinez-
Pinedo (LMP) [35], as tabulated in Ref. [71], using the same
methodology for computing rates as described in the intro-
duction to this section. Following the practice of those and
most other authors, we used experimental data where it ex-
ists [72], specifically the experimental Q value; the measured
B(GT ) values (derived from the log f t1/2 values) from the
7/2− ground state of 57Co to the first two excited 7/2− states
of 57Fe, which has a 1/2− ground state; and the experimental
excitation energies of those states.

We compute the rates for a range of temperatures and, in
the case of electron capture, densities, using the two different
models for the level density introduced in Sec. II: a Gaussian
distribution which closely follows the shell model level den-
sity, and which therefore implicitly excludes intruder states;
and the commonly used backshifted Fermi gas level density.
Yet the latter is inconsistent with our model space: Because
the latter rises exponentially with

√
E , at temperatures beyond

≈30 × 109 K, we would need strength functions at initial
excitation energies at well over 130 MeV. At that point, we
simply run out of states in our model space, and so we do not
carry out calculations with the Fermi gas level density at the
highest temperatures, i.e., >30 × 109 K.
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FIG. 8. Thermal electron capture rates for 57Co → 57Fe using (a) the Gaussian shell model level density and (b) the backshifted Fermi gas
level density. Solid lines are for LMP [35,71] while symbols are for this work.

From 4 up to 80 MeV, we used semiconverged states at
2-MeV intervals. Although we saw evidence for slight but
systematic differences between transitions strength functions
from initial states with different angular momenta, we approx-
imated them as being identical. We did not investigate in detail
the dependence upon the initial isospin Ti (not to be confused
with temperature); we expect the impact of such differences to
be small. For example, in this case study, the low-lying initial
states have Ti = 3/2. The contributions of initial Ti = 5/2
states are less than 10% up to 25 MeV in initial excitation
energy. Around 80 MeV in initial energy, inclusion of both
Ti = 5/2 and Ti = 7/2 initial states contribute 30% . We note
that any resolution in the uncertainty due to isospin depen-
dence of strength functions at such high energies would also
have to resolve the issue of the choice of level densities.

Figure 8 gives our electron capture rates in comparison
with those of Langanke and Martinez-Pinedo [35,71], using
the two different models for level densities for our calcu-
lations. While phase space dominates the overall behavior,
leading to rates changing many orders of magnitudes, there
are nonetheless differences between calculations. We see
general agreement, although our rates are higher at high tem-
peratures. We do not show the FFN [37] electron capture rates,
which are generally higher than the LMP rates, in some case
by many orders of magnitude, but become much closer at
high temperature and/or at high density, a general trend for
nuclides in this region [35].

At low temperatures and densities, our electron capture
results are identical to the LMP rates, as they must, dominated
by experimental data. At higher temperatures and densities,
we found small differences from LMP, but keep in mind we
used a different shell model interaction (GX1A). At the high-
est temperatures, our results were greater than the LMP results
and show an accelerating trend, but are within a factor of 2.

The β+ (positron emission) rates, Fig. 9, show more drastic
differences. The chemical potential for positrons is negli-
gible, as is the dependence on density log10[ρye]. At low
temperatures, the positron emission rates are many orders of
magnitude smaller than electron capture; at high temperatures,
however, they become comparable to other processes and may

contribute in a significant way. As with the electron captures
rates, the positron emission rates computed in this work are
noticeably higher for high temperature when compared to the
LMP rates and closer to or even exceed the FFN rates. No-
tably, the results at high temperature depend upon our choice
of level density model with differences of up to a couple
orders of magnitude in absolute strength.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have provided evidence that Gamow-
Teller strength distributions follow an energy-localized Brink-
Axel hypothesis, a hypothesis more restrictive than the
generalized Brink-Axel hypothesis, but nonetheless still quite
useful: Strength functions from initial states nearby in energy
are similar within statistical fluctuations. Because of this sim-
ilarity, we can use initial states that are semiconverged (linear
combinations of eigenstates nearby in energy) as reasonable
proxies for fully converged initial states. This allows us to
obtain strength functions at higher energies than would oth-
erwise be possible, up to 80 MeV in excitation energy in
this work. Thus, this implies that one can still obtain strength
distribution information at higher energies that would be pro-
hibitive otherwise if one required convergence of eigenstates.
In an application to a example system of 57Co → 57Fe, we
generally found at high temperatures systematically higher
rates than Langanke and Martinez Pinedo [35], probably due
to the systematic increase in total Gamow-Teller transition
strength as one goes up in energy. Because strength function
moments behave similarly across nuclides [22], it is reason-
able to anticipate similar results for other cases. Nonetheless,
further studies to confirm should be performed, in particular
to investigate if Brink hypothesis violation has systematically
different effects on β decay versus electron capture.

This approach does not solve all problems. In any cal-
culation in a final model space, the exhaustion of states
must necessarily impact the centroid (energy-weighted av-
eraged) of the transition strength function. While the ideal
solution would be to increase the model space, this is not
always practical in shell model calculations. (This becomes
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FIG. 9. Thermal positron emission rates for 57Co → 57Fe using (a) the Gaussian shell model level density and (b) the backshifted Fermi
gas level density. The solid lines are for LMP [35], dashed lines are FFN [37], and the triangles are the current work.

particularly problematic as the presupernova core evolves to
heavier and more neutron-rich isotopes [19], in which case
the 0g9/2 orbit should be included.) Thus, at high energies
one must either use these limited strength functions or fall
back upon the standard Brink-Axel hypothesis, which we
(and others) have shown is flawed, in conjunction with some
assumption about the level density at high energy; alternately,
one can turn to QRPA-based calculations [31,46,47,49–51].
Finally, we have not yet investigated forbidden transitions;
while these are generally much slower, in cases where al-
lowed transitions are “blocked,” forbidden transitions can
compete [3,4,51].

Nonetheless, with this approach we can tackle transition
rates at temperatures above 1010 K, which could have signif-
icant implications for neutrino production, core temperature,
and entropy in presupernova massive stars [35]. Work is on-
going to apply these methods to other p f -shell nuclides.
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APPENDIX: THE LANCZOS ALGORITHM

Here we describe briefly applications of the Lanczos algo-
rithm [55,56,73], highlighting the key ideas in order to present
the context for our innovations. The first application is well
known: Starting from an initial vector or “pivot,” |v1〉, one
repeatedly applies the Hamiltonian matrix to create a Krylov
subspace:

H|v1〉 = α1|v1〉 + β1|v2〉,
H|v2〉 = β1|v1〉 + α2|v2〉 + β2|v3〉,
H|v3〉 = β2|v2〉 + α3|v3〉 + β3|v4〉,

. . . (A1)

The tridiagonal matrix formed by αi, βi, is just the represen-
tation of the Hamiltonian in a new orthonormal basis defined
by the Lanczos vectors {|vi〉}. Let T(k) be this representation,
truncated at k vectors, that is, a k × k submatrix, achieved
with k iterations. The extremal eigenpairs of Tk converge
to extremal eigenpairs of H as k increases. Although it de-
pends upon the system, and specifically on the density of
states, one typically obtains 5 to 10 converged eigenpairs with
k somewhere between 100 and 300; 150 converged eigen-
pairs can require thousands of iterations, usually requiring the
thick-restart Lanczos method [67], which saves on storage
of vectors and on reorthogonalization. One can understand
the effectiveness of the Lanczos algorithm in terms of mo-
ments [65,74].

The second application is also well known to practition-
ers [55,62,63]. Suppose one wants to obtain the strength
function of some transition operator Ô, in our case the
Gamow-Teller operator, from some initial state |ψ0〉 previ-
ously calculated. To do this, choose the pivot to be |v1〉 =
N−1/2Ô|ψ0〉, where the normalization N = 〈ψ0|Ô†Ô|ψ0〉 is
the total strength. One then carries out the Lanczos algorithm
in the usual way. Let the eigenvectors of T(k) be given defined
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FIG. 10. Convergence of the running sum of the strength func-
tion for the transition 28Si → 28Al as a function of final state energy,
computed in the sd shell with the USDB interaction [76].

by the columns of the matrix L, that is, let∑
j

T (k)
n j L j f = Ẽ f Ln f , (A2)

where Ẽ f is the f th eigenvalue of T(k) and may be uncon-
verged. One can transform these eigenvectors back to the
original space:

|ψ̃ f 〉 =
∑

n

|vn〉Ln f , (A3)

where we use the notation ψ̃ to denote states that may not
be fully converged. It is easy to see that 〈v1|ψ̃ f 〉 = L1 f ,
but the transition strength from ψ0 to ψ̃ f is |〈ψ̃ f |Ô|ψ0〉|2 =
N |〈ψ̃ f |v1〉|2, but 〈v1|ψ̃ f 〉 = L1 f , so that |〈ψ̃ f |Ô|ψ0〉|2 =
N |L1 f |2. In other words, one can easily read off the strength
from the eigenvectors in the space of Lanczos vectors. Even
for unconverged states, this information is useful, as it re-
produces the moments of the strength function, which in
turn means even a few tens of Lanczos iterations produces
extremely accurate representations of the strength function.
We illustrate this in Fig. 10, where we computed the run-
ning sum of Gamow-Teller strengths from the ground state of

28Si → 28Al; the Hamiltonian is the universal sd-shell effec-
tive interaction version B, or USDB [75]. Even with only five
Lanczos iterations, the base outline of the strength function is
established, and the difference between 50 iterations and 150
iterations is nearly indistinguishable.

In order to get all the correct factors, one needs to project
out states of good angular momentum and, often, isospin.
This projection or decomposition can also be accomplished
by the Lanczos algorithm [68–70]. Suppose one has a state
|ψ〉 = ∑

a ca|ωa〉, where |ωa〉 are eigenstates of a scalar op-
erator, typically a Casimir operator such as Ĵ2. To extract the
|ωa〉, just use |ψ〉 as the pivot. Carrying out Lanczos with the
Casimir operator produces the projection of the pivot |ψ〉 in
the subspaces defined by the Casimir operator. In most cases
of interest the expansion has only a very few terms, requiring
correspondingly very few Lanczos iterations.

Finally, we developed a method to obtain semiconverged
excited states, also called “interior” eigenpairs. The problem
of finding interior eigenpairs of very large matrices is a noto-
riously difficult problem. After experimenting with different
approaches, we use a modified version of the “thick-restart”
Lanczos algorithm [67], which is also widely used.

In the thick-restart Lanczos algorithm, after generating a
fixed number k of Lanczos vectors, one diagonalizes T(k).
One then restarts the process, keeping Nthick of the lowest
eigenpairs and, through repeated application of H, obtains
k − Nthick additional vectors. This method is useful when
the dimensionality is very large and one cannot store many
Lanczos vectors, or if one wants to avoid the numerically
necessary reorthogonalization that eventually dominates the
Lanczos algorithm if one otherwise goes to very large k.
The thick-restart algorithm has also been extended to block
Lanczos [77].

Rather than keeping the lowest eigenpairs, we choose a tar-
get energy Etarget and keep nearby eigenpairs, that is, we take
the Nthick lowest pairs defined by |Ei − Etarget|. This approach
converges slowly, in part due to the very high density of eigen-
values. (Note that we tried alternatives, such as diagonalizing
(H − E0)2, but such alternatives performed no better and often
worse than our chosen methodology.) Because of the local-
ized Brink-Axel hypothesis, however, we do not need fully
converged states; all we need are states relatively localized in
energy.
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