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Parity violating (PV) as well as parity and time-reversal invariance violating (PTRIV) effects are enhanced
a million times in neutron reactions near p-wave compound resonances. We present the calculation of such
effects using a statistical theory based on the properties of chaotic eigenstates and discuss a possibility to extract
the strength constants of PTRIV interactions from the experimental data, including nucleon-nucleon and pion-
nucleon CP-violating interactions, the QCD 6-term, and the quark chromo-EDM. PV effects have random signs
for all target nuclei except for 2**Th, where PV effects of a positive sign have been observed for ten statistically
significant p-wave resonances, with energy smaller than 250 eV. This may be an indication of a possible regular
(nonchaotic) contribution to PV effects. We link this regular effect to the doublets of opposite parity states in
the rotation spectra of nuclei with an octupole deformation and suggest other target nuclei where this hypothesis
may be tested. We also discuss a permanent sign contribution produced by doorway states. An estimate of the
ratio of PTRIV effects to PV effects is presented. Although a polarized target is not needed for the measurement
of PV effects, for the interpretation of the results, it may be convenient to do both PV and PTRIV experiments

with a polarized target.

DOLI: 10.1103/PhysRevC.105.015501

I. INTRODUCTION

It was predicted that the effects of parity violation are
enhanced a million times in neutron reactions which occur
near p-wave nuclear compound resonances [1-4]. Experi-
ments performed at the Joint Institute for Nuclear Research
in Dubna [5-7] first confirmed this, and further verification
was provided after an extensive experimental study was un-
dertaken, across several locations, including the Petersburg
Institute of Nuclear Physics, the Joint Institute for Nuclear
Research (Dubna), KEK (Tsukuba), and in Los Alamos; see
Refs. [8,9].

The same mechanism of enhancement can also be extended
to effects which violate both parity and time-reversal invari-
ance (PTRIV) [10-14]. PTRIV effects in the transmission
of polarized neutrons through a polarized target have been
suggested in Refs. [15,16]. Currently, experiments measuring
PTRIV effects are in progress, see Refs. [17-21].

The neutron forward scattering amplitude can schemat-
ically (think of the lowest order Born approximation) be
represented in the following form:

JO)=a+bis I} +ci{s-p}+dis-[px1]}, (D)

where s, p, and I are the operators for the neutron spin, neu-
tron momentum and target spin correspondingly. The terms a
and bfs - I} govern the strength of the spin-independent and
spin-spin strong interactions, while c{s - p} and d{s - [p x I}
are responsible for PV and PTRIV effects. In PV experi-
ments, the number of neutrons transmitted through the target
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is measured for neutrons of positive and negative helicities. In
PTRIV experiments neutron spin s, neutron momentum p and
nuclear spin I are all perpendicular to each other.

For PV effects, although a polarized target is not needed,
for comparison with PTRIV effects it may be convenient
to do both PV and PTRIV measurements with a polarized
target, by changing the orientation of neutron spin s; for
PV measurement s is parallel or antiparallel to the neutron
momentum p (correlation (s - p), with s and p perpendicular
to I). As we will show below, in the case where the spin
of the p-wave compound resonance is equal to J =1 — 1/2,
the ratio of PTRIV and PV effects is reduced to the ratio of
the PTRIV and PV weak interaction matrix elements (in the
two-resonance approximation; in the general case it is the ratio
of the weighted sums of the PTRIV and PV matrix elements).
This looks important since in the case of J =14 1/2 and
for PV effects measured with an unpolarized target, the ratio
of PTRIV and PV effects contains the unknown ratio of the
P32 and py o neutron capture amplitudes, M3,2 /M| /. We will
discuss possibilities to measure this ratio M3, /M;,, within
the same experimental arrangement.

It is important to note that although nuclear reactions such
as scattering and particle decay exhibit T-odd angular corre-
lations, this alone is not sufficient to establish time-reversal
invariance violation. These correlations may arise due to the
phases from strong, weak and electromagnetic interactions.
For example, T-odd correlations in neutron B decay are imi-
tated by electromagnetic interaction in the final state. This is
not the case in forward elastic scattering, as the initial and final
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state is the same. A consequence of this is that PTRIV correla-
tion in neutron transmission cannot be imitated by scattering
phases [22-26]. A discussion of possible systematic errors
and specific schemes to eliminate them have been presented
in Refs. [22,27-37].

In compound states with several excited particles the den-
sity of energy levels is very high, and the residual interaction
between the particles exceeds the energy intervals. As a re-
sult, excited states |n) in all medium and heavy nuclei near
the neutron separation energy (as well as in atoms and ions
with several excited electrons in an open f-shell) are chaotic
superpositions of thousands or even millions of Hartree-Fock
basis states |i), |n) = >, C'|i). For the planning and interpre-
tation of experiments we need reliable calculations. Although
at first this seems impossible, due to the complicated nature
of chaotic compound states, chaos allows us to develop a
statistical theory [38—41], similar to the Maxwell-Boltzmann
theory for macroscopic systems, which allows for very ac-
curate predictions. This theory allows us to calculate the
root-mean-squared values of matrix elements of different op-
erators and the transition amplitudes between chaotic states,
and processes involving chaotic compound resonances in nu-
clei [38,39,42-45], atoms, and ions [41,46-50].

Chaos implies that PTRIV and PV effects have random
sign, when they are considered in a set of p-wave compound
resonances. Such randomness has indeed been observed in
many nuclei, however there exists a notable exception: PV ef-
fects in neutron capture by the target nucleus 22Th [9,51,52].
These publications found that for 10 observed statistically sig-
nificant PV effects in p-wave resonances with energies below
250 eV the sign of the PV effect was the same (positive).
According to the interpretation of the experimental data in
Ref. [9], PV effects in 233Th are better described as a linear
combination of the constant effect and random sign effect.
The constant component is slightly bigger and determines
the permanent sign of the PV effects for energies below
250 eV. Above 250 eV, PV effects have both negative and
positive signs. A critical review of suggested explanations of
the permanent sign of PV effect in **Th and corresponding
references may be found in Refs. [9,53].

A possible explanation for the constant sign component
in PV effects may be due to the octupole deformation in
the excited states of >*>Th (to avoid misunderstanding, note
that there is no need for octupole deformation in the ground
state of this nucleus). This is compounded by indications of
octupole deformation in the ground states of >°Th and 2**Th,
while 2*Th has octupole deformation in the fission channel
[9,54,55], a property which is used to explain large PV effects
in nuclear fission [2,56-58]. A permanent sign contribution to
the PV effects may be due to the mixing by PV interaction
of the opposite parity doublet states in the rotational spec-
tra, which appears in nuclei with octupole deformation and
nonzero spin [59-61].

As known, the third well in the deformation potential
energy corresponds to the octupole deformation (see, e.g.,
Ref. [62]). Assuming resonances with energy below 250 eV
in 2*3Th are excited compound states built on the isomer state
with octupole deformation, mixing of the doublet states by
the weak interaction may give a noticeable permanent sign

contribution to PV effects. Note that a compound resonance
wave function may contain both types of components, com-
ponents with octupole deformation and components with no
octupole deformation—see, e.g., papers on PV in nuclear
fission [2,56-58]. The distribution function for the masses
of fission fragments has maximum for significantly different
fragment masses. This may be considered as evidence for the
octupole deformation of components in the compound state
wave function.

Statistical theory predicts mean-squared values of the weak
matrix elements, requiring measurements on many compound
resonances to extract the strength constants of the PV and
PTRIV interactions with a high accuracy (PV effects with sig-
nificance above 1o have been detected in ~150 resonances).
This may not necessarily be the case for regions of a possi-
ble constant sign effect, and is especially important for the
measurements of the PTRIV effects which are expected to be
very small. A possible outcome may be a limit on the strength
constant rather the nonzero value of this constant. Further-
more, the need for polarized targets complicates significantly
experiments for PTRIV effects. In the case of the proposed
permanent sign effect, it may be sufficient to measure one
or a few resonances to extract quantitative information about
PTRIV interactions. Also, if the doublet mechanism is con-
firmed, then the measurements of PV effects may be used to
search for nuclei with octupole deformation.

Given this, it seems that performing measurements and
calculations on nuclei which may exhibit a permanent sign
effect may be advantageous. There are two main areas of
proton numbers Z and neutron numbers N where octupole
deformation is expected in the ground state, or in a low-energy
isomer state (below the neutron separation threshold) [63-66].
These areas are the lanthanides in Z ~ 56-66, N ~ 88-97
(including Ba, La, Ce, Eu, Gd, Dy, and Sm isotopes) and the
Z ~ 88-102, N ~ 134-194 mass region (including Rn, Ra,
Ac, Th, Pa, U, Np, Pu, and Cm isotopes). The study of PTRIV
effects requires the target nuclei to be polarized, meaning
isotopes with nonzero spin are necessary. Furthermore, the
stability of the nuclei must be considered, as many candidate
nuclei with an odd number of nucleons are unstable, meaning
they are not suitable for experiments. It is also important to
note that octupole deformation is required in the nucleus ex-
cited by the neutron capture. Information regarding octupole
deformation can be extracted from the nuclear rotational spec-
tra presented in the database [67] (see also Refs. [66,68]). In
nuclei with nonzero spin with octupole deformation, doublets
of opposite parity states with the same spin (along the ro-
tational bands) can be seen. Energy splitting of this doublet
in the ground state typically ranges from 25 to 400 keV. In
nuclei with zero spin and octupole deformation, the negative
parity rotational band 17,37,57, ... is separated from the
positive parity rotational band 0%, 2%, 4%, ... by roughly 0.1—
1 MeV. Note that this is smaller than the typical excitation
energy of octupole vibration which is ~2.5-3 MeV in most
nuclei [69].

Note the energy interval between doublet states in the case
of octupole deformation is never zero, due to the Coriolis
interaction and “tunneling.” In these nuclei, the splitting of
doublet states is dominated by the “tunneling” of the octupole
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bump (excess nucleons on one side) to the other side of the
nucleus, removing a pre-existing degeneracy between them.
As this process is similar to an octupole vibration mode, there
is no sharp boundary between the static octupole deformation
in the deep minimum of the potential energy and dynamical
octupole deformation (low-energy octupole excitation) when
this minimum is shallow or flat.

In a compound state this tunneling amplitude may be small,
as tunneling of the nucleon number excess from one side of
the pear shape nucleus to another side has a small probability
to return the system back to exactly the same intrinsic state
of all nucleons, due to a very large number of the principal
components, N ~ 10*, in the compound state wave function.
Due to this possible suppression of the tunneling amplitude,
the energy interval between the opposite parity doublet states
in the compound nucleus may be significantly smaller than
such an interval in the ground state. Indeed, in the fission
channel’s structure, the energy interval between the opposite
parity doublet states is practically invisible [54,55].

Several papers [60,70-76] described in the review in
Ref. [9] suggested mixing of the doorway states of opposite
parity as a source of the permanent sign effect in >*Th.
For example, in Refs. [70-72] the doorway states are two-
particle-one-hole states excited by the first collision of neutron
with nucleus (Ref. [70] also mentioned rotation and vibration
excitations). In Sec. VIII of the present paper we calculate
the doorway states contribution to PV and PTRIV effects. We
treated doorway states as components of the nuclear com-
pound states wave functions and found an additional term,
which may have both positive and negative sign. This term
may dominate if the distance between the s-wave compound
resonance and the p-wave compound resonance is small,
|Es — Ep| < d/2, where d ~20eV is the interval between
compound resonances with the same spin and parity (note that
such cases may produce the largest PV effects). This term may
be important for the contribution of any local doorway states
(with energies close to a p-wave compound resonance). For
distant doorway states this term is not significant, however,
the total distant doorway states contribution looks too small
to explain the observed constant sign effect (see discussion in
the review in Ref. [9]).

A possible factor of enhancement in the local doorway
mechanisms is the interval between the opposite parity door-
way states, which accidentally happened to be very small near
the neutron threshold in 2**Th nucleus. Indeed, the opposite
parity states do not repel each other and the probability density
to have a zero energy interval (E; — E_) is not suppressed.
PV effects P have been measured in 20 nuclei, so in one
of them the interval (E; — E_) between the opposite parity
doorway states is expected to be 20 times smaller than the
average value of such an interval, and the value of the cor-
responding contribution to the PV effect P could be 20 times
bigger than a typical value of this contribution to P [since P o
1/(E+ — E_)]. However, in the case of the doorway-induced
effect, this enhancement is limited if we take into account
the finite spreading width of the doorway states, which stays
in the energy denominator £, — E_ +il';/2 of the doorway
state contribution to P. According to Ref. [77], observations
indicate I'y ~ 100 keV and a distance between the doorway

states of D ~ 300 keV. References [60,78] argue that I'; and
D may be smaller.

In other words, the doorway state is just one of N principal
components of the compound state, meaning it hardly can
dominate in the weak matrix element between opposite parity
compound states as N ~ 10*. Indeed, a sum of N random
sign terms increases as N'/2, therefore one may expect that
a single doorway state contribution is suppressed as N~1/2 ~
(%)1/ 2 relative to the statistical contribution of all N terms.

To overcome this suppression, the doorway width should be
exceptionally small, I'; < 1 keV, for both opposite parity
doorway states, and both of these states should be in close
vicinity, within 1 keV, of the p-wave resonances of interest
(see Sec. VIII of the present paper). Is is not clear if the
probability of such a coincidence is significantly higher than
the probability of ten random sign PV effects having the same
sign.

This paper is organized as follows. In Sec. Il we present our
results for the general expressions for the PV and PTRIV ef-
fects, including the angular coefficients for both polarized and
unpolarized targets. In Sec. III we use a statistical approach
to express the mean-squared values of the matrix elements of
the PV and PTRIV interactions by values of PV and PTRIV
effects P (defined as the asymmetry in the neutron transmis-
sion). In Sec. IV we provide a brief overview of the statistical
theory of finite systems based on the properties of chaotic
compound states. In Sec. V we use this theory to calculate
the mean-squared values of the matrix elements of PV and
PTRIV interactions. In Sec. VI we summarize the experi-
mental results which indicate a possible regular component
in PV effects, using the target nucleus 2*>Th. In Sec. VII we
present a possible octupole doublet mechanism for a regular
component of PV and PTRIV effects in neutron scattering.
In Sec. VIII we derive expressions for the doorway states
contribution to PV and PTRIV effects. Section IX contains
comments about other potential mechanisms for the perma-
nent sign PV and PTRIV effects. In Appendix A, we present
our calculations for the angular coefficients of PV and PTRIV
effects, for both a polarized and unpolarized target. Appendix
B presents a brief overview of the theory used to calculate
the root-mean-squared values of the matrix elements of the
PV and PTRIV interactions. In Appendix C, we present a
few candidate nuclei which may have an octupole deformation
after neutron capture and can potentially be used to search for
permanent sign PV effects.

II. SCATTERING AMPLITUDES FOR PARITY VIOLATION
AND TIME REVERSAL VIOLATION

A. Brief introduction to parity violation in compound nuclei

Let us start from a simple qualitative explanation of the
origin of the enhanced parity violating effect. For simplicity,
we will initially assume that nuclear spin is zero. Resonances
which are excited by ¢ = 0 neutrons are called s-wave res-
onances and have positive parity, while resonances excited
by £ =1 neutrons are called p-wave resonances and have
negative parity. In such a compound nucleus close to p-wave
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resonance, the wave function can be written as

Vo =vp+ Y B, ©)

with the mixing coefficient

W 14

:BS = ﬁ’

3)
where W;, = (s|W|p) is the matrix element of the weak inter-
action mixing s-wave and p-wave resonances. We can present
the parity violating effect in terms of the widths of the s-wave
and p-wave resonances. Since the width I'” is proportional to
the amplitude squared, the amplitudes of s- and p-wave cap-
tures can be represented as ,/I'?n, and i/FT’,n > Tespectively,
where 7, and 7, are the sign factors of each amplitude (equal
to +1). The cross section o is proportional to the square of the
amplitude,

W.
+i /T — Ty,
! pnp+Z:Ep_E¥ sn

where o are the cross sections for the positive and negative
helicities. The =+ sign in the p-wave amplitude corresponds to
a positive or negative helicity, see Sec. II B. It follows that the
longitudinal asymmetry P can be expressed as [1]

; “

o4 X

p=2r"% =2Z—IWS” sy (5)
oy +o_ . E,—E,\ T}

where the sign coefficients 5, and n, have been moved inside
the matrix element Wj,. Note, in the standard defintion of the
angular wave functions, W;), is imaginary. A proper derivation
of (5) including the case of a nonzero nuclear spin will be
presented in Sec. II B. Here we assume that the nonresonant
part of (o4 + o_) has been subtracted, as it has been done in
the PV neutron transmission experiments.

Upon analysis of Eq. (5), two reasons for the enhancement
of the PV effect can be identified. First, in a nucleus excited
by neutron capture, the interval E; — E, between the chaotic
compound states (resonances) of opposite parity is very small.
This contribution is labeled dynamical enhancement, and it
enhances the mixing of these states (by the weak PV in-
teraction between nucleons) by three orders of magnitude.
Second, the admixture between the large s-wave amplitudes
J/T7 and the small p-wave amplitudes I'} allows neutron
capture in the s-wave channel to contribute to the p-wave
resonance. At small neutron energies the s-wave amplitude
is three orders of magnitude larger than the p-wave amplitude
(/T#/T7 ~ 10°). This contribution is referred to as kinematic
enhancement. The ratio of the strength of the weak interaction
to that of the strong interaction is ~10~". As a result of these
two 10° factors acting together, the factor of enhancement is
as large as ~10°; see Refs. [1-4.,6].

The relative difference of the neutron cross sections for
positive and negative helicities has been measured in a range
of nuclei. These measurements have been done in various
polarized neutron transmission experiments, by flipping the
neutron spin orientation s from parallel to antiparallel to neu-
tron momentum p by a magnetic field pulse. Once the spin has

been flipped, the number of neutrons passing through a mate-
rial can be counted, i.e., measuring the correlation s - p; see,
e.g., Ref. [9]. Further, there has also been measurements of
PV correlations in neutron radiative capture, (n, y) reactions.
The theory of these correlations is presented in Refs. [3,4].

B. Calculation of the forward scattering amplitude
with parity violation

In this section, we follow the derivation in Ref. [3], in
which the authors use a resonance diagrammatic technique to
calculate the forward elastic scattering amplitude with parity
violation fp. Let us consider the parity violating effects in
neutron optics. The angle of neutron spin rotation around the
direction of motion in matter is

_ 27‘[Nol

2 Ref,y, ©)

where Ny is density of the target atoms, [ is the neutron path
length, k is the neutron momentum. The difference in total
cross sections Ao for right and left handed polarized neutrons
can be expressed in terms of f, .,

4
Ao =0y —0_ = 72 Imfp.v.v @)

The main contribution to the forward elastic scattering ampli-
tudes comes from mixing by the PV weak interaction of the
wave functions of compound resonances. Other contributions,
such as neutron scattering on the parity violating potential of
the nucleus are not enhanced by small energy denominators,
and may be neglected.

We will now present a calculation of this resonance am-
plitude. In this derivation, we will skip the summation over
all s-wave and p-wave resonances for brevity. Let n; denote
the neutron’s initial momentum direction and / be the angular
momentum of the initial nucleus. J = I + j is the spin of the
compound resonance and j = 1 + s denotes the momentum of
the p-wave neutron at which the capture occurs. Let us begin
by writing down the wave-function of the incident neutron

e xa) = YA jikr)Y s ) Yim () Xa),  (8)

I,m

where |x,) is the neutron spinor with spin projection o and
Jji(kr) is the spherical Bessel function. In neutron-nucleus
scattering, the capture amplitude of the neutron into the s-
resonance is

Cpri VTHE), ©)

while the capture amplitude of the neutron into the p-
resonance is

5l A oo T, 0

where CIJIJ‘", is the Clebsch-Gordon coefficient; FZj is the
73 @

neutron width corresponding to the emission of a neutron with
momentum j and n ; = =1 is, as defined above, the sign of
the amplitude [3]. We further define the Green function of a
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compound nucleus
1 an
E —E.+ §il.

Now, in conjunction with the above rules, we may write the
forward elastic scattering amplitude near the s-resonance [3],

1
ARG V).
(12)

where —1/2k is the common factor for the scattering ampli-
tudes, given the neutron momentum k. Next, summing over
J. (using the standard relations for the coupling of angular
momenta) and averaging over I,, we obtain the standard Breit-
Wigner formula [3],

1 JJ.

0 N
f( ) E—Es“—%lrg 112%01

f(0) = -8 E) (13)
© 2kE —E,+ il

where the factor

2J +1
— @r+hH (14)
2121 +1)
appears after averaging over the initial nucleus’ spin pro-

jections. Performing a similar calculation for the p-wave
resonance yields

S )___ZCIJIJJJCIJr]na 1 (1)

x mql JJz Clm a 4m Y1 (g ) Fp]-(E),
(15)

oy (E)

which, after summation over J, and averaging over I, is again
equal to
1 glp(E)
0)=———-""L - 16
10 2kE — E, + 3iT, {10

where I') = le/z + FZW Using the above calculations as
guides, we may now write down the forward elastic scattering

amplitude with parity violation

2 J
v.(0 sV I WE)—————
Fou(0) = =G /T ETE I
W 1
X —
YE—-E,+1ir,
X (=) DGy, Cory N AT Vi [T, (E),

JJjzm

a7

where W, is the weak interaction matrix element between
compounds states. Once again, we may sum over J, and aver-
age over I, to obtain [3]

28 /THE)iWy, \/Fz%(E)nsn%
T (E—E,+ Lir)(E —E, + Lir,)’

Jon.(0) = (18)

The sign of this expression corresponds to the positive or
negative helicity neutron, respectively. We also note that the
term with j = 3/2 vanishes after summation over J,. The sign
factor n,71,2 can be excluded by means of the redefinition of
the states s and p (i.e., we introduce it into the matrix element
Wy).

Note that all neutron widths are energy dependent, and
should be taken at neutron energy E. If the energy E is close
to p-wave resonance, then they must take the form I'} (E),) and
O(Ep).

Equation (18) can now be related to the total cross section
via the optical theorem

o= %Imf(O). (19)

Upon application of the optical theorem to the forward scat-
tering amplitude with parity violation, we yield the predicted
longitudinal asymmetry Eq. (5).

C. Forward scattering amplitude with time reversal
invariance and parity violation

In this section, we will present our calculation of the for-
ward scattering amplitude of neutron-nucleus scattering with
time and parity violation. In the case of PTRIV effects, the
spin of the target nucleus and neutron momentum are per-
pendicular. As such, it is convenient to set the nuclear target
spin I along the z axis, thus I = I,. Neutron spin is along x
axis, so the spinor has equal amplitudes 1/2 and —1/2 along z
axis, %HsZ =1/2) + |s, = —1/2)], and neutron momentum
is along y axis, therefore we substitute @ = 7 /2 and ¢ = /2
as the arguments of the Y}* (6, ¢) in Eq. (10). In this case,
we have contributions to the capture amplitude from both
the s-wave and p-wave resonances, with a total spin of J =
I+1/20rJ =1—1/2. We will make the substitutions M, =

\% F;lrh" Mpgj = p_]r’]

described above, we can write the time and parity violating
amplitude fip.y.,

for brevity. Following the method

1M WT’P((YI/Z My 10+ o3 Mp3)0) 0
Jiov =%3 (E — E,+ Lir,)(E — E, + LiT,) 20
where the angular coefficients «; ; are
1
O1/2,J=1+1/2 = TR
VIQ2I +3)
q3/2 J=I+1/2 = —m,
1
a1/2,0=1-1/2 = TR
1 21 — 1
0372 j=I-1/2 = —2(21+ oVT+1 21D

The calculation of this amplitude is presented in Ap-
pendix A 1. In this amplitude we should sum over s-wave
resonances (if the energy is close to a p-wave resonance).
However, for comparison with Ref. [79] it is instructive to
present the ratio of the two scattering amplitudes f;,,v. Eq. (20)
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and f,,y. Eq. (18) taking into account only one s-wave reso-
nance:

WT’P
ft.p.v. — V;/p ’ (22)
fp.v, sp

where the angular coefficient of the ratio « includes ampli-
tudes of the partial neutron widths which depend on spin
channels J = I & 1/2, and can be determined via our calcu-
lations above,

(o120, 0Mp 172 + a3pn gMp3)2)

k(I£1/2)= . (23)
/ eMp 1,2
where g is as defined by Eq. (14),
27+ _{ﬁ, J=1+3, o4
7200+ |k J=1-L
Hence, calculations yield
1 M I+ 3
k(I +1/2) = _Mpsp YIGIED) o5
I+1 Myip 204+1)
M V2 —1
k(I —1/2)=1— 232" — (26)
M2 21+ 1

Our results for the factors k(I £ 1/2) seem to be in agreement
with the values calculated by in Ref. [79]; however, their
calculations do not include the sign factors 7y, ; from the

amplitudes M; = \/T'{ns and M, ; = /T n; (their results

are expressed in terms of /I'f and /T") ; assuming that both

M, and M, ; are positive; this assumption is not justified).
Reference [79] limits their calculation to one s-wave reso-
nance. This approximation is not justified in the case of the
statistical theory. Finally, the experiments measure the relative
difference P of the number of passing neutrons for opposite
orientation of neutron spin. The relative difference contains
the p-wave amplitude in the denominator, which also should
be calculated.

D. Forward scattering amplitude for parity violation
with a polarized target

Now, in a similar way, we may also calculate the parity
violating forward scattering amplitude for a polarized target.
In this case, we require neutron momentum and spin to be par-
allel, and both perpendicular to the nuclear target spin. Setting
once again nuclear target spin along the z axis, we have [ = I,.
We once again have neutron spin along the x axis, meaning
the spinor is \%Hsz =1/2) +|s, = —1/2)]. However, now
we require neutron momentum to also be along the x axis,
and thus we substitute 6 = /2 and ¢ = 0 as the arguments
of the Y}" (0, ¢). Using a similar method to Sec. II C, we yield
the following for the forward scattering amplitude with parity
violation with a polarized target (see Appendix A 2),

1 MiWip,(81/2.0Mp1j2 + 832.0Mp3/2)
k (E—E,+3il)(E—E,+1il'y)

fow =% 27)

where the angular coefficients §; ; are

I+1
S1/2,0=1+1)2 = BT
5 _ 21 — 1 1
WBIEHR T T 0r Y 20+ 3
5 1
120=I-1/2 = — 75—,
21+ 1

5 I 20 —1 08)
W20y DY T+ 10

E. Ratio of PTRIV and PV effects in experiments
with a polarized target

Now we can present the ratio of the PTRIV and PV forward
scattering amplitudes for a polarized target. We start from the
results in the two-resonance approximation:

Jipy W;’P |:061/2,1Mp,1/2 + a3/2,JMp,3/2:| 29)
v Wy L8172 Mp 12 + 832 0Mp30 |

Specifically, for J/ =1 + 1/2, we have

fiow _ W™ 22+ 3Mp 10+ QL+ 3)VIMy 5
L W 201+ V2T 3M, 10+ QI — DVIM,, 50
(30)
while for J =1 — 1/2 we have a very simple result,
fipv. . Wy”
= o (31
p.v. lWYI’

A more accurate treatment requires summation over s-wave
resonances in the numerator and denominator since the
PTRIV and PV matrix elements are not proportional to each
other (according to our statistical theory calculation [44], the
relative correlator between W,) - and W), is 0.1). Therefore, in
the above expressions, we should make the substitution

Wy - 2 AWy, (32)
iWsp 2 AspiWp
where
Ay =22 iE IE— (33)
s—Ep\ T

The width I'” is a common factor and may be canceled.
However, after statistical averaging the ratio of PTRIV and
PV effects for / =1 — 1/2 will again be given by a simple
expression containing only root-mean-squared values of the
PTRIV and PV matrix elements (see below). Equation (31) is
also valid for the octupole doublet and doorway state mecha-
nisms (the permanent sign contribution) where the two-level
approximation is justified (see below).

F. p-wave amplitude for a polarized target
(PTRIV and PV configurations)

We will now present our results for the p-wave amplitude
in the configurations above which use a polarized target. First,

015501-6



PARITY AND TIME-REVERSAL INVARIANCE VIOLATION ...

PHYSICAL REVIEW C 105, 015501 (2022)

let us consider the case when neutron momentum, neutron
spin and target spin are all perpendicular to each other, i.e.,
for the configuration presented in Sec. II C. This calculation
was performed using the method presented in Sec. II B, from
which we yield (see Appendix A 3)

1 BLuMy o+ BizsMy1oMyspn + B M, 5

fp:_

2k E —E,+ 1T, ’
(34)
where, in the case whenJ =1+ 1/2,
5 o I+1
1J=I+1/2 = A+l 8>
VIo2—1
- = 35
B13,=1+1,2 T3 11 (35
p 2P +51+9
R T S0+ 3)eI+ 1)
and in the case whenJ =1 — 1/2,
p - =
1J=I-1/2 = e 8
5 . 1 121 — 1 36)
13J=I-1/2 = driVIsr
I(I+4)

Bss=1-12 = m
Next, we consider the case when neutron momentum and
neutron spin are parallel to each other, and both perpendic-
ular to the nuclear target spin (the configuration presented
in Sec. [ID). A similar calculation verifies that the p-wave
amplitude in this configuration coincides with Eq. (34) above.

G. Ratio of py/; and p3;, capture amplitudes

The expressions presented above contain the unknown
ratio of the py» and ps3, capture amplitudes, 7 =
M, 3/2/M,.1/2. This ratio may be extracted via measurement
of the ratio of the total p-wave resonance cross sections (trans-
mission probabilities) for the polarized and unpolarized target,
i.e., from the ratio of the forward scattering amplitudes in
Egs. (34) and (16):

_o(polarized) l(lgl IR + BissRijpRsp + BsaR3 ).,
o (unpolarized) ~ g% , o
37
where
M .
Y /Y — 38)

e 2
MPl/z + MP3/2

Here M} |, + M, 5, = M, = ' Note that R}, + R3 , = 1.
This ratio T = M, 3/2/M,1,> may also be extracted from the
ratio of the PV forward scattering amplitudes for a polarized
and unpolarized target, which is equal to

Ao (polarized) 1

— T = Z[(s 8 7)]. 39
Ao (unpolarized) g[( /20 83201 (39)

III. STATISTICAL ANALYSIS OF PARITY VIOLATION
AND TIME REVERSAL VIOLATION IN COMPOUND
NUCLEI

The statistical theory predicts mean-squared values of the
amplitudes. However, if we treat the energy intervals between
the opposite parity energy levels E; — E, as random vari-
ables, which have a finite probability density to be zero, then
we obtain a meaningless infinite result for the variance of
the effect (P?) in Eq. (5). Inclusion of the widths T’y into the
energy denominators makes (P?) finite but so big that one
would require many thousands of measurements on different
compound resonances to find (P?) from experiments [80]. The
solution is to take the energy intervals from experimental data,
i.e., do not treat them as random variables.

A. Parity violation for zero nuclear spin

In this section, we follow Bowman et al. [81] in their
analysis using the statistical mechanism of parity violation
in nuclear resonances, the effects of which are produced by
the mixing of opposite parity states. As such, individual weak
matrix elements between s- and p-wave resonances can be
considered to be mean-zero Gaussian random variables, with
variance W2 = (|WS,,|2).

Let us first consider the case of targets with spin I = 0.
In such cases, we have for s-wave resonances, J = 1/2%,
while for p-wave resonances, J = 1/27,3/27. As p-wave
resonances with 3/27 cannot mix with the 1/2% s-wave levels
via a parity violating interaction, these levels will not show
parity violation.

For a given p-wave level, the observed asymmetry has
contributions from many s-wave levels, as per Eq. (5). We may
rewrite this equation as

P=> iAW, (40)

Ay=2—1 | 1)
P TE —Ep\ T

to separate factors which are taken from experimental data and
not affected by averaging. Squaring Eq. (40) yields

Z AspWsp

= ZAEPWVS[)F + ZAipAspVVivap» (42)
s SFI

where

2
P =

P 1 1
2 2
p = F ZA5P|Wsp| + P ZAipAsvaivaXp»
J J s I ssi
where we define A7 = ZsAfp. Now, given that each W,
is statistically independent, upon averaging over matrix ele-
ments the cross terms vanish. We can rewrite this expression

in terms of W [81],
2 P’
Wo={-—) 43
%) @)
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Thus, we conclude that each P/A; is also a Gaussian random
variable, with mean zero and variance |W|?. This means that
given several experimental measurements for the quantity P,
(IWsp|?) = W2 can be extracted.

B. Parity violation for an unpolarized target with a nonzero spin

Let us now consider neutron scattering from an unpolar-
ized target with nonzero spin, I # 0. Given parity 7, these
targets have spin and parity (I &= 1/2)" in s-wave levels and
(I£1/2)7™,(I £3/2)7" in p-wave levels. As the weak in-
teraction is a scalar, angular momentum conservation implies
only / £ 1/2 has a nonzero P-odd effect. Only the j = 1/2 p-
wave capture amplitude contributes to the effects of parity
violation, see Sec. I B. The projectile j is further coupled to
the spin of the target nucleus I to form the total spinJ = j + L.
Once again defining M, = n,,/T7 and M, = n,,/T7 as the
neutron decay amplitudes of the levels s and p, respectively,
we can rewrite Eq. (5) as (see Sec. II B)

2iW; ;’
P=Rip Z 5 / = (44)
p

where Ry, is given by Eq. (38). Let us rewrite Eq. (44) in the
form

P= Z iWepAsp, (45)

where Wsp = W,,Ri» and coefficients Ay, are given by
Eq. (33). Thus, in a similar method to the case when I = 0,
we obtain

5 P?
(IWp|*) = <A—3> (46)

where A7 = )" A7 . Assuming that W, and R,/ are statisti-
cally independent, their product can be averaged separately.
Then, the average squared matrix elements between com-

pound states are
“;2 1 <P2 > ( )
( 1/2) 7

can be extracted experimentally, and for masses near

12)
= 110, it typically lies between 0.6 and 0.8 [9].

(R}
A

C. Time reversal and parity violation for a polarized target

In this section, we consider the PTRIV configuration, and
perform a similar calculation to that above. First, we note
that the p-wave forward scattering amplitude for neutron
momentum, neutron spin and target spin perpendicular to
each other, does not coincide with Eq. (16). As per the
result presented in Sec. IIF, the p-wave forward scattering
amplitude in this case is given by Eq. (34). Using the
calculation of the PTRIV amplitude in Sec. II C, we can now
write PTRIV effect in a similar form to that of the unpolarized

P-odd, T-even effect Eq. (5),

p (10, 0Mp 12 + 32 yM ), 32)M),
rp =
BruM; | 1o+ BisaMp 1 oMy 30 + B3 M, 5
WT’P rn
S = (48)
E,—E,\ T
s p

where «, ; are the angular factors for the PTRIV amplitude in
Eq. (21) and W, is the matrix element of the PTRIV interac-
tion. We can further rewrite this equation in the familiar form

PT,P = Z VVSQPAspv (49)

N

where Ay, is as defined in Eq. (33), and

WP _ a1 gR12 + a3 R0 T.P
i BiuRS, + BissRipRyp + B Ry, |7
where R; is as defined in Eq. (38). Once again, we aim to

determine the average of this relation. In the same way as
above, we yield

)= (). )

Assuming that Ry 2, R3)», and WT P are statistically indepen-

dent, the products R} ,W.>>* and R2 ,W¥ can be averaged
separately, and using the same method as Sec. III B, we may
determine the average squared matrix elements of the T, P-
odd interaction. Neglecting the terms linear in R;,, or Rz
(as they have a random sign), assuming that (R‘}) ~ (R?)2 and
averaging the numerator and denominator separately gives

((Wr,p)2> N |: “f/z,J(R%ﬂ) + 0‘%/2 J<R%/2) :|
sp 2 2
Bi J< 1/2) +1313.J< 1/2>< 3/z)+ﬁ31< 3/2>

x (W) (51)

Thus, we conclude that the average squared matrix elements
of time and parity violating effects are

. [ﬁ?,J(Rf/z>2 + B R IR ) + ﬂ%,xR;zf}
0‘12/2,J<R%/2> + 0‘%/2,1<R§/2>

P2
x <AL3P> (52)

Note that R}, +Rj,=1. According to Ref. [9],
(R%/z) ~ (.7 and (R§/2) 2~ (.3 for masses near A=110.

D. Parity violation for a polarized target

We also may perform a similar calculation for the parity
violating interaction with a polarized target. Here, we once
again note that the p-wave forward scattering amplitude in
this configuration coincides with Eq. (34). Thus, we may write
the PV effect, and its corresponding mean-squared matrix
elements for a polarized target [replacing the coefficients o ;
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with §; ; in Egs. (48) and (52)],

p B12,0Mp 172 + 832, 0Mp 3,2 )M,
polarized = ) )
BruM, 1+ BisgMpi oMy 3 + B3 yM, 5

T
— E,—E,\ T

WP ~ |::312,J<R%/2>2 + ﬂ123,J<R%/2)<R%/2> + :832,J<R§/2>2:|
8112, 4(RY 12) + 83)0,4(R5 )

P .
% < Pizi;zed) (53)
J

IV. STATISTICAL THEORY OF FINITE SYSTEMS BASED
ON THE PROPERTIES OF CHAOTIC EIGENSTATES

The number of combinations for the distribution of n parti-
cles over m orbitals, m!/[n!(m — n)!], increases exponentially
with the number of particles. Therefore, in compound states
with several excited particles, the density of energy levels
is exponentially high, and the residual interaction between
the particles exceeds the energy intervals. As a result, the
excited states |n) in all medium and heavy nuclei near the
neutron separation energy (as well as in atoms and ions with
several excited electrons in an open f-shell) are chaotic su-
perpositions of thousands or even millions of Hartree-Fock
basis states |i), [n) = ), C!'|i). Chaos allows us to develop a
statistical theory, including a method to calculate the matrix
elements between chaotic states in finite systems (in excited
nuclei, atoms, and molecules) [38—41].

Following Ref. [82], we treat the expansion coefficients C7
as Gaussian random variables, with average values CT” =0
and variance

1
CZ(Eo:) = ﬁA(Fspra E — E,),

ATy, E — E /4 54
( Sprs - ot)— (E—Ea)2+F§Pr/4’ ( )
where N = %}"‘ is the number of the principal components in

the compound state found from the normalization condition
Zi(Ci”)2 =1, Iy, is the spreading width calculated using
Fermi’s golden rule and d is the average energy interval be-
tween compound states with the same angular spin and parity
(see details in Appendix B).

The function (C)> = f(E" — E;) gives the probability to
find the basis component |i) in the compound state |n), i.e., it
plays the role of the statistical partition function. The differ-
ence from conventional statistical theory is that the partition
function depends on the total energy of the isolated system
E" instead of temperature for a system in a thermostat [recall
the Boltzmann factor exp(—E;/T)]. One may compare this
with the microcanonical distribution where equipartition is
assumed within the shell of the states with fixed energy E;.
Expectation values of matrix elements of any operator O in a

chaotic compound state are found as

(Ol =Y (7)1l Oli) . (55)
1

For example, substituting the occupation number operator ¥ =
aZak into this expression gives the distribution of the orbital
occupation numbers v in finite chaotic systems which replaces
the Fermi-Dirac (or Bose-Einstein) distribution. The average
values of the nondiagonal matrix elements of any perturbation
operator W are equal to zero, (n|W|m) = 0, while the average
values of the squared matrix elements

[nWimP =" () () 1w (56)
ij
are reduced to the sum over simple matrix elements between
the Hartree-Fock states |(i|W|j)|>. A convenient formula for
the root-mean-squared values of the matrix elements has been
derived in Ref. [39] (we also present the derivation in Ap-
pendix B):

W= |Wsp|2
2d
= \rre {Z va(l = vp)ve(l = vg)
abed

1 . - 2
X Z|Wab,cd - Wad,cbl

1
2

XA(Fspra €a— &+ & — Ed)} ’ (57)

where the summation goes over orbitals a, b, c,d; E — E, =
€4 — &p+ 6. — &g is the change in energy. The function
A(Lgpr, €4 — €p + &c — £4), defined in Eq. (54), can be viewed
as an approximate energy conservation law, with accuracy
up to the spreading width of the basis states [39]. Indeed,
A(Tgpr, E — Eq) — 22 8(E — E,), when Ty — 0.

In Refs. [38,39,42] we calculated the PV matrix elements.
The matrix elements of the P, T'- violating interactions have
been obtained in our papers [14,43,44].

Let us now consider the correlator between two different
operators (e.g., P-violating and 7', P-violating). In general, we
obtain [44]

AIWplm) m Wy plny = > (C2)(C2) x (i We ) (1 W pli).

iJ

(58)

Note that our theory predicts the results averaged over several
compound resonances.

We have done many tests comparing the statistical the-
ory results with both experimental data and with numerical
simulations for electromagnetic amplitudes, electron recom-
bination rates, and parity violation effects in nuclei—see, e.g.,
Refs. [38,39,41,42,45-50]. For example, we obtained an en-
hancement (of the order of 103) of the electron recombination
rate with highly charged tungsten ions (charge ¢ = 18—25)
due to the very dense spectrum of chaotic compound res-
onances [41,47,49,50]. The results agree with experimental
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data that is only available for lower charge g = 18—21 ions.
These results are important for the thermonuclear reactors in
which the diverters are made from tungsten. The tungsten ions
contaminate the plasma and significantly affect the energy
output.

V. MATRIX ELEMENTS OF PV AND PTRIV
INTERACTIONS BETWEEN NUCLEAR
COMPOUND STATES

In this section we present a brief summary of the calcula-
tions of the PV and PTRIV matrix elements between chaotic
compound states performed in Refs. [14,38,39,42—44]. The
details are presented in Appendix B. The parity violating weak
potential of nucleons in a nucleus may be presented as

N Gg G8pn

W= 2 am —={(op), p}, (59
where G is the Fermi constant, m is the mass of the nucleon,
o and p are the neutron’s ¢ matrix (doubled spin operator)
and momentum, respectively, p is the nuclear number density
and g, , are the nucleon dimensionless constants which are of
the order of unity. The calculation described in Appendix B
gives the following result for the root-mean-squared value of
the matrix element between compound states:

W = 0.57 meV, /g2 + 0.76g2. (60)

The values of W are actually proportional to (N)~!/2 oc d'/?,
where d is the average interval between resonances with
the same spin and parity, which determines the number of
principal components in the compound state, N = ”ZF(;‘" —see
details in Appendix B. This specific number for W has been
calculated for d = 17eV in 2**Th. A more universal param-
eter is the weak spreading width I'yy = 27W?/d, where the
dependence on d cancels out.

The constants g, and g, may be expressed in terms of the
weak nucleon-meson interaction constants # and f [38,83—-85]

Vr
g =2x 105vp|:176gfn — 19.5h) — 4.7h;,
+1.3h, — 11.3(hY + h}o)}, (61)

o =2 X 10%,{ — 118 f, — 18.9h" + 8.4k
Up

—1.302 —12.8(h) + h,{))}, (62)

where h and f are the weak NN-meson couplings, and v,
and v, are constants which account for the repulsion be-
tween nucleons at small distances and for a finite range of
the interaction potential. These quantities were found to be
v, = 0.4 and v, = 0.16, as in Refs. [83,85]. Now, using the
updated values of the meson-nucleus interaction constants
published by the NPDGamma collaboration [90], we obtain
gp = 3.4 and g, = 0.9—see the last line in Table I. This gives
W = 1.78 meV which corresponds to d=17 eV, the interval
between s (or pj,) resonances in 23Th. It is in agreement

TABLE 1. Values of g, and g, based on the meson exchange
constants from different publications: Desplanques, Donoghue, and
Holstein (DDH) [84,85]; Noguera and Desplanques (ND) [86];
Dubovik and Zenkin (DZ) [87]; Feldman, Crawford, Dubach, and
Holstein (FCDH) [88]. In the line of Wasem [89], the best DDH
values for all the values of h were used, except f, = h!, which
was recently derived by the lattice QCD methods [89,91] to be
hl = 1.1 x 1077 (as presented in Ref. [14]). A recent experiment
measuring P-violation in the neutron radiative capture by proton [90]
gave h! = [2.6 + 1.2(stat.) & 0.2(sys.)] x 1077 which is larger than
the theoretical estimate AL = 1.1 x 10~7. Using this experimental
value, and the rest from DDH, gives slightly larger g, = 3.4 £ 0.8
and smaller g, = 0.9 £ 0.6 which are close to the values g, = 4 and
gn, = 1 used in the numerical calculation of PV matrix elements in
Ref. [39].

Reference g &n
DDH (1980) [84,85] 4.5 0.2
ND (1986) [86] 4 1
DZ (1986) [87] 24 1.1
FCDH (1991) [88] 2.7 —0.1
Wasem (2012) [89] 2.6 1.5
NPDGamma (2018) [90] 34 0.9

with the experimental value of 1.391”8:3; meV in in **Th
[51,81]. The scaling of W with d'/? is also in agreement with
the measured parity violating effects in other nuclei presented
in the review in Ref. [9].

In the short-range approximation, the PTRIV potential of
nucleons in a nucleus may be presented as [92,93]

Wrp = npn(cr V)p(r), (63)

where 7, n, are dimensionless constants which characterise
the strength of the interaction for protons and neutrons, re-
spectively. The matrix elements of the operator Wy » between
discrete spectrum states in the standard definition of the an-
gular wave functions are real. According to the calculation
presented in Appendix B, the root-mean-squared matrix ele-
ments WT-¥ between nuclear compound states is equal to

Wrp =0.15meV,/n2 + 0.767][2,. (64)

The value of Wr p is also proportional to N xal”. Spe-

cific values for W and Wr p have been calculated for d =
17 eV in >Th. However, in the ratio of Wr p/W the number
of principal components N cancels out, and the result may be
extended to all compound nuclei:

Wrp > >
o = 0.00, /2 + 07613, (65)

If, following Refs. [44,94], we take |n,| =
becomes

|1, then this ratio

Y0121l (66)
v
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The relative correlator between PV and TRIV matrix ele-
ments is [44]

o _ [oWVIsWeea| -
WWr p

PTRIV nuclear forces are dominated by mp meson ex-
change. Such an exchange is described by the interaction

[95-97]
8 [w(e ’ 12)]{(01 — )
87‘[1’1’!1\/ ri2

x [8oT1 - T2 + &2(T1 - T2 — 371;72,)]
+81(11,01 — 12:02)}, (68)

where g = 13.6 is the strong-force T, P-conserving 7NN
coupling constant, go, g1, and g,, are the strengths of the
isoscalar, isovector, and isotensor 7, P-violating couplings,
respectively, my is the nucleon mass, m, is the pion mass,
o is the nucleon spin, 7 is the nucleon Pauli isospin matrix in
vector form, and r;; is the separation between nucleons.

The strength constants 7, , can be expressed in terms of
different fundamental interactions. The PTRIV interaction be-
tween nucleons is dominated by the pion exchange. Ref. [94]
gives the following values:

M= —np = (=880 + 5881 +288:)10°.  (69)
Thus, the ratio Eq. (65) becomes

W.
2 — 0120, = 1(—1.28,30 + 6.08,31 + 2.42,32)10°).

w
(70)

Similarly, we can express n in terms of the QCD 6-term
constant. Using results presented in Refs. [98,99],

W(ry —r) =—

gs80 = —0.210, (71)
g:81 = 0.046 6, (72)
we have
My = —1, =44 x 10° 0, (73)
W,
ZIP 53 % 1049]. (74)

Expressing n via ~the quark chromo-EDMs d, anc~1 dy: 8:80 =
0.8 x 10"°(d, + dy)/cm, 881 =4 x 10(d, — dy)/cm
[100] gives

N = —np = [=0.8(d, + dy) +20(d, — d)]10* /em,
(75)
@
w
Note that the current limits on the CP-violation parameters

presented above correspond to % < 1073 [14]. The expected
experimental sensitivity is an order of magnitude better, 1076
[22,101].

Finally, a PTRIV interaction, similar to the pion-exchange-
induced Eq. (68), may be due to exchange by any scalar
particle which has both scalar (with the interaction con-
stant g°) and pseudoscalar (with the interaction constant

= |[—1.0(d, + dy) + 24(d, — d)110%*|/em.  (76)

g”) couplings to nucleons. The most popular examples are
the dark-matter candidates axion [102,103] and relaxion
[104—-106], which have very small masses.! A numerical es-
timate shows that due to the long range of the interaction the
matrix elements in the small-mass case (e7"" ~ 1) are ~1.5
times larger than the pion exchange matrix elements; i.e., we
have instead of Eq. (70) the following estimate:

Wr p

~ |1 x 10°¢°¢”|. (77)

The limit on g'g” may be obtained from the proton EDM
calculation,?

_ ggle
872m,

" (78)
and measurement [108], |d,| < 2 x 107%ecm, |g°g”] < 1 x
107°. Using limits from the proton EDM and the '"Hg
nuclear-Schiff-moment measurements in Ref. [109], the au-
thors of Ref. [110] concluded that the limit on |g’g”| is
between 10~ and 10~''. This gives a rather weak limit on
Wr p/W induced by axion exchange:

Wrp

<1073 =107, (79)

With the expected experimental sensitivity being 107°
[22,101], limits on the axion interaction constants may be
significantly improved.

VI. A POSSIBLE REGULAR COMPONENT OF PARITY
VIOLATION IN NEUTRON SCATTERING:
EXPERIMENTAL RESULTS

As aforementioned, there were a large number of ex-
periments performed which confirmed the existence of the
enhanced longitudinal asymmetry Eq. (5). The first to do so
directly was performed at the Joint Institute for Nuclear Re-
search (JINR), Dubna. First, parity violation was measured for
the p-wave resonance at 1.3 eV in ''”Sn [5]. Then the p-wave
resonances in '¥La, ''Cd, and ' Br were probed, where the
weak matrix element was found to be ~1meV, while the
mixing coefficients were inferred to be of the order 104 16,7].
These findings were in agreement with the predictions made
in Ref. [1].

These initial observations of parity violation in p-wave
resonances were limited to one or two p-wave resonances
per target in the neutron energy region up to ~10eV. The
subsequent breakthrough came from the formation of the
time reversal invariance and parity at low energies (TRIPLE)
collaboration, who were able to optimize the experiment to
be able to probe a larger number of resonances per nucleus.
After initial success in the measurements on 23U [81] and
139La [111], measurements on >*Th [51] were completed,
with a number of statistically significant PV effects observed,

!"The limits on the T,P-violating electron-nucleon interactions me-
diated by the axion or relaxion exchange from EDM measurements
were obtained in Ref. [107], where more references may be found.

2The calculation is similar to that for electron EDM [107].
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TABLEIL. P-odd asymmetries in >**Th.

E(eV) P (%) [52] P/AP [52] |As] (1/eV) [52] [W| (meV)
8.36032 (1.78 £+ 0.09) 19.8 25.0 (0.712 £ 0.036)
13.1377 0.16 £ 0.14 1.1 385 0.0416 £ 0.036
36.982 —0.01 £ 0.17 —0.1 20.5 0.00488 £ 0.083
38.232 (6.41 £ 0.32) 20.0 27.1 (2.37+0.12)
41.066 —0.09 £+ 0.27 -0.3 27.0 0.0333 £0.10
47.068 (2.52 £ 0.13) 19.4 17.3 (1.46 £ 0.075)
49.941 —0.24 £ 0.39 -0.6 40.0 0.0600 +£ 0.098
58.786 0.02 £ 0.03 0.7 58.3 0.00343 £ 0.0052
64.575 (14.16 £ 0.41) 34.5 103.0 (1.37 £ 0.040)
90.139 0.21 £+ 0.19 1.1 11.6 0.181 £0.16
98.057 (0.70 £ 0.22) 32 12.9 (0.543 £0.17)
103.63 0.22 £ 0.16 1.4 13.4 0.164 £0.12
128.17 (2.31 £ 0.12) 19.2 13.6 (1.70 £ 0.088)
145.83 0.00 £ 0.10 0.0 2.89 0
148.06 —0.11 £ 0.34 —0.3 12.4 0.0887 £0.27
167.11 (3.21 £ 0.10) 32.1 33.8 (0.950 £ 0.030)
178.86 0.19 £ 0.28 0.7 15.5 0.123 £0.18
196.20 (0.90 £+ 0.18) 5.0 11.4 (0.789 £ 0.16)
202.58 (1.10 £ 0.25) 44 11.2 (0.982 £0.22)
21091 —0.23 £ 0.32 -0.7 10.5 0.219+£0.30
231.95 (4.77 £ 0.68) 7.0 12.6 (3.79+£0.54)
234.07 —0.16 + 0.45 —-0.4 10.1 0.158 £0.45
242.25 0.18 £ 0.17 1.0 7.04 0.256 £ 0.24
276.45 0.46 £ 0.76 0.6 17.1 0.269 £ 0.44

which all had the same sign, seemingly contradicting the
statistical nature of the reaction mechanism. Since these initial
experiments, there have been numerous measurements on the
nuclear resonances of a vast range of nuclei. The review
in Ref. [9] contains data for 20 nuclei and several hundred
resonances.

A. Parity violation for neutron resonances in ***Th

The unexpected outcome of early measurements conducted
by the TRIPLE collaboration was by Frankle et al. [S1] who
reported on measurements of 23 p-wave resonances in 2327,
with energies ranging from E, = 8 to E, = 392eV. Among
these resonances, seven had PV effects which all contained
a relative significance of 2.40 or higher. However, contrary
to the expectations, the longitudinal asymmetry of these reso-
nances had a constant sign.

The outcomes of this experiment seemed to develop more
questions than answers. It became clear that the current
experimental set-up was not sufficient to extensively study
parity violating effects in neutron resonances. Furthermore,
the two-level approximation used in the analysis was not ad-
equate, implying the need for the development of a statistical
approach which includes the contributions of many s-wave
resonances, and has the ability to more accurately describe
complex resonance structures. However, it is important to
note that the collaboration’s observations were consistent with
the notion that sufficiently precise experimentation can de-
tect parity violation in every p-wave resonance with the spin
J = 1/2 (which may be mixed by the weak interaction with
s-wave resonances with the spin J = 1/2).

To confirm or reject the nonrandom nature of PV effects
in 2*2Th, a new experimental system was developed, with an
upgraded polarizer, spin flipper and neutron detector. Using
the new system, transmission experiments were once again
performed on 238U and 2**Th. These experiments refined pre-
vious results with much better statistics, and were able to
detect more longitudinal asymmetries. Specifically in 2*2Th,
the permanent sign observation in measured parity violating
effects was confirmed, and extended to 10 in a row [52]. The
probability of obtaining ten out of ten randomly distributed
quantities with the same sign is ~0.2%. The magnitude of
the PV effect was found to be in agreement with the statistical
theory calculations and consistent with experimental results in
other nuclei where PV effects have a random sign. Moreover,
upon probing neutron energies higher that 250 eV, the PV
effect in 23> Th has four resonances with a negative sign, and
two with a positive sign; see Refs. [9,112].

Upgraded results for the resonances below 285 eV are
shown in Table II (reproduced from [52] with added data for
the weak matrix elements defined as |W| = P/A;). Measure-
ments were taken with no initial knowledge of the J value,
and as such, J = 1/2 was assigned to resonances with a large
parity violating asymmetry (P > 30). These resonances are
denoted with parentheses.

VII. A POSSIBLE OCTUPOLE DOUBLET MECHANISM
FOR A REGULAR COMPONENT OF PV AND PTRIV
EFFECTS IN NEUTRON SCATTERING

The target of >**Th (and consequently, the compound nu-
cleus **Th) may be a special case due to some peculiarities
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of its structure. Several thorium isotopes display strong oc-
tupole correlations. Octupole deformation may be present in
the ground state or in excited states near the neutron threshold.

The wave function of a deformed nucleus is the product of
the internal nuclear wave function and rotational wave func-
tion. For a given internal function with a nonzero projection of
nuclear spin / on symmetry axis n, K = (nl) # 0, presence of
octupole deformation (or of any axially symmetric shape that
has no symmetry with respect to reflection in the equatorial
plane) leads to rotational doublets with definite parity P = £1
(82],

2 +1
W) =\ =g (Dl (@, 60, O)las K) + P~

x Dy _x(9,0,0)|a; —K)}. (80)

Here Wigner functions Dﬂ,, 1k (9, 0,0) describe nuclear ro-
tation and states |a; =K) are internal states of the rotating
nucleus.

Let us start with the calculation of the PTRIV effect. In
other relevant calculations of static PTRIV effects, e.g., in the
calculations of the nuclear Schiff moments [66,113,114], the
lower energy component of the doublet is the ground state of
the nuclei, whereas in our case of PTRIV in neutron scattering
the doublet states are excited compound states of a nucleus
with octupole deformation. These states are superpositions of
simple quasiparticle configurations |®;; £K),

|a; £K) = Y " Cf|D; £K), (81)

J

(a1/2,0Mp 172 + 032 JM), 3/2)M,

where the expansion coefficients C{ are not dependent on
the sign of K, given the fact that strong and electromagnetic
interactions preserve party and time reversal invariance.

Both the T',P-odd interaction Wy p Eq. (63) and K = (nl)
are pseudoscalars, meaning the following relationship holds:

{(a; K|Wr pla; K) = —(a; —K|Wr pla; —K). (82)

This results in the matrix element of Wr p between the doublet
states of opposite parity being reduced to the expectation
value over the internal nuclear state,

(\I][{4K;+1|WT,P|WI{/IK;—1> = <a;K|WT,P|a;K>7 (83)
where
a2
(a; K|Wrpla; K) =Y (Cf) ( @y K|Wr.p|®isK).  (84)
The matrix elements between simple basis states has been
estimated in Ref. [114]:

Bsn
Al/3
where B3 is the octupole deformation parameter and 75 is
the dimensionless strength constant of the nuclear PTRIV
potential Wr p in Eq. (63). Implementing the normalization
condition )_;(C#)? = 1, the PTRIV matrix element is approx-
imately equal to [114]

(@i K|Wr p|Pis K) ~ ev, (85)

+ _ gl I N B3n
Wrp = <‘1’MK;+1 |WT,P|\VMK;71> =5 ¢
Hence, the expression for the proposed constant sign compo-
nent of the 7', P-odd effect will bear a similar form to Eq. (5),
and can be written as

V.  (86)

Prp = 2 2
BruM,, o + BisgMp12Mp32 + B3 M, 5

Here, the sign factors cannot be absorbed inside the matrix
element WI P as was the case for the parity violating, time-
conserving effect, due to contributions from both the pi,»
and p3,, amplitudes. The parameters of E; goupter — £, and the
kinematic factor ,/I'!/I'} are unknown at the present time.
However, they also appear in P-odd (but T conserving) effects,
meaning upon calculating the ratio of the 7', P-odd effect to
the P-odd effect, these parameters cancel.

In the derivation of Eq. (87) we assumed that the opposite
parity doublet component to the p-wave compound state is a
stationary state of a definite energy. In fact, this state may have
a small spreading width. Indeed, we assume that the opposite
parity component of the doublet has the same internal state
la; £K) in Eq. (80). However, the “exact” copy of the internal
state |a; £K) of the p-wave resonance in the doublet com-
ponent of opposite parity may be mixed with nearby s-wave
resonances by the Coriolis interaction. The Coriolis force is
relatively weak, therefore, the corresponding spreading width
should be small. This means that every s-wave resonance
within this small spreading width may have this doublet state

87)

Al/3 Es,doublel - Ep F;

} Bin  [eV] rr

(

as a component. In this case, we should replace 1/(E; qoublet —
E,) with Re(1/[Eq doublet — Ep — ilspr/2]). There is also an
additional contribution coming from close s wave resonance,
similar to that calculated in the Sec. VIII. Since this situation
happens in both PV and PTRIV effects, such spreading does
not significantly affect the ratio of PTRIV and PV effects.

With regards to the P-odd weak matrix element, the ex-
pectation value of the P-odd weak interaction matrix element
in the body frame of the nucleus with octupole deforma-
tion vanishes, (®;; K|W|®;; K) = 0. This is a consequence of
time-reversal invariance [2,59]. Therefore, the direct matrix
element of W between the opposite parity components of the
same doublet vanishes. As noted in Ref. [59], the mixing
with the opposite parity component of another doublet state
is allowed.

Let us explain how the P-odd effect appears. We need an
additional interaction H’ which conserves P and T but can
mix components of different doublets, |W§lx.,) and [Wii,..),
with the same parity P. This may be the same interaction
which produces mixing of the doublet components, |a; K)
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and |a; —K), and results in the splitting of the opposite parity
states of the same doublet, |W§/.. ) and |W{/,. ). For exam-
ple, H' may be tunneling of an excess cluster of nucleons or
the Coriolis force [82]. As a result of the two interactions W
and H’' combining, the total rotational function acquires an
admixture of a component of the same doublet with opposite
parity [59],

[ Wiikep) = |Wiikee) = [Wiik.p) + Be| iik.p) (88)
where the mixing amplitude Sp is
1
Pr=—-2———"— (89)

Ep - E.v,doublet
) (a; —K|H'|b; K) (b; K [Wp|a; K)
X
E,—E,

. (90
b

where E, is the energy of the p-wave resonance. Since the
energy spectrum is very dense, the additional order of the per-
turbation theory involving H' does not produce any significant
suppression of the PV effect. This conclusion is supported
by the nonconservation of the quantum number K due to
the enhancement of the Coriolis force effect in compound
states; see Refs. [115,116]. Moreover, the energy denominator
E, — E, is also due to H’, so the effective strength constant
of interaction H’, even if it is small, cancels out. Therefore,
the ratio of the PTRIV effect to the PV effect in the doublet
mechanism is approximately the same or only slightly bigger
than the corresponding ratio in the statistical mechanism con-
sidered in the previous sections.

A. Specific target nuclei where octupole doublet mechanism
may produce regular PV and PTRIV effects

In this section, we present a few candidate nuclei which
may be used to search for the permanent sign PV and PTRIV
effects due to the octupole doublet mechanism. We start from
Lanthanide nuclei with zero spin, which would only be suit-
able for PV measurements. First, we have ;¢*Ndgs, which
according to the theoretical results has octupole deformation
in the ground state [63]. This nucleus is stable, with a natural
abundance of 5.8%. The rotational spectra look consistent
with octupole deformation, and the negative and positive par-
ity bands are separated by 21000 keV. Ref. [63] also identifies
130Smgg to have octupole deformation. This nucleus is stable,
with a natural abundance of 7.4%. However, the spectra do not
exhibit the expected band structure starting from the ground
state (octupole deformation may still exist in excited states).
Other stable isotopes of Nd and Sm, as well as other nuclei
with a comparable number of protons and neutrons are also
potential candidates for a permanent sign PV effect.

Next, we consider nuclei with nonzero spin, which would
be candidates for both PV and PTRIV measurements. 33’ Lag,
may be suitable (Z = 56), however the neutron number N =
82+ 1 =283 is outside the desired interval N = 88 — 92.
After neutron capture, it is possible that ;;‘OLag3 has an
excited isomeric state with octupole deformation. Further,
the spectra of the stable é§3Eu90 isotope (I =5/2%) indi-
cates octupole deformation in the ground state [66,68], with
an energy band gap of 97 keV. This is a good candidate

to search for PV and PTRIV effects. Finally, theoretical
data again suggests the existence of octupole deformation

in }5°Smgy, I’ = 7/27, which after neutron capture becomes

égOSmgg [63]. Other candidates in the Lanthanides region in-
clude 13! Prgy, I” = 5/2%, ¥Ndgs, 17 = 7/27, (§°Ndgs, I7 =
7/27, 57 Smgs, I” = 7/27, ' Bugs, I” = 5/2+,g§5Gd91,1P =
3/27, & Gdos, I* = 3/27, 2Ty, IT = 3/2%, &'Dy,,, IF =
5/2%, and ég3Dy93, I = 5/27, which all have nonzero spin.

In the actinide region, Ref. [63] suggests the existence
of octupole deformation in many unstable even-even nuclei,
which are hardly suitable for neutron experiments. However,
more stable nuclei may have octupole deformation in low-
energy excited states, the most obvious one being the entire
reason for research into this area, 35> Thy4,, as per discoveries
made by [9,52]. This isotope has 4 extra neutrons as compared
to %STth (gésTth has a lifetime of 1.9 years). There is
evidence of octupole deformation in 328Thysg [117].

As an example, let us analyze the rotational spectrum of
226Th, using the database [67]. Upon inspection of the spectra
(obtained from Nudat [118]) we see that there is a common
rotational band, containing both the positive (01, 2%, 4%, ...)
and negative parity states (17,37,57,...). This property is
a clear indicator of the presence of octupole deformation in
this isotope, as such nuclei permit both odd and even values
of J on the rotational band. This is in contrast to nuclei with
only quadrupole deformation, as in this case only even levels
are permitted on the rotational band (01, 2%, ...). Thus, we
see that this isotope 2?°Th appears to have a static octupole
deformation. The energy interval between the 0% state and 1~
state is 230 keV. If we subtract an ordinary rotational energy
difference between the J/ = 1 and J = 0 states, then the energy
gap between the odd and even parts of the rotational bands
does not exceed 200 ke V. This is much smaller than the typical
energy gap for the dipole and octupole excitations, which is a
few MeV. For higher J there is practically no gap.

To conclude this section we should stress that the existence
of octupole deformation in stable nuclei is not certain, so the
absence of the permanent sign PV effect in some of these nu-
clei can not prove that the doublet mechanism is not efficient.
However, if the permanent sign effect is observed, then this
would provide important evidence in favor of the existence of
octupole deformation in stable nuclei, which is a hotly debated
topic.

VIII. DOORWAY STATES CONTRIBUTION
TO PV EFFECTS

Let us assume for simplicity a nuclear target spin / = 0, as
in 232Th. To begin, we will first separate the contribution of
the two-particle-one-hole doorway components 1, and ¥, in
the wave functions of positive and negative parity compound
states corresponding to s-wave and p-wave resonances:

Yy = Ci,¥ 15 + other components, o1
¥, = Gy, + other components. (92)

The amplitudes of neutron capture may be expressed in terms
of the amplitudes of capture to s-wave and p-wave doorway
states My and My: M, = C;M; and M,, = C;M>, and the weak
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matrix element between compound states may be presented as
W, = C1,Co W » + other contributions. 93)

Thus, the contribution of the doorway states to the PV forward
scattering amplitude Eq. (18) may be presented as

1 ZngMziW1’2|C2|2
2k (E — E,+ 1iT))

[0 =+ S, (94)

where for £ ~ E),

S = Z |Clx|2
(E,—E.+ 3T

N

95)

This expression for S has two maximums. The first is for
E; ~ E, (s-wave resonances close to p-wave resonance) and
the second is for E; ~ E; (s-wave resonances close to the
energy of the doorway states E|), where

3 1 F§ /4
ICli? = — A (96)
N (E;, —E))*+T;/4
has maximum. Here N = % is the normalization constant.

Note that the doorway state spreading width I'; is the sum
of two widths, the decay width to the continuum F; = 1"3‘“
(decay out) and the “decay” width to the other compound state
components Fi = I''" (decay in, mixing of the doorway state
with compound states). According to Ref. [78], the width to
decay out I')" =0.18 keV, is much smaller than the “decay
in” width, which according to Ref. [71] is I'j' ~ 30 keV. This
allows us to treat the doorway state as a component of the
nuclear compound state wave function and apply perturbation
theory for stationary states.

A. First case: Close s-wave resonances

Using I'} = |C15|%|M, |?, the sum S may be presented as

S =——7 o7

B = i, (98)

where the sum B may be found using experimental data. For a
qualitative comparison with other contributions it is sufficient
to keep one s-wave resonance (close to p-wave resonance) in
the sum S in Eq. (95).

B. Second case: Distant s-wave resonances close
to the doorway state energy

In this case the distance d between compound states is
much smaller than E; — E,, meaning a large number of s-
wave resonances contribute. To evaluate S we may replace the
summation over s by the integral dE;/d:

rs - /°° dE,
——fRe :
ANd~ J_ [(Es — E1)? +T3/4](E, — E, + 1iT)
Note that this integral is similar to the normalization in-

tegral for |Ciy|?, with an extra factor in the denominator,
(E, — Eg + %iFS); see Eq. (95). Performing the integration by

closing the loop at infinity in the complex plane and using
Cauchy’s residue theorem, we obtain

B E, - E
(B, —E)*+T2%/4

S 99)

Note that S, vanishes if the s doorway energy E; coincides
with the position of the p-wave compound resonance. This is
a result of the cancellation between the contributions of the
s-wave resonances with E; < E, and E; > E|,.

The ratio of the contributions of the distant s-wave reso-
nances and close s-wave resonances may be presented as

S2 T
s 2

where x = 2(E| — E,)/T'4, 2 = 2(E; — E,)/d. The maximum
of §, is for x = 1 (the distance of the s wave doorway to the
p compound resonance is |E, — Ei| =T4/2), z <1 (the p
resonance is between s resonances, |E, — E;| < d/2). In this
case typically S, ~ S;. However, for the biggest PV effects we
may have (E, — E;) < d, and in this case §; may dominate.
Only S, and its contribution to the PV effect has a permanent
sign for all p-wave resonances on one side of E;. The sign of
S fluctuates as E; — E, may be of any sign.

Now we may compare the permanent sign contribution
(S2) of a doorway state to the statistical contribution of all
compound state components:

f}%) Xz (dFspr)l/2
Sow. 2+ Do2+1)  Ta

(100)

, (101

where y = 2(E, — E,)/I"y. We have taken into account that
the weak matrix element between compound states is sup-

pressed by 1 /]v]/2 in comparison with the matrix element
between simple states—see Eq. (B12) in Appendix B:

W, | (d )1/2
-z~ =) -
Wi, WY Copr

The maximum of the first factor in Eq. (101) is for x = 1 and
y = 0. From its definition, z < 1. Therefore,

(102)

o =
Py @)

103
fp.v. ~ 1—‘d ( )

In 23Th the average interval between compound states is
d = 17¢V. To have a noticeable permanent sign contribution
of the doorway states we require the energies of the s and p
doorway states to be close to p-wave compound resonances
(|E1 — E,| = T'4/2, E, = E,) as well as a very small doorway
spreading width I'; < 1 keV. However, at the moment we
do not see any reason for the inequality I'y < Tgyr to hold
(i.e., the spreading width of the doorway states to be much
smaller than the average spreading width of the compound
state components). Numerical simulations [46,119-121] have
shown that spreading widths for different components of com-
pound states are approximately the same. Fluctuations of the
spreading widths are small due to a large number k of “decay”
channels of each component, §gp; /T'spr ~ kY2 [13).
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IX. COMMENTS ABOUT OTHER MECHANISMS OF THE
PERMANENT SIGN PV AND PTRIV EFFECTS

There are also other explanations of the permanent sign
effect in >*>Th. The contributions from Distant doorway states
[60,73-76] appear to be too small. The neutron PV poten-
tial scattering contribution [70,122], as well the contributions
calculated using optical potentials [71,123,124], also seem to
be too small. For a discussion of these mechanisms, see the
review in Ref. [9].

Reference [70], in the section “Quasielastic mechanism,”
attempted to find a coherent contribution to PV and PTRIV
effects related to the components of the compound state wave
function, which may be presented as W, W, ..., where W,
is the wave function of the projectile neutron (which ob-
tains an additional resonance term localised mainly inside the
nucleus when neutron energy is close to that of the com-
pound resonance [70,122]; this term may be treated as a
component of the compound state wave function, a doorway
state) and Wy, is the low-energy excitation of the target
nucleus, e.g., the nuclear rotation, vibration or particle ex-
citation. However, the result is inconclusive. Ref. [70] also
derived an analytical estimate for the ratio of PTRIV effect
to PV effect for the potential scattering and “quasielastic”
mechanisms:

fre _ 0 L+ fo/R)
fr 28(1L+2fo/R)

where C(J, I) is the angular coefficient (similar to that consid-
ered in Sec. II), R is the nuclear radius, and

1 rr
2k E, — E;+ iy’

CW, 1), (104)

fo=—a (105)

Here a is the off-resonance neutron scattering length.

Mixing of the projectile neutron p wave state with p
wave states above the centrifugal barrier as a mechanism
of enhancement, considered in Ref. [125], raises a purely
theoretical question. There are always states above the bar-
rier %', and we may arrange mixing with them by some
small perturbation. Consider the simplest example of a small
correction to the barrier potential V. If we use first-order
perturbation theory to include mixing with a state above the
barrier as a correction to the wave function, 6¢ = Cl-w;lb"ve,
then this may seem like an enhancement of the tunneling
probability, since ¥2*°*¢ does not decrease under the bar-
rier. However, a small correction to the particle interaction
can not remove the suppression of the tunneling amplitude
when the energy of the particle is deep below the bar-
rier energy (for example, a classical particle still can not
travel through a wall). This example shows that using per-
turbation theory may be insufficient when we consider the
under-barrier effect. Anyway, the contribution considered in
Ref. [125] seems to be too small (see discussion in review
in Ref. [9]).

X. CONCLUSION

In this work we considered the parity violating (PV) effect
and the parity and time reversal invariance violating (PTRIV)

effect in elastic neutron transmission. While for PV effects
a polarized target is not needed, for comparison with the
PTRIV effect it may be convenient to do both PV and PTRIV
measurements with a polarized target. In the case where the
spin of p-wave compound resonances is equaltoJ =1 — 1/2,
the ratio of the PTRIV and PV effects is reduced to the ratio of
the PTRIV and PV weak interaction matrix elements, i.e., the
P12 and p3,, capture amplitudes and all angular factors cancel
out. This greatly simplifies the interpretation of the results. In
the case of J/ = I + 1/2 for polarized target and for PV effects
measured with an unpolarized target, the ratio of PTRIV and
PV effects contains the unknown ratio of the p3,» and pi,»
neutron capture amplitudes, M3/, /M;,,. We presented two
possibilities to measure this ratio M3, /M, within the same
experimental arrangement.

Furthermore, statistical theory formulas linking root-mean-
squared values of the weak matrix elements W and Wpy for
PV and PTRIV interactions with experimental observables
were presented, in both the polarized and unpolarized (for
PV) target cases. We also presented numerical values of these
matrix elements for different models of PV and CP-violating
interactions.

Possible explanations for the constant sign PV effects in
neutron capture by 232Th nucleus, observed in Refs. [9,51,52],
have been discussed and the corresponding expressions for the
PV and PTRIV effects have been presented. Our first prefer-
ence is mixing by the weak interaction of the opposite parity
doublet states in the nuclei with octupole deformation, in the
excited state produced by the neutron capture. This mecha-
nism was suggested in Refs. [59-61]. There are experimental
and theoretical indications that >**Th may have a significant
component with octupole deformation in the compound states
formed after the neutron capture. We suggested a number of
other target nuclei where such a mechanism may manifest
itself, to test this hypothesis via PV experiments. If true, then
such nuclei with the constant sign effect may be convenient
for the interpretation of PTRIV measurements since the ratio
of the PTRIV and PV effects does not fluctuate as a ran-
dom variable (within statistical theory this ratio is a random
variable and requires proper statistical treatment). Also, if
the doublet mechanism is confirmed, then measurements of
PV effects may be used to search for nuclei with octupole
deformation.

Other possible explanations [60,70-72] of the permanent
sign PV effect in 2*>Th are based on the contribution of local
doorway states (with energies close to the p-wave compound
resonance). For example, the two-particle-one-hole doorway
state mechanism was suggested in Refs. [71,72]. We con-
sidered the contribution of local doorway states to PV and
PTRIV effects. We found an additional contribution, which
has an arbitrary sign and may be bigger than the permanent
sign contribution considered in Refs. [60,71,72], if there is
an s-wave resonance very close to the p-wave resonance
where PV is measured (note that in this case we expect the
largest PV effects). As for the permanent sign contributions
[60,71,72], in order for the local doorway state mechanism
to dominate, we require both doorway states of positive and
negative parity to be close to the p-wave compound resonance
and to have exceptionally small spreading widths. Therefore,
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these mechanisms do not seem to be the most plausible
explanations.

‘We comment here about a misconception present in the lit-
erature. It is usually assumed that in the case of a random sign
of the PV and PTRIV interaction matrix elements, the average
value of the observed effects (P) must be zero. This is incor-
rect due to PV and PTRIV effects having singular dependence
on the energy interval between the opposite parity states,
P o 1/(E; — Ep). If we treat the energy interval E; — E, as
a random variable, which has a finite probability density to be
zero, then we obtain an infinite variance of the effect (P?). As
a result, P is an example of a random-sign observable nonva-
nishing upon averaging [80]. The average value (P) does not
decrease when we increase the number of measurements n, it
tends to a constant. There is a simple qualitative explanation
for this fact. For random terms with a finite variance o, the
average of n random terms decreases with n as o!'/2n=1/2.
Howeyver, if one does n measurements of P, then in one of the
measurements the energy interval (E; — E,) will be n times
smaller than the average interval and P will be n times bigger
than a typical value, Pz ~ nPyp. This single term in the
sum for the average value of all P has contribution Pyg/n ~
nPyp/n = Pyp, which does not decrease with n. Inclusion
of the widths Iy into the energy denominators makes (P?)
finite, but so big that one would require many thousands of
measurements on different compound resonances to achieve
(P) ~ 0 [80].

Finally, we conclude that with the expected experimental
sensitivity 107¢ [22,101], limits on the axion PTRIV inter-
action constants and other mechanisms of PTRIV may be
significantly improved.

ACKNOWLEDGMENTS

This work is supported by the Australian Research Council
Grants No. DP190100974 and No. DP200100150 and the
JGU Gutenberg Research Fellowship.

APPENDIX A: CALCULATIONS OF ANGULAR
COEFFICIENTS FOR PV AND PTRIV EFFECTS

1. Calculation of the forward scattering amplitude
with time and parity violation

In this section, we will present our calculation of the for-
ward scattering amplitude with time and parity violation, i.e.,
in the case when neutron momentum, neutron spin and target
spin are all perpendicular to each other. Let us first consider
the capture amplitude into s-wave resonance. ForJ =1+ 1/2
we have the amplitude

M;
C1+1/2 1+1/2|I +1/2,1+1/2)

J2 e
Ms _1v121-102
+ﬁCIH/z_]/zll—i—l/Z,I—1/2), (AD)
while for J =1 — 1/2 we have
M, ,_ _
SRV 12,1 —1/2). (A2)

s 172 -1/)2

Now, considering the capture amplitude into p-wave reso-
nance, for J = I 4+ 1/2, we have

M,
— RG24 12)
+ O 12,1 - 172)]
My 1,
I IR EaTe
—GHRLRI Y1) ()
while forJ =1 —1/2,
M
— =R TR~ 12,0 = 1)2)
Mpip2 —1p21-12
e AVCYS \I—1/2,1—1/2). (A4)

2 1/2 =12

The Clebsch-Gordan coefficients of these states constitute
the angular factors ¢ of these capture amplitudes. Combining
the contributions from both the s-wave and p-wave reso-
nances, we can calculate ¢ forJ =1+ 1/2,

M | Mp3p2 14172 14172 14172 14172
td+1/2) = ﬁ{_ 5 (e 1212 Crispap

I4+1/2 1=1/2 ~I4+1/2 1-1/2
+C 1/2 =12 G 32 71/2)

M 2 102
- 512/2[(6‘1[711//22[1%/2) _(Cllyll//zzl—ll//z2 ) ]}

M;
V2

M2 a—172 1-1/272
+ :}5 (Clll/2—l/2) .

M, Cl-2 112 01-12 1-172
5 Crriz-ipCirsp -

¢ =1/2)=

(A5)

The values of the Clebsh-Gordon coefficients are

CclHV2 14172 _

111212 = 5

1
I+1/21-1/2
C111/2 -12 = A

V2I+1°

_ 1
V1432
Cl+l/2 1-1/2 — 81
113/2-1/2 (2I+3)(21+1)’
Cl—l/2 I-1/2 21
111/2-1/2 — m’

121 — 1)
I+DERI+1)

I+1/2 14172
G 3/2 12

I-1/21-1/2
G 3212 =
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Substituting these values for the J = I + 1/2 case yields

c(d+1/2)
M M
=AM, 00 - 222 IQT£3)). (A6)
20 +1 2
Similarly, for the J =1 — 1/2 case,
¢ —1/2)
Ml Mp 32 21 — 1
- e UL e A7
(21+1){ p1/2 2 1+1} (A7)

Therefore, following the method of Ref. [3], we can now write
the time and parity violating amplitude fip..,

1 MSWY;’P(OII/ZJM];J/Z +azp My 3)

T =4 (E — E + Lit\)(E —E, + 1ir,)) (A9)
where the angular coefficients «; ; are
1
Q1/2,J=I+1/2 = m,
VIQI+3)
Q3/2 J=I+1/2 = —m,
1
o1/2,J=1-1/2 = TNk
1 21 — 1
Q372 J=1-1/2 = —2(21 SOV TI+1 . (A9)

2. Calculation of the forward scattering amplitude for parity
violation with a polarized target

Now, we will present our calculation for the forward scat-
tering amplitude for parity violation with a polarized target.
In this case, we require neutron momentum and spin to be
parallel, and both perpendicular to the nuclear target spin. We
begin by noting that the s-wave capture amplitudes coincide
with that of the 7', P-odd case [Eqs. (A1) and (A2)]. For a total
spin of J = I 4 1/2, the p-wave capture amplitude is

M3
R Iy RYs

21102
- C1]J1r13//2]711//2 I+1/2,1—-1/2)]

My a2 1412
—i—2=[c I +1/2,1+1/2)
NG [ 11172172 / /

+C11711//221:11//22|I +1/2,1 - 1/2)]’ (A10)
while forJ =1 —1/2
M
; pz,s/z C,’}'3//22'__1]//z~2|1 —1/2,1—1/2)
.M), 2 AI— -
el C11111//221711//22|1— 1/2,1—-1/2). (Al1)

V2

Performing a similar calculation to Appendix A 1, we yield
the following for the forward scattering amplitude with parity
violation (with a polarized target):

1 MiWsp(81/2.7Mp 12 + 832.0Mp3/2)

P
=+
Tov =%¢ (E —E,+ 3iTly)(E — E, + 3iT))

. (Al2)

where the angular coefficients §; ; are

I+1
d12.0=1+172 = TR
5 a1 [
3/2,0=I+1/2 = S0l DV 2T 13"
5 1
120=1-1)2 = — 57—,
21 +1
5 o -1 A3
RIS = o OV T+ 1

3. Calculation of the p-wave amplitude in the PTIRV
experiment configuration

In this section, will present our calculation for the p-wave
amplitude in the PTRIV configuration. In this case, neutron
momentum, neutron spin and target spin are all perpendicular
to each other. Let us first consider the p-wave capture am-
plitude for the / =7 4 1/2 case. Noting that in calculations
of the p-wave amplitude, in addition to j, = £1/2, we have
contributions from j = 3/2, j, = —3/2, the capture ampli-
tude becomes

M _
A +1/2) = —%[«/5 CYA T+ 172,11 - 3)2)

+C YA+ 172,14 1/2)

+C TSI+ 12,1 - 1/2)]

My
V2

— A B+ y2.1 - 172)],

[+ 172,14 1/2)

(A14)

6
C1+1/2 1-3/2 _ . Al5
113/z =32 QI+ 1)1 +3) (ALS)

Using the same method presented in Appendix A 1, the p-
wave amplitude is equal to

1 Ay
2kE —E,+ 1T,

where

fr= (A16)
Thus, we must now calculate explicitly the square of the
capture amplitude. We note that states of differing projections
do not interact, meaning their cross term is equal to zero.
Substitution of the Clebsh-Gordan coefficients gives

A, = ,31,J=1+1/2M§,1/2 + Bizy=1+12Mp12Mp 372

+ Bsu=i112M; 35, (A17)
where
I1+1
Bri=i+12 = Hr1®
Bisuisiy = Jﬂiﬁ% (A18)
217 +51+9
Bag=1+12 =

200 +3)2I + 1)
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Now, let us consider the J = I — 1/2 case. In this case, noting
that there are contributions from j = 3/2, j, = —3/2, the p-
wave capture amplitude is

M i
A —1/2) = %[\/5 C RS —172,1-3)2)
+C L T = 1/2,1-1/2)]

M e
+ j%/zc,’,‘{fz’_l‘@I —1/2.1—1/2),
(A19)

C1—1/2 1-3/2 _ 31
1132 =3/2 (1+D(1 42D

Thus, in a similar way to above, we yield

A, = ,31,J=1—1/2M§,1/2 + Bizy=1-12Mp12Mp 32

where

(A20)

+ Bau=i12My 55, (A21)
where
Brucip = =
1J=I-1/2 = e 8
1 2 — 1
Bz y=i-12 = “ariVITD (A22)
I +4)
Bag=i—1p2 =

QI+ 1)QI+3)

Therefore, the p-wave forward scattering amplitude can be
written as

1 ,31,JM,2,,1/2 + B3 gMy 10Mp 30 + ,33,JM,2,,3/2
2k E —E,+31il,

fp=-

’

(A23)

where the coefficients for each individual case are given by
Egs. (A18) and (A22). A similar calculation using the cap-
ture amplitude Eqgs. (A10) and (A11) shows that the p-wave
amplitude for parity violation with a polarized target (which
requires neutron momentum and spin to be parallel, and both
perpendicular to the nuclear target spin) coincides with this
expression.

APPENDIX B: CALCULATION OF THE MATRIX
ELEMENTS OF PV AND PTRIV INTERACTION BETWEEN
CHAOTIC COMPOUND STATES

In this section we present the calculation of the weak
matrix elements between nuclear compound states, following
the calculation performed by Ref. [39]. The short-range weak
interaction nuclear PV potential acting on a nucleon may be
presented in the following form:

W — Ggp.n
2ﬁm

where G is the Fermi constant, m is the mass of the nucleon, o
and p are the nucleon o matrix and momentum, respectively,
p is the core nuclear number density and g, , are dimension-
less constants which are of the order of unity (for example,

{(op), o}, BD)

Ref. [83] obtained the proton constant to be g, = 4.6 and the
neutron constant to be g, < 1). Since p = —iV, the matrix
elements of W between discrete states are imaginary for a
standard definition of angular wave functions. For a given
compound state with angular momentum j and parity 7, the

wave function may be expressed as

|j”)=ZCo,|a), la) = (@'bc'de’ .. )=10),  (B2)

where here, the states |o) are many particle excitations over
the ground state |0). Thus, the eigenstates |j™) are a chaotic
superposition of a large number of Hartree-Fock basis states
|a). We note here that the normalization sum of the compound
state Eq. (B2), >°, C2 =1, is dominated by it’s “principal
components.” Defining the energy of the compound state to
be E, the energies of the principal components are within the
interval [E — [y /2, E + Iy /2], where Iy is the compo-
nent’s spreading width. These components are produced by
an excitation of nucleons inside nuclear valence shells. As per
the book Nuclear Structure [82], the expansion coefficients C,
can be treated as Gaussian random variables (with (C,) = 0),
and can be written as

—— 1
CZ(ED,) = ﬁA(Fspn E—-E,),

= ”Fspr
N=—""" B3
o (B3)
ATy, E — E Lo/ 4
( Sprs - a)— (E_Ea)2+F2 /4

spr

Here, E, is the energy of an arbitrary many-particle con-
figuration and N is the number of principle components,
which is expressed in terms of the average energy distance
between nuclear compound resonances (with identical parities
and angular momenta) d. The factor A is a Breit-Wigner-type
factor, which governs the energy distance |[E — E,| < Igpe/2
at which states may be called principal components with the
weight ~1/N. Thus, we can see that Eq. (B3) calculates the
probability to find the basis component |«) in the compound
state |j™), and hence acts as a microcanonical partition func-
tion, which depends on the energy of the isolated system
E. The canonical statistical partition function for a system
in a thermostat with temperature 7 gives the probability
xexp(—Eq/T).

Now, we know that the weak interaction Eq. (59) only
mixes single-particle states with the same angular momentum,
and opposite parity. No such states are present in the valence
shell, meaning it follows that the weak matrix element be-
tween two compound states of close energy is dominated by
weak transitions between the “principal” components, |j*))
of one resonance, and the “small” components of the other
[39,122].

This means that the excitation of particles from the valence
shell requires an energy as large as ~8 MeV (which is much
larger than the matrix elements due to the residual strong
interaction V') leading out a configuration from the partition
function of “principal” components according to Eq. (B3)
[39]. Therefore, via the use of first-order perturbation theory
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in the residual strong interaction V,

1
V=3 ;aTbVab,cdch, (B4)

an appropriate set of “small” configurations can be generated,
meaning we can write the matrix elements of the weak inter-
action between compound states as

((s|V]e) («[W]p)) (sIWI1B)Y(BIVIp))
za: E_E, Xﬂ: E—E;
(BS)

(sIWlp) =

where here, |a) and |B) are small components, and |s)) and
|p)) are the principal components of the compound states. As
Eq. (59) is a single-particle operator, it can be included in the
mean nuclear field, and thus transfer the perturbation theory
expansion in the single-particle orbitals:

W
Vo = m+2 1/’/" WalWlva ,,, (B6)

_8A

where here, ¢, and ¢, are the energies of the orbitals v, and
¥4, respectively, which have opposing parity. Therefore, the
two-body weak interaction may be renormalized by the strong
interaction V [39,42,43], and defining W, ¢ = V (@b, &d), we
can express it as [39]

abcd_ZvA  og AW Ve W'W'% +ZVaBC (VaIW [¥5)

— €4 Ep — €B
+ZV I/fcl 1Y) +ZVa . xlfDIWde)
&c

Ed — &4
(B7)

Thus, rewriting Eq. (B5) as (s|W|p) = ((s|W|p)), we see that
the matrix elements between compound states can be ex-
pressed in terms of the matrix elements between single-shell
particle states, meaning we can avoid considering explicitly
the “small” components of each compound state. This is fa-
vorable, as it is not clear whether these components can be
described by the same spreading widths as the principal com-
ponents [Eq. (B3)]. The mean-squared of this matrix element
is

(PIWI(sIWp)).  (BY)

Expanding out the compound state |s) in terms of it’s compo-
nents using Eq. (B2) gives

W2 = (pIWIs) sIWp) =

W2 = ZC Cp((pIW |t} (BIW | p)). (B9)
ap

Now, given the fact that the coefficients C, and Cy are sta-
tistically independent, we can rewrite their product as (see
Ref. [82])

CoCp = C2oup,

1
= SaﬂﬁA(Fspr’ E - E,), (B10)

using Eq. (B3). Thus, combining these expressions, the mean-
squared of the matrix element can be written as

_ 1 - -
w2 =>" ﬁA(Fspra E — Eo){((pWla){«|W]|p)). (B1D)

o

From here, we can use the fact that in the second quantization,
the summation over « in Eq. (B11) is equivalent to summation
over the different components of the interaction Eq. (B7),
meaning we are left with calculating ((p|WW |p)). Applying
this method to Eq. (B11), we obtain [39]

e

nqur {Z Va(1 = vp)ve(l — vq)

abcd

= = 2
X ZlWab,c‘d - Wad,cb|

o=

X A(Fsprv Ea — Eptec — Sd)} ’ (B12)

where £ — E, =&, — &, + &, — &4 is the change in energy.
The function

A(l—‘sprv &qa— &pt+ & _8d) (B13)

can be viewed as an approximate energy conservation law,
with accuracy up to the width of the states [39]. Indeed,

7T Cpr
A(Tgp, E — Ey) — 7 S(E — E,), (B14)
when I'g,r — 0 [39].

For the calculation of the nucleon orbital occupation num-
bers, defined as ((pla'b|p)) = 8uv., We can replace the
current microcanonical ensemble with the equivalent canon-
ical ensemble, as per Ref. [39]. In general, the canonical
ensemble may be chosen for a system with a large number
of degrees of freedom via the introduction of the chemical po-
tentials A,, A, and the effective nuclear temperature 7. Thus,
we have that the expectation value in (B9) can be reduced to
a standard canonical ensemble average In doing so, we have
that ((pla'b|p)) = (Sabva , where v is the finite temperature
Fermi occupation probability:

vl = : . (B15)

expl(e, —A)/T]+ 1
Numerical simulations [46,126] have shown that the orbital
occupation numbers v, are indeed very close to the Fermi-
Dirac distribution v . These formulas, Eqs. (B12) and (B15),
were used in Ref. [39] to perform numerical calculations
of the root-mean-square weak matrix element between com-

pound states, /|W2| = W. Furthermore, a calculation of this

form can also be performed to determine the time and par-
ity violating matrix elements between compound states; see
Ref. [44].

Numerical calculations of W and Wpr were done in
Refs. [39,44] for specific values of g,, g, in the P-odd in-
teraction and 7,, 1, in T, P-odd interaction (which appear in
the PV and TRIV operators, respectively). As the values of
these constants have been refined over time, we must first take
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(a) — (b) -

o 2 O c . Gn
5 b d 5
9 P In
(c) — (d) _
. % . Gn
n
n # 9

FIG. 1. Possible configurations of weak interactions W, .4 [39]
between protons and neutrons in the nucleus. (a) Interactions be-
tween two protons; (b) interactions between two neutrons; (c), (d)
interactions between a proton and a neutron. These interactions con-
tribute to the PV matrix elements in Eq. (B12) by (W, + W,,)* =
W2 + W, + 2W,, W, (as presented in Ref. [14]).

pn

this into account. Let us rewrite Wpr and W in terms of the
nucleon interaction constants 7, n, and g,, g,. Using [39,44]

2d
JEE )+ (250,07 4+ (S5 n,m,),

WP’T - ”Fspr
(B16)
2d
W= [ ) + (50e) + (5
Tl spr
B17)

Here, ¥ represents the sums of the weighted square matrix
elements of the weak interaction between nucleon orbitals
defined in Eq. (B12) [14]. The cross terms Ei(fz)g,,gn and
=P n,n, provide small contributions in comparison to the
other terms, as they contain products of different matrix el-
ements, with random sign. This is not the case for the terms
which have squared interaction constants. As such, Egs. (B16)
and (B17) can be further simplified,

Wpr = KT,P\/m, (B18)
W = Kp,/g, + kg3, (B19)

where the value of the constant k should be slightly smaller
than 1 [14], as in heavy nuclei, the number of neutrons
N = 1.5Z, where Z is the number of protons in the nucleus.
Krp and Kp are constants which follow from Egs. (B16)
and (B17). To estimate the behavior of these mean-squared
matrix elements under changes to the strength constants, we
can assume that the ¥ in Eqs. (B16) and (B17) are propor-
tional to the number of interaction terms in the nucleus. These
interactions are depicted in Fig. 1. Thus, there are Z?/2 terms
for interaction between protons, N?/2 terms for interaction
between neutrons, and ZN for interactions between a proton
and a neutron. Therefore, one can write [14]

7> +27ZN

N2 4+2ZN

Reference [39] completed calculations of the parity violat-
ing mean-squared matrix element W =2.08 meV for g, =
4, g, = 1, yielding

W = Kp/1 + 16k =~ 2.08 meV, (B20)
= W = 0.57 meV,/g2 + 0.76g2. (B21)

For the PTRIV mean-squared matrix elements calculations
in Ref. [44] yielded Wp7 = 0.2]5,| meV, assuming 1, = 7,,.
Thus, we can apply this result here to yield

Wpr = Ky /n2 +0.7672 = 0.2nmeV,  (B22)
= Wpr = 0.15 meV,/n2 + 0.7672. (B23)

APPENDIX C: POSSIBLE EVIDENCE FOR STATIC OR
DYNAMICAL OCTUPOLE DEFORMATION IN
ROTATIONAL SPECTRA OF VARIOUS NUCLEI

In this Appendix, we will discuss the rotational spectra for
a few of the proposed nuclei in Sec. VII A. For a target nucleus
to be suitable for scattering experiments, we require a lifetime
which exceeds ~10° years. The following list of candidates
are proposed based on their rotational spectra, which may
be obtained using the database [67]. Here we discuss static
or dynamical octupole deformation (a soft octupole vibration
mode) in the ground state. The soft octupole vibration mode
indicates that the minimum of the deformation potential, cor-
responding to the octupole deformation, may be below the
neutron threshold. Some potential candidate nuclei include:

(i) $3*Eug (stable): Rotational band including Eo (I =
5/2%) and E ~ 83 keV (I = 7/2%). Opposite pos-
itive parity band is evident, with the relatively small
energy intervals, which implies the existence of
doublets of opposite parity states in this candidate
nucleus. Interval between the doublet (I = 5/27)
and (I” = 5/27) is 97 keV. This may be an indica-
tion of static or dynamical octupole deformation.

(i) &;°Gdo; (stable): Rotational band including Ey (I” =
3/27) and E ~ 86 keV (I’ = 5/27). Opposite par-
ity band is evident, but it possibly corresponds to
a different internal nuclear state. Interval between
the states (I” =3/27) and (I” = 3/2%) is 105 keV.
Octupole deformation is not excluded.

(iii) & Gdo; (stable): Rotational band including E (I7 =
3/27) and E ~ 64 keV (I’ =5/27). Opposite
parity band appears with the relatively large en-
ergy interval between (I” = 3/27) and (/¥ = 3/2%)
equal to 474 keV. Possible soft octupole mode. Ro-
tational opposite parity band with a small interval of
10 keV appears at I = 9/2.

@iv) éggTb% (stable): Rotational band including Ey (I” =
3/2%) and E ~ 58 keV (I’ = 5/2%). Opposite par-
ity band appears starting from I =5/2 with the
energy interval 305 keV. There may be a soft oc-
tupole mode.

(v) 81Dy, (stable): Rotational band including Ey (I” =
5/27)and E ~ 103 keV (I’ = 7/27). Opposite par-
ity band is evident, ground state doublet splitting
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of 25 keV. However, this interval increases with 1.
Possible octupole deformation.

(vi) &Dys,, (stable): Rotational band including Ey (I =
5/27)and E ~ 73 keV (I = 7/27). Opposite pos-
itive parity band is evident, the interval with the
ground state is 251 keV. However, the positive par-
ity band appears to cross the negative parity band.
This implies that these bands may have differing
moments of inertia. Thus, we conclude that there is
weak evidence suggesting the existence of octupole
deformation in this nuclide.

(vii) 3°Uia (half-life = 1.6 x 10° years): Rotational
band including Ey (I” =5/2%) and E ~ 40 keV
(I” =7/2%). Opposite parity band is evident,
ground state doublet splitting of 300 keV. Possible
soft octupole vibration mode.

(viii) 33’Np,4, (half-life = 2.1 x 10° years): Rotational
band including Ey (I =5/2%) and E ~ 33 keV
(I" =17/2%). Opposite parity band is evident.
Interval between the doublet (I” =5/2%) and
(I? =5/27) is 59.5 keV. Possible octupole
deformation.
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