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Consequences of increased hypertriton binding for s-shell �-hypernuclear systems
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Consequences of increasing the binding energy of the hypertriton ground state 3
�H(JP = 1

2

+
) from the

emulsion value BEMUL
� (3

�Hg.s.) = 0.13 ± 0.05 MeV to the STAR value BSTAR
� (3

�H) = (0.41 ± 0.12 ± 0.11) MeV
are studied for s-shell hypernuclei within a pionless effective field theory (/π EFT) approach at leading order,
constrained by the binding energies of the 0+ and 1+ 4

�H states. The stochastic variational method is used in
bound-state calculations, whereas the inverse analytic continuation in the coupling constant method is used to
locate S-matrix poles of continuum states. It is found that the �nn( 1

2

+
) resonance becomes broader and less likely

to be observed experimentally, whereas the 3
�H( 3

2

+
) spin-flip virtual state moves closer to the �d threshold to

become a shallow bound state for specific �N interaction strengths. The effect of such a near-threshold 3
�H( 3

2

+
)

state on femtoscopic studies of �-deuteron correlations, and its lifetime if bound, are discussed. Increasing
B�(3

�Hg.s.) moderately, up to ≈0.5 MeV, hardly affects calculated values of B�(5
�He).

DOI: 10.1103/PhysRevC.105.015202

I. INTRODUCTION

Interactions between hyperons and nucleons are not known
in sufficient detail because the relevant scattering data are
scarce, of limited accuracy, and do not contain direct infor-
mation on the spin dependence of the interactions. Moreover,
scattering experiments do not fix directly the interactions at
very low energies or even below threshold. Under such cir-
cumstances, one has to resort to bound few-body systems
which thus serve as an important testing ground for the under-
lying baryon interactions. The hypertriton 3

�H (Jπ = 1/2+),
being the lightest bound hypernucleus, holds a prominent
position among these systems (like the deuteron in the case
of the NN interaction). The � separation energy of 3

�H
has been used as a constraint for various interaction mod-
els for decades. The widely accepted value BEMUL

� (3
�H) =

0.13 ± 0.05 MeV was extracted from four different sets of
emulsion data [1]. The spin S = 1/2 and positive parity as-
signment of the hypertriton ground state were established by
the analysis of hypertriton weak decay measurements [2].
However, the above canonical value of BEMUL

� (3
�H) has been
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challenged recently by the STAR Collaboration, claiming
a much more tightly bound hypertriton with BSTAR

� (3
�H) =

(0.41 ± 0.12 ± 0.11) MeV [3]. In Fig. 1, we show compila-
tion of �N scattering lengths and B�(3

�H) values obtained in
various interaction models. The calculated B�(3

�H) energies
are compared with the experimental values BEMUL

� (3
�H) and

BSTAR
� (3

�H) in Fig. 1(a). The figure shows that some former
interaction models do not reproduce BEMUL

� (3
�H), and the

NCS97d model even leaves the hypertriton unbound. On the
other hand, the scattering lengths χEFT(NLO)-A, B, C in
next to leading order chiral effective field theory were tuned
to yield the STAR experiment value. It is to be noted that
the χEFT(LO,NLO) � separation energy in the hypertriton
is cutoff dependent (see Ref. [4], Table 2); in Fig. 1(a) we
present B�(3

�H) for cutoff value λ = 500 MeV. The increased
binding of the hypertriton should affect its lifetime τ (3

�H) and,
indeed, the STAR Collaboration reported τ (3

�H) considerably
shorter than the free � lifetime [5].

Since B�(3
�H) is used for fine tuning of the � hypernuclear

interactions, obvious questions arise: How does its possibly
larger value manifest itself in calculated characteristics of
other � hypernuclei? How does the value of B�(3

�H) af-
fect conclusions regarding the recently discussed nature of
the �NN states, �nn and 3

�H∗(3/2+)? The implications of
the increased hypertriton binding for next-to-leading order
(NLO) χEFT calculations of A = 4, 5, and 7 � hypernu-
clei have been studied by Le et al. [4]. While the three-
and four-body Faddeev and Faddeev-Yakubovski calculations
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FIG. 1. The �N spin-singlet (a�N
0 ) and spin-triplet (a�N

1 ) scattering lengths predicted by analysis of �p scattering data (Alexander [6]) or
by various �N interaction models: fss2 [7], χCQM [8], NSC89 [9], NSC97(d,e,f) [10], Jülich’04 [11], χEFT(LO) [12], χEFT(NLO) [13],
and χEFT(NLO)-A, B,C [4] (b). The upper panel (a) shows calculated B�(3

�H) [4,7,8,14] for respective �N interaction model compared to
experimental values BEMUL

� (3
�H) [1] and BSTAR

� (3
�H) [3]. All χEFT results are for momentum cutoff λ = 500 MeV.

were performed using bare interactions, the five- and seven-
body systems were described within the no-core shell model
with similarity renormalization group evolved interactions
constrained to reproduce B�(5

�He). These authors increased
the �N singlet scattering length a�N

0 in order to get the
hypertriton binding consistent with the STAR data, while
simultaneously reducing the triplet scattering length a�N

1 to
preserve the good description of scattering data. This led to
three sets of the �N scattering lengths based on the NLO19
interaction model [15] [we denote them as χEFT(NLO)-
A, B,C]. In view of large uncertainties involved, Le et al. [4]
have not found any principal reason that would rule out the
larger value BSTAR

� (3
�H).

The impact of B�(3
�H) on the hypertriton lifetime has

been explored recently. Hildenbrand and Hammer [16] found
small sensitivity of the hypertriton lifetime to the � separation
energy, but strong B�(3

�H) dependence of the partial widths
and the branching ratio R3 = �(3

�H → 3He + π−)/�π− (3
�H)

[17]. Pérez-Obiol et al. [18] concluded that the hypertriton
lifetime τ (3

�H) varied strongly with B�(3
�H) and showed that

each of the τ (3
�H) values reported by the ALICE [19], HypHI

[20], and STAR [5] Collaborations could be correlated with a
theoretically derived value and its own corresponding value of
B�(3

�H). Experiments proposed recently at MAMI [21], JLab
[22], and J-PARC [23] aiming at resolving the “hypertriton
lifetime puzzle” are expected to provide the value of B�(3

�H)
with a resolution better than 50 keV.

In this work we report our study of the consequences of
increased � separation energy in the hypertriton, announced
by the STAR Collaboration, for selected s-shell hypernuclear
systems, namely �nn(1/2+), 3

�H∗(3/2+), and 5
�He. Since the

pioneering calculation [24], which revealed overbinding of
5
�He while reproducing binding energies of the rest of the
s-shell hypernuclei, numerous other works have also failed
to describe simultaneously the few-body hypernuclear bound
states. Only recently, Contessi et al. [25] succeeded to solve
this ”overbinding problem” within a pionless effective field

theory at leading order (LO /πEFT ). The neutral �nn system
was first found unbound by Downs and Dalitz [26] and since
then various few-body calculations have supported their con-
clusion [8,27–38]. Moreover, most of these works predicted
the excited state of the hypertriton, 3

�H∗(3/2+) to be located
above the �d threshold [8,28,29,37,38]. The recent interest
of experimentalists in the nature of the �nn [39] as well
as 3

�H∗(3/2+) [40] states, i.e., whether they are bound or in
continuum, was motivated by the evidence for the bound �nn
state reported by the HypHI Collaboration [41]. In any case,
the study of hypernuclear �NN trios provides much-needed
information on the spin and isospin dependence of the �N
and �NN interactions.

In our present calculations, the two- and three-body inter-
actions among baryons are described within LO /πEFT . This
approach has already been successfully applied to calculations
of s-shell single-� [25] and double-� hypernuclear systems
[42]. Recent LO /πEFT calculations of hypernuclear trios
[37,38] have predicted �nn and 3

�H∗(3/2+) to be unbound,
confirming thus conclusions of previous theoretical analyses.
The investigation of hypernuclear continuum states using the
complex scaling method [43] and the inverse analytic contin-
uation in the coupling constant (IACCC) method [44] led to
conclusion that �nn exists likely as a subthreshold resonant
state while the excited state of the hypertriton, 3

�H∗, is a
virtual state located just above the �d threshold. It is thus
quite legitimate to ask whether the increased binding of the
hypertriton, as claimed by the STAR Collaboration, could
lead to a bound excited state 3

�H∗. Similarly, the stronger
hypertriton binding could affect the position of the �nn pole
in the complex energy plane and convert it to a true res-
onance with Re(E ) > 0. The near-threshold virtual state of
3
�H∗ was found to have a strong effect on the �d s-wave phase
shifts in the Jπ = 3/2+ channel [37]. The �d scattering at
energies close to the threshold has been subject of only few
theoretical works due to nonexistence of data on � scattering
off deuterons (see [45] and references therein). However, the
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missing information about interaction dynamics from scatter-
ing experiments involving hadrons with nonzero strangeness
could be provided by measuring two-particle correlation func-
tions in high-energetic pp and heavy-ion collisions [46]. A
theoretical study of the �d momentum correlation functions
and their capability to provide additional information on the
�N interaction was performed recently by Haidenbauer [45].
We address here the issue of �d correlations as well, concen-
trating on implications of the increased hypertriton binding.

At LO /πEFT the parameters of the two-body �N interac-
tions are fixed by the �N spin-singlet a�N

0 and spin-triplet
a�N

1 scattering lengths. Parameters of the three-body �NN
force are fitted to the BEMUL

� (3
�H) or BSTAR

� (3
�H) value, and the

experimental � separation energies in the four-body systems
4
�H(0+) [47] and 4

�H∗(1+) [48]. Calculations of hypernuclear
bound states are performed within the stochastic variational
method (SVM) [49,50], and locations of the poles of contin-
uum states are determined by the method of inverse analytic
continuation in the coupling constant (IACCC).

In this work, the Coulomb interaction is not included. We
use a charge symmetric version of the LO /πEFT hypernuclear
interaction for convenience, and parameters of the three-body
�NN force in the I = 1 and I = 0, S = 3/2 channels are
constrained by B� of 4

�H and 4
�H∗. Alternatively, one can

consider mean experimental B� energies for 4
�H and 4

�He.
However, such a change would induce only a minor difference
in four-body � separation energies of order of the correspond-
ing experimental errors (≈100 keV). The quantitative effect of
charge symmetry breaking in four-body systems on our results
can then be deduced from plots presented below, where it is
roughly comparable to uncertainties induced by experimental
errors in four-body B� input values.

The paper is organized as follows: In Sec. II, we present
the model and methodology applied in our calculations of
few-body hypernuclear systems. The /πEFT approach, as well
as the SVM and IACCC methods, are described only briefly
since they were discussed in sufficient detail in our previous
papers [37,38]. In Sec. III, we present results of our inves-
tigation of the consequences of the increased 3

�H binding.
We first demonstrate that, in the case of 5

�He, the STAR
experiment value BSTAR

� (3
�H) is acceptable within the LO

truncation error and could lead to B�(5
�He) in agreement with

experiment. Then we explore the position of the �nn pole in
the complex energy plane and find the �nn resonance to be
less likely observed experimentally with increasing B�(3

�H)
as it moves to the unphysical region. We further discuss how
the � separation energy in 3

�H(1/2+) affects the nature of
the hypertriton excited state 3

�H(3/2+) and its position with
respect to the �d threshold. We show that the near threshold
excited (virtual) state could strongly affect the �d elastic
scattering cross section. Moreover, we observe that the larger
value of BSTAR

� (3
�H) leads to a larger spin-averaged s-wave

�d correlation function. However, in view of large experi-
mental errors and approximations involved at the moment,
it is not possible to discriminate between BEMUL

� (3
�H) and

BSTAR
� (3

�H). For some �N scattering lengths, we get a weakly
bound hypertriton excited state 3

�H∗(3/2+) which is subject
to weak decay as well as electromagnetic M1 dipole transi-
tion to the 1/2+ hypertriton ground state. We discuss how

the energy of such a hypothetically bound excited state and
the corresponding energy splitting between the 3

�H∗(3/2+)
and 3

�H(1/2+) affect its lifetime. Finally, we summarize our
findings in Sec. IV.

II. MODEL AND METHODOLOGY

In this work we describe nuclear and hypernuclear inter-
action using /πEFT at LO [25,37,38]. Within this low-energy
approach we consider only nucleon N and � hyperon de-
grees of freedom while pions are integrated out. At LO there
are four two-body and four three-body s-wave momentum-
independent contact terms, each associated with different
NN , �N , NNN , and �NN isospin-spin (I, S) channels. The
contact terms are then regularized by applying a Gaussian
regulator with momentum cutoff λ. This procedure yields
the two-body V2 and three-body V3 parts of the LO /πEFT
potential,

V2 =
∑
I,S

CI,S
λ

∑
i< j

P I,S
i j e− λ2

4 r2
i j ,

V3 =
∑
I,S

DI,S
λ

∑
i< j<k

QI,S
i jk

∑
cyc

e− λ2

4 (r2
i j+r2

jk ), (1)

where P I,S
i j and QI,S

i jk are projection operators into individual
s-wave (I, S) two-body and three-body channels, respectively.
Low energy constants (LECs) CI,S

λ and DI,S
λ are constrained

for each cutoff λ by low-energy data. Possible /πEFT predic-
tions then exhibit residual λ dependence which is suppressed
with a cutoff approaching the contact limit λ → ∞ [25].

We note that the two-body �N LECs account for contri-
butions from both direct �N-�N interactions and indirect
�N-�N-�N interactions. This is accomplished as detailed
below by fitting these LECs to experimentally constrained val-
ues of �N singlet and triplet scattering lengths. Furthermore,
�N ↔ �N conversion, known to have significant effect in
other approaches to s-shell hypernuclear systems [14,32], is
partially included in the three-body �NN LECs which are
fixed by using Bexp

� values in three-body and four-body hyper-
nuclear systems considered in the present approach [25,38].
We recall that three-body NNN and �NN force components
enter necessarily at LO in /πEFT in order to avert Thomas
collapse [51] of few-body baryonic systems. This contrasts
with chiral EFT where three-body forces are expected to enter
at N2LO and their effect is assumed to be small in 3

�H but
sizable in heavier hypernuclear systems [4,15]. In order to
clarify further this issue, we present and discuss in the Ap-
pendix two- and three-body force contributions in 3

�H, 4
�H,

4
�H∗, 5

�He, evaluated within LO /πEFT for a selected a�N set
and two cutoff values λ.

Our choice of LECs proceeds as follows. The nuclear LECs
CI=0,S=1

λ , CI=1,S=0
λ , and DI=1/2,S=1/2

λ are fitted to reproduce
the deuteron binding energy B(2H) = 2.2245 MeV [52], the
NN spin-singlet scattering length aNN

0 = −18.63 fm [10],
and the triton binding energy B(3H) = 8.482 MeV. Hypernu-
clear LECs CI=1/2,S=1

λ , CI=1/2,S=0
λ , DI=0,S=1/2

λ , DI=1,S=1/2
λ , and

DI=0,S=3/2
λ are constrained to reproduce a specific set of the

�N spin-singlet a�N
0 and spin-triplet a�N

1 scattering lengths,
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the experimental � separation energies BEMUL
� (3

�H; 1/2+)
or BSTAR

� (3
�H; 1/2+), B�(4

�H; 0+) = 2.16(8) MeV [47] and
the excitation energy Eexc(4

�H∗; 1+) = 1.09(2) MeV [48].
The lack of �N scattering data does not allow one to
sufficiently constrain sizes of a�N ’s, which leads to rather
large uncertainty: a�N

0 ∈ (−9.0; 0) fm, a�N
1 ∈ (−3.2; −0.8)

fm (Sechi-Zorn) [53] or a�N
0 = −1.8+2.3

−4.2 fm, a�N
1 = −1.6+1.1

−0.8
fm (Alexander et al.) [6]. Consequently, we either use rep-
resentative a�N values given by different Y N interaction
models—NSC97f [10], χEFT(LO) [12], χEFT(NLO) [13],
and χEFT(NLO)-A, B,C [4] (see Fig. 1)– -or we consider
a�N

0 and a�N
1 as parameters which are varied within experi-

mentally acceptable range. The advantage of our approach is
that one can fix both �N scattering lengths and the hypertriton
ground state energy and thus study in a larger scope the effect
of the increased B�(3

�H; 1/2+) on predicted properties of the
remaining s-shell systems �nn, 3

�H∗, and 5
�He.

Hypernuclear bound states are described within the
stochastic variational method (SVM) [50]. Here, the A-body
wave function 	 is expanded in a correlated Gaussian basis
[49]

	 =
∑

i

ci ψi =
∑

i

ci Â
{

exp

(
−1

2
xT Aix

)
χ i

SMS
ξ i

IMI

}
, (2)

where χ i
SMS

(ξ i
IMI

) denotes the spin (isospin) part, Â stands
for the antisymmetrization operator over nucleons, and x =
(x1, . . . , xA−1) is a set of Jacobi vectors. Each positive-definite
symmetric matrix Ai contains A(A − 1)/2 stochastically
selected parameters. Variational coefficients ci and the corre-
sponding bound state energies are calculated by diagonalizing
the Hamiltonian matrix, i.e., solving the generalized eigen-
value problem.

While bound state solutions can be straightforwardly ob-
tained by employing a basis of square-integrable functions,
few-body continuum states (virtual states, resonances) posses
different asymptotic behavior and further techniques have to
be involved. Following our previous work [37,38], we applied
in the IACCC method [44], which provides accurate predic-
tions of resonant and virtual state energies in agreement with
the complex scaling method [38].

In this approach, positions of the �nn and 3
�H∗ continuum

states are calculated by supplementing the LO /πEFT potential
(1) with an auxiliary attractive three-body potential

V IACCC
3 = dI,S

α

∑
i< j<k

QI,S
i jk

∑
cyc

e− α2

4 (r2
i j+r2

jk ), (3)

which, by virtue of the projection operator QI,S
i jk , affects only

specific (I, S) three-body channels: (1, 1
2 ) for �nn and (0, 3

2 )
for 3

�H∗. Here, the value of the range parameter α is always
selected to be equal to the value of the /πEFT cutoff λ.

Increasing the V IACCC
3 attraction, a continuum S-matrix

pole given by the LO /πEFT potential (1) starts to move
towards the lowest threshold and at a specific dI,S

0, α value it
turns into a bound state. Applying the SVM we calculate
a set of M + N + 1 bound state energies {Ei

B(dI,S
i, α ); dI,S

i, α <

dI,S
0, α; i = 1, . . . , M + N + 1} which are used to construct a

Padé approximant of degree (M, N) P (M,N ) of function d (κ ),

P (M,N )(κ ) =
∑M

j=0 b jκ
j

1 + ∑N
j=1 c jκ j

≈ d (κ ). (4)

Here, κ = −ik = −i
√

EB with EB the bound state energy
value, measured with respect to the lowest dissociation thresh-
old. The b j , c j are real parameters of the P (M,N ). The position
of a resonance or virtual state is then determined by setting
d = 0 in Eq. (4) and by searching for a physical root of the
polynomial equation

M∑
j=0

b jκ
j = 0. (5)

The energy of the pole E = (iκ )2 is in general complex.
Consequently, for the �nn resonance we keep the common
notation E = Er − i�/2, where Er = Re(E ) is the position
of the resonance and � = −2 Im(E ) stands for the reso-
nance width. For the 3

�H∗ virtual state we use the relative
�-deuteron momentum γ3/2 = √

2μ�d E in order to avoid
confusion between a bound and virtual state energy which are
both negative, and μ�d = m�md/(m� + md ) stands for the
relative mass.

III. RESULTS

The formalism introduced in the previous section was ap-
plied in calculations of s-shell hypernuclear systems with the
aim to explore consequences of increased hypertriton binding
for �nn, 3

�H∗, and 5
�He. In this section, we present results of

the analysis considering both a wide range of a�N scattering
lengths and systematic uncertainties induced by three- and
four-body experimental constraints. The last part of this sec-
tion is dedicated to a hypothetical case of a bound hypertriton
excited state 3

�H∗ located in the vicinity of the hypertriton
ground state. Here, we discuss the � separation energy of 3

�H∗
and implications for experimental measurement of its lifetime
τ (3

�H∗).

A. 5
�He hypernucleus

We start our discussion by comparing the LO /πEFT
prediction of the � separation energy in 5

�He with the ex-
perimental value Bexp

� (5
�He) = 3.12(2) MeV [54]. In Fig. 2

we present calculated B�(5
�He) as a function of the mo-

mentum cutoff λ for several a�N sets and two different
B�(3

�H) constraints: 0.13(5) MeV [Figs. 2(a) and 2(b)] and
0.41(12) MeV [Figs. 2(c) and 2(d)]. Shaded areas indicate
systematic uncertainty induced by experimental errors in the
three- and four-body constraints B�(3

�H), B�(4
�H; 0+), and

B�(4
�H; 1+). We find that, despite rather different strengths

of the �N spin-singlet and spin-triplet channels considered,
in particular between the Alexander, NSC97f, χEFT(LO),
χEFT(NLO) sets [Figs. 2(a) and 2(c)] and the χEFT(NLO)-
A, B,C sets [Figs. 2(b) and 2(d)], calculated B�(5

�He) does
not change dramatically. We further observe that increasing
the BEMUL

� (3
�H) constraint by ≈0.28 MeV to BSTAR

� (3
�H) has

only a minor effect on the predicted � separation energy
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FIG. 2. B�(5
�He) as a function of the cutoff λ, calculated for several different �N interaction strengths. The three-body �NN LEC

DI=0,S=1/2
λ is fixed to BEMUL

� (3
�H) (a), (b) or BSTAR

� (3
�H) (c), (d). The shaded areas denote uncertainty of our calculations induced by

experimental errors in three- and four-body constraints. Dotted black line marks the experimental value Bexp
� (5

�He) = 3.12(2) MeV [54] with
the corresponding experimental error (narrow shaded area alongside the dotted line).

B�(5
�He) (compare the left and right panels of Fig. 2). The

presented low sensitivity of B�(5
�He) on different strengths of

the �N two-body channels might be related to the specific
choice of the a�N

0 and a�N
1 two-body constraints. In order

to clarify this point we show in Fig. 3 the � separation
energy B�(5

�He), calculated for λ = 4 fm−1, the three-body
constraint BEMUL

� (3
�H), and a wide range of the �N scattering

lengths a�N
0 , a�N

1 ∈ 〈−6; −1〉 fm. It is apparent that all a�N

sets considered in Fig. 2 are located within an area given
by the condition a�N

1 = −0.2 a�N
0 − 2.08(30) fm. We stress

that though this area is completely independent of LO /πEFT,

FIG. 3. B�(5
�He) calculated for λ = 4 fm−1, the BEMUL

� (3
�H)

three-body constraint, and a wide range of the a�N
0 and a�N

1 scattering
lengths. Black dots denote sets of a�N ’s considered throughout this
work.

the a�N sets surprisingly yield roughly the same LO /πEFT
prediction of B�(5

�He). As demonstrated in Fig. 3, B�(5
�He)

calculated within our approach imposes rather strict constraint
on the �N spin-triplet scattering length. Considering either
unusually low or large a�N

1 leads to strong deviation from the
experimental value Bexp

� (5
�He).

A rather small change in B�(5
�He) caused by different

hypertriton ground state constraints B�(3
�H) deserves fur-

ther discussion. In Fig. 4(a) we show the relative difference
�(5

�He) between B�(5
�He) calculated using the BEMUL

� (3
�H)

and BSTAR
� (3

�H) constraints:

�
(

5
�He

) = B�

(
5
�He

)∣∣
EMUL − B�

(
5
�He

)∣∣
STAR

B�

(
5
�He

)∣∣
EMUL

. (6)

For all considered �N potential models and cutoff values, the
difference �(5

�He) is less than ≈16% [grey shaded area in
Fig. 4(a)] and evolves only mildly with λ. In [Fig. 4(b)] we
present �(5

�He) calculated for λ = 4 fm−1 and a wide range
of �N scattering lengths. The figure demonstrates only mod-
erate dependence of �(5

�He) on a�N ’s. The relative difference
stays below 16% for all considered �N interaction models.
It is to be noted that the variations of the �N and 3

�H con-
straints in LO /πEFT are compensated to some extent by the
four-body constraints B�(4

�H; 0+) and Eexc(4
�H∗; 1+). As a

result, B�(5
�He) is rather insensitive to the increased hypertri-

ton binding energy. This has been demonstrated by changing
the B�(3

�H) three-body constraint or using rather different
a�N sets. We expect that larger �(5

�He) or its stronger a�N

dependence would arise as a consequence of a considerably
larger hypertriton ground state energy.

In order to state whether our calculations in Fig. 2 exclude
or support the increased BSTAR

� (3
�H), one has to take into ac-

count the LO truncation error. At LO we do not consider NLO
effective range corrections, which are expected to be the first
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FIG. 4. Relative difference �(5
�He) (6) as a function of λ for selected sets of a�N s (a) and �(5

�He) calculated for a wide range of a�N ’s
and λ = 4 fm−1 (b).

significant corrections. Following our recent work [38], the
effect of higher order terms can be estimated through residual
cutoff dependence. Starting at λ ≈ 1.25 fm−1, where effective
ranges are roughly reproduced, and approaching the contact
limit λ → ∞, one obtains an estimate of the LO uncertainty.
Based on our 5

�He results presented in Figs. 2–4, we claim
that both values BEMUL

� (3
�H) and BSTAR

� (3
�H) are acceptable as

a /πEFT three-body constraint within the LO truncation error.
They both lead to B�(5

�He) in agreement with its experimental
value.

B. �nn resonance

The �nn resonance position calculated for the momentum
cutoff λ = 4 fm−1 and the BEMUL

� (3
�H) and BSTAR

� (3
�H) three-

body constraints is presented in Fig. 5. For all considered
a�N sets, the �nn resonance position moves with increasing
B�(3

�H) towards the unphysical third quadrant [Re(E ) < 0,
Im(E ) < 0] of the complex energy plane. The physical res-
onance [Re(E ) > 0, Im(E ) < 0] is convincingly predicted
only for BEMUL

� (3
�H) energy and NSC97f, χEFT(NLO),

and χEFT(NLO)-A, B,C. For the remaining a�N interaction
strengths, it is located either on the verge between the third
and fourth quadrant or deep in the unphysical region.

For each calculation, we studied uncertainty induced by
the experimental errors in three- and four-body constraints.
The possible �nn pole position is then represented by the
corresponding dashed trajectory. Its shape is exclusively de-
termined by the two-body part of the LO /πEFT Hamiltonian
while the specific point on the trajectory is given by the size
of the three-body LEC DI=1,S=1/2

λ [37]. There are five different
points drawn on each trajectory: The central point represents
the calculated �nn resonance position with no experimental
errors taken into account. Two neighboring points delimit a
part of the trajectory given by the uncertainty in four-body
constraints only. The whole trajectory, defined by the last two
remaining points, represents the possible �nn resonance posi-
tion when all experimental errors in few-body constraints are
taken into account. The uncertainty in experimental B�(3

�H)
has the largest impact on our results, while the influence of
experimental errors in the four-body constraints B�(4

�H; 0+)
and Eexc(4

�H; 1+) is minor.

Our results for λ = 4 fm−1 presented in Fig. 5 can be un-
derstood as a limiting case which gives the most optimal �nn
resonance position with regard to experiment: a physical �nn
resonance with small width � = −2 Im(E ). In Refs. [37,38],
we showed that at LO /πEFT the resonance moves with
increasing cutoff from the third unphysical quadrant
[Re(E ) < 0, Im(E ) < 0] of the complex energy plane towards
the fourth physical one [Re(E ) > 0, Im(E ) < 0] and further,

FIG. 5. Position of the �nn resonance in the complex energy
plane calculated for momentum cutoff λ = 4 fm−1, several �N inter-
action strengths, and two different three-body constraints BEMUL

� (3
�H)

(full symbols) and BSTAR
� (3

�H) (empty symbols). The dotted trajecto-
ries show uncertainty of calculated �nn resonance positions induced
by experimental errors in few-body constraints: the middle point on
each trajectory represents the position with no experimental error
considered, two neighboring points delimit uncertainty caused by
errors in four-body constraints only, while the end points mark the
total uncertainty with the experimental error of B�(3

�H) included as
well.
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FIG. 6. Imaginary part of the relative �d momentum Im(γ3/2) corresponding to a pole of the 3
�H∗ excited state as a function of cutoff λ,

calculated for several �N interaction strengths and two values of the B�(3
�H) three-body constraint: BEMUL

� (3
�H) (a) and BSTAR

� (3
�H) (b). Error

bars indicate uncertainty of our calculations induced by experimental errors in four-body constraints. Shaded areas show the total uncertainty
induced by both the errors in four-body constraints and the experimental error in the B�(3

�H) three-body constraint. Im(γ3/2) > 0 represents
the bound state region and Im(γ3/2) < 0 the virtual state region. Dotted lines with shaded areas indicate Im(γ1/2) = √

2μ�d B�(3
�H) binding

momentum of the 1/2+ hypertriton ground state corresponding to BEMUL
� (3

�H) (a) and BSTAR
� (3

�H) (b).

closer to the � + n + n threshold. We also demonstrated that
for λ � 3 fm−1 there is almost negligible cutoff dependence.
Based on our LO calculations we thus estimate that �(�nn) >

0.8 MeV. This bound takes into account different B�(3
�H), ex-

perimental errors in the three- and four-body constraints, quite
large spread of �N scattering lengths, and λ variation which
provides roughly the LO truncation error estimate. Within LO
/πEFT we thus find highly unlikely that increasing B�(3

�H)
would yield either a bound �nn system or narrow resonance.
On the contrary, the chance to observe the �nn resonance in
experiment drops with increasing B�(3

�H).

C. Excited state of the hypertriton 3
�H∗

The Jπ = 3/2+ spin-flip excited state of the hypertriton
3
�H∗ is the next s-shell �-hypernuclear system that can be
described within our approach. In Fig. 6 we present the imag-
inary part of the 3

�H∗ pole momentum Im(γ3/2) with respect
to the �d threshold as a function of cutoff λ, calculated
for several �N interaction strengths and two different hy-
pertriton constraints: BEMUL

� (3
�H) [Fig. 6(a)] and BSTAR

� (3
�H)

[Fig. 6(b)]. It is to be noted that we get Re(γ3/2) = 0 in all con-
sidered cases. The 3

�H∗ is obtained predominantly unbound
in a form of a virtual state [Im(γ3/2) < 0]. Larger B�(3

�H)
shifts the excited state position towards the bound state region
[Im(γ3/2) > 0], thus allowing existence of a shallow bound
state of 3

�H∗ for specific �N interaction strengths [Fig. 6(b)].
In LO /πEFT the position of the excited state 3

�H∗ is
purely determined by the interplay between the attractive
�N spin-triplet interaction and the repulsive S = 3/2, I = 0
�NN interaction. We observe that, due to few-body dynamics
in three- and four-body systems, where the corresponding
DI=0,S=3/2

λ LEC is fitted, the three-body repulsion becomes

stronger with increasing strength of the �N spin-singlet inter-
action. Consequently, a�N sets with a rather large spin-singlet
and slightly reduced spin-triplet part, such as χEFT(NLO)-
A, B,C, predict the position of the 3

�H∗ virtual state farther in
the continuum.

The uncertainty of the γ3/2 pole momentum is primarily
given by the range of considered �N interaction strengths
and residual cutoff dependence. Taking into account errors
in few-body experimental constraints, we observe that the
largest contribution comes from the B�(3

�H) experimental
error. This can be clearly seen from the comparison between
shaded areas [B�(3

�H), B�(4
�H; 0+), B�(4

�H; 1+) experimen-
tal errors taken into account] and error bars [B�(4

�H; 0+) and
B�(4

�H; 1+) errors only]. Existence of a 3
�H∗ pole close to

the �d threshold would strongly affect �d scattering at low
energy. Naturally, the most direct probe of its location would
involve measurement of the �d elastic scattering; however,
such experiments are highly difficult to conduct, and to the
best of our knowledge there are none planned in near future.
For exploratory reasons, we discuss here the s-wave �d cross
section σ

k�d =0
�d at zero relative momentum k�d . For k�d = 0

the cross section can be evaluated via spin-averaged squares
of the spin-doublet A2

�d (1/2+) and spin-quartet A2
�d (3/2+)

scattering lengths, which can be further estimated using the �

separation energy of the hypertriton ground state and Im(γ3/2)
momentum:

σ
k�d =0
�d = 4π

[
1

3
A2

�d (1/2+) + 2

3
A2

�d (3/2+)

]

� 4π

[
1

3

1

2μ�d B�

(
3
�H; 1/2+) + 2

3

1

Im(γ3/2)2

]
, (7)
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FIG. 7. Spin-averaged s-wave �d cross section at k�d = 0 (7) calculated using the BEMUL
� (3

�H) (a) and BSTAR
� (3

�H) (b) three-body
constraints.

where μ�d is the �d reduced mass. While the �d spin-
doublet contribution is fixed by either the BEMUL

� (3
�H) or

BSTAR
� (3

�H) constraint, the spin-quartet contribution comes
out as a prediction. As demonstrated in Fig. 6, the uncer-
tainties in Im(γ3/2), caused by the residual λ dependence
and experimental errors in few-body constraints, allow us
to distinguish only between two groups of the results: for
the Alexander, NSC97f, χEFT(LO), χEFT(NLO) sets with
roughly comparable �N spin-singlet and spin-triplet inter-
action strengths and the χEFT(NLO)-A, B,C sets where the
�N spin-singlet interaction is enhanced at the expense of
the reduced spin-triplet one. The spin-quartet contribution
to σ

k�d =0
�d is estimated using two groups of the 3

�H∗ virtual
state momenta given by the first and second bands of the
results at λ = 6 fm−1, depicted aside in Fig. 6 by red and
blue error bars, respectively. The distance of the two bands
from the �d threshold is given by the spin-quartet interaction.
In Fig. 7 we present σ

k�d =0
�d calculated using Eq. (7) for the

two momenta Im(γ3/2) bands and BEMUL
� (3

�H) [Fig. 7(a)],
BSTAR

� (3
�H) [Fig. 7(b)]. As expected, the spin-quartet contri-

bution and thus the position of the 3
�H∗ pole with respect to

the �d threshold affects strongly the σ
k�d =0
�d cross section.

For the Alexander, NSC97f, χEFT(LO), χEFT(NLO) sets
of �N interaction strengths we predict a possibility of ex-
ceptionally large σ

k�d =0
�d [particularly for BSTAR

� (3
�H)], which

is not the case for χEFT(NLO)-A, B,C. Our results thus
demonstrate that even limited experimental information about
σ�d at low energies, revealing its magnitude, might be effi-
ciently used as an additional constraint to the underlying �N
interaction.

Another possibility how to probe the �d interaction at low
energies is to measure the corresponding correlation func-
tion C�d (k�d ). Following the recent work by Haidenbauer
[45], we express the s-wave correlation function C�d (k�d )
averaged over the spin-doublet C�d

1/2+ (k�d ) and spin-quartet

C�d
3/2+ (k�d ) parts as

C�d (k�d ) = 1 + 1
3C�d

1/2+ (k�d ) + 2
3C�d

3/2+ (k�d ). (8)

Both spin contributions are then evaluated applying the
Lednicky-Lyuboshits approach [55],

C�d
Jπ (k�d ) � | fJπ (k�d )|2

2R2
F0(r�d (Jπ ))

+ 2 Re[ fJπ (k�d )]√
πR

F1(2k�d R)

− Im[ fJπ (k�d )]

R
F2(2k�d R), (9)

where F0(r�d (Jπ )) = 1 − r�d (Jπ )/(2
√

πR), F1(x) =∫ x
0 dt et2−x2

/x, and F2(x) = (1 − e−x2
)/x. The scattering

amplitude fJπ (k�d ) in C�d
Jπ (k�d ) is approximated by the

effective range expansion using the �d scattering lengths
A�d (1/2+), A�d (3/2+) from Eq. (7) and effective ranges
r�d (1/2+), r�d (3/2+) corresponding to the doublet and
quartet channels. The R represents the size of a source
approximated by a spherical Gauss function [56]. In this
work we are primarily interested in the low momentum limit
where effective range contributions to C�d are at the level
of a small correction. Therefore, we consider fixed values
r�d (1/2+) = 3 fm and r�d (3/2+) = 4 fm motivated by the
works of Cobis et al. [57] and Hammer [58] (doublet) and our
previous work [37] (spin-quartet channel). For R smaller than
the range of an interaction the Lednicky-Lyuboshits approach
starts to deviate from the full solution [59], consequently, in
order to demonstrate effect of calculated 3

�H∗ position on
C�d (k�d ) we use R = 5 fm.

In Fig. 8 we show the spin-averaged s-wave correla-
tion function C�d (k�d ) for the BEMUL

� (3
�H) [Fig. 8(a)] and

BSTAR
� (3

�H) [Fig. 8(b)] three-body constraints, calculated
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FIG. 8. Spin-averaged �d correlations C�d (8) for the source size R = 5 fm as a function of the relative momentum k�d .

using the two groups of the A�d (3/2+) values correspond-
ing to (i) the Alexander, NSC97f, χEFT(LO), χEFT(NLO)
sets and (ii) the χEFT(NLO)-A, B,C sets of �N interaction
strengths. Clearly, the magnitude of C�d (k�d ) at low momenta
is strongly affected by the distance of both the 1/2+ hypertri-
ton ground state and 3/2+ excited state from the �d threshold.
We observe that for BSTAR

� (3
�H) the spin-quartet state exists

closer to or directly passes the threshold, which could lead
to large C�d (k�d ) in low momentum region. However, large
uncertainties in calculated C�d (k�d ) do not allow one to
discriminate between the BEMUL

� (3
�H) and BSTAR

� (3
�H) values.

Certainly, a different situation could happen if more precise
experimental data on B�(3

�H) and C�d (k�d ) are available.
This would allow one to extract the spin-quartet component
which provides constraints on the location of the 3

�H∗ state.
For example, our results connect its position in the contin-
uum farther from the � + d threshold with a considerably
larger �N spin-singlet strength with respect to the spin-triplet
channel.

D. Bound excited state of the hypertriton 3
�H∗ ?

Constraining the � separation energy in the 1/2+ hy-
pertriton to BSTAR

� (3
�H) [and in very limited cases also to

BEMUL
� (3

�H)] leads for specific sets of a�N scattering lengths
to a weakly bound 3/2+ hypertriton excited state (see Fig. 6).
In order to study the hypothetically bound 3

�H∗ in more de-
tail, we fit our LECs for two cutoff values λ = 1.5 fm−1

and λ = 4.0 fm−1 to B�(3
�H∗) = 0.075 MeV, Bexp

� (4
�H; 0+),

E exp
exc (4

�H∗), and a wide range of a�N scattering lengths. In
this approach, both B�(3

�H) and B�(5
�He) are predictions

of the theory and might be compared to experimental data.
In Figs. 9 and 10 we show corresponding B� values calcu-
lated for different �N spin-singlet and spin-triplet scattering
lengths. Reasonable B�(3

�H) energies, in agreement with ex-
periment, are obtained for |a�N

1 | � |a�N
0 |. Inspecting further

B�(5
�He) energy as well, we obtain reasonable predictions

for −1 > a�N
1 > −2 fm, where the acceptable a�N

1 region
slightly changes with cutoff λ. The rather unusual scenario
of stronger �N spin-triplet interaction is not excluded by
scattering data, which currently do not provide information
on �N spin dependence. The result is contradictory to most
�N interaction models (see Fig. 1), which directly enforce
|a�N

1 | < |a�N
0 | to ensure a 1/2+ hypertriton ground state.

Contrary to these models LO /πEFT includes additional three-
body forces, which allows us to find such a solution where
3
�H∗ is bound and B�’s of the remaining s-shell hypernuclei
are described reasonably well.

The energy of the hypothetically bound excited state of
the hypertriton 3

�H∗ and the corresponding energy splitting
between the 3

�H∗(3/2+) and 3
�H(1/2+) affect its lifetime.

The excited state 3
�H∗(3/2+) might decay both through the

weak decay of � → Nπ and through the electromagnetic
M1 dipole transition to the 1/2+ hypertriton ground state.
Following closure-approximation expressions summarized in
Ref. [33], weak-decay (WD) rates of 3

�H states are given in
terms of the free-� WD rate �� by

�WD
(

1
2

+)
/�� = 1.114 × [|sπ |2(1 + 1

2η
) + |pπ |2(1 − 5

6η
)]

,

(10)

�WD
(

3
2

+)
/�� = 1.114 × [|sπ |2(1 − η) + |pπ |2(1 − 1

3η
)]

,

(11)

where the pion decay closure momentum was taken equal
to the � → Nπ decay momentum. The factor 1.114 arises
from phase-space factors, |sπ |2 ≈ 0.83 and |pπ |2 ≈ 0.17 are
parity-violating and parity-conserving weights determined
in the � → Nπ decay, and η = 0.13 ± 0.02 is a strong-
interaction exchange integral ensuring that the summation on
final nuclear states is limited to totally antisymmetric states
[its 0.02 uncertainty reflects the quoted uncertainty in the
binding-energy value B�(3

�H) = 0.13 ± 0.05 MeV]. Here we
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FIG. 9. The LO /πEFT predictions of hypertriton 1/2+ states B�(3
�H) (a) and B�(5

�He) (b) for a wide range of �N spin-singlet a�N
0

and spin-triplet a�N
1 scattering lengths and λ = 1.5 fm−1. The three-body DI=0,S=1/2

λ , DI=1,S=1/2
λ , and DI=0,S=3/2

λ LECs are fitted to reproduce
simultaneously a shallow 3/2+ hypertriton bound state with B�(3

�H∗) = 0.075 MeV and experimental Bexp
� (4

�H; 0+), E exp
exc (4

�H∗). The dashed
lines in the left (a) and right (b) panels connect points with the same B�(3

�H) while solid lines in the right panel (b) connect points with the
same B�(5

�He).

disregarded pion final state interaction enhancement, of order
10% [33] to 15% [18], expecting most of it to be canceled
out by ≈10% interference loss from �NN small components
in the dominantly �NN-made 3

�H [18]. Nonpionic decay rate
contributions of order ≈2% are neglected as well.

Equations (10) and (11) for the WD rates, inverse of the
corresponding WD lifetimes of 3

�H and 3
�H∗ states, differ by

less than 20%. For a representative value of η = 0.13 we get

�WD
(

1
2

+)
/�� = 1.154, �WD

(
3
2

+)
/�� = 0.986, (12)

indicating lifetimes close to the free � lifetime
τ� = 263 ± 2 ps.

Assuming the same 1s� wave function, apart from
Pauli spin, for both 3

�H∗ and 3
�H doublet levels built on

a 3S1 deuteron core, the M1-dominated electromagnetic
3
�H∗(3/2+) → 3

�H(1/2+) decay rate �M1 is given by [60]

�M1 = α(�E )3 1
3 (gc − g�)2 s−1, (13)

where α = 4.2 × 1012 s−1 MeV−3, �E is the deexcitation
energy in MeV, and gc = 0.857 and g� = −1.226 ± 0.008 are
the gyromagnetic ratios of the 1+ core and the 1

2
+
� hyperon.

We now combine the separate WD and M1 deexcitation
rates to get the overall lifetime of 3

�H∗

τ

(
3

2

+)
=

(
1

τM1
+ 1

τWD

)−1

. (14)

In Fig. 11 we show τ ( 3
2

+
)/τ� as a function of B�(3

�H∗)
for both values BSTAR

� (3
�H) and BEMUL

� (3
�H), assuming a fixed

value τWD = 1.1τ�. The figure demonstrates strong sensitivity
of the hypertriton excited state lifetime on its binding energy,
as well as the energy splitting between the 3

�H∗(3/2+) state
and the 3

�H(1/2+) ground state. Such behavior is due to
the strong �E dependence of the M1 deexcitation. It is to
be noted that we considered τWD fixed though it is energy
dependent as well (see Ref. [18] for the energy dependence
of the hypertriton ground-state lifetime). However, the energy
dependence of τWD is considerably weaker than that of τM1

and could thus be neglected. Apparently, with increasing �E ,
radiative M1 decay begins to dominate and in certain cases
[BSTAR

� (3
�H) and just bound 3

�H∗] corresponding τM1 lifetime
might be up to two orders of magnitude shorter than τWD.
Consequently, in order to search for possibly bound hyper-
triton excited states one has to resort to both weak decay
measurements and γ spectroscopy.

FIG. 10. The same as Fig. 9 but for cutoff λ = 4 fm−1.
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FIG. 11. Ratio of the hypertriton excited state lifetime to the
free � lifetime, τ ( 3

2

+
)/τ�, as a function of B�(3

�H∗), calculated for
BEMUL

� (3
�H) (red) and BSTAR

� (3
�H) (blue). Shaded areas show the un-

certainty induced by the experimental error in the values of B�(3
�H).

IV. SUMMARY

In the present paper we have explored to what extent the
empirical input, represented by the value of the � separa-
tion energy of the hypertriton 3

�H(1/2+) (and also the �N
interaction at threshold), affects calculated binding energies
of the hypernuclear trios �nn and 3

�H∗(3/2+), as well as the
five-body system 5

�He. This study has been stimulated by the
recent measurement of the STAR Collaboration, claiming a
more tightly bound hypertriton than considered so far, rel-
atively large experimental errors of B�(3

�H), as well as the
lack of �N scattering data and consequent rather large un-
certainty in the values of �N scattering lengths. Implications
of increasing B�(3

�H) from the emulsion value to the STAR
value have been considered recently in the χEFT work of Le
et al. [4] who focused primarily on binding energies of 4

�He
and 7

�Li.
Our calculations have been performed within a LO /πEFT

with two- and three-body contact terms. The �N LECs
were fixed by the spin-singlet and spin-triplet �N scat-
tering lengths given by various interaction models. The
experimental values of the � separation energy B�(4

�H; 0+),
excitation energy Eexc(4

�H∗; 1+), and either BEMUL
� (3

�H; 1/2+)
or BSTAR

� (3
�H; 1/2+) served as constraints to fix �NN LECS.

Hypernuclear bound states were calculated using SVM; lo-
cation of the continuum states poles were determined by the
IACCC method.

We first explored the case of 5
�He and found that even

for rather different strengths of the �N spin-singlet and
spin-triplet interactions the calculated � separation energy
B�(5

�He) changes only moderately. We then considered a
much wider range of the �N scattering length constraints

and demonstrated that B�(5
�He) imposes rather strict limita-

tions on the �N spin-triplet channel. Moreover, both values
BEMUL

� (3
�H) and BSTAR

� (3
�H) were found acceptable within the

LO truncation error as they both could lead to B�(5
�He) in ac-

cord with experiment. This result follows from the possibility
to fit three given s-shell binding energies, those of 3

�H, 4
�H,

and 4
�H∗ for chosen values of �N scattering lengths (2-body

LECs), at the expense of three three-body LECs within LO
/πEFT calculations.

Careful examination of the �nn pole position, including
all experimental errors in few body inputs taken into account,
revealed that chances to get a narrow resonant or even bound
�nn state further decrease with increasing B�(3

�H). We thus
deem a direct observation of the �nn system in experiment
even more unlikely.

The excited state of the hypertriton 3
�H∗(3/2+) is found

predominantly as a virtual state whose position moves towards
the bound state region with increasing B�(3

�H), eventually
converting to a weakly bound state for some �N interactions
strengths. The 3

�H∗ pole close to the �d threshold would man-
ifest itself in increased �d elastic scattering cross section σ�d .
Unfortunately, �d scattering experiments are not anticipated
due to their extreme difficulty. Nonetheless, even limited ex-
perimental information on σ�d at low energies would provide
a unique probe of the �N interaction near threshold.

The low energy �d interaction could be experimentally
explored by a direct measurement of the corresponding cor-
relation functions. We evaluated the spin-averaged s-wave
correlation function within the Lednicky-Lyuboshits approach
and demonstrated that its magnitude at low momenta is
strongly affected by the distance of both states of the hypertri-
ton, the ground state 1/2+ and excited state 3/2+, from the
�d threshold. However, large uncertainties involved in the
present calculation do not allow one to discriminate between
BEMUL

� (3
�H) and BSTAR

� (3
�H). Anticipated measurements of the

�d correlation function at ALICE@CERN and new exper-
iments at MAMI [21] and J-PARC, JLAB, and ELPH [61],
intending to obtain more precise determination of B�(3

�H),
could help to assess the position of the excited state 3

�H∗.
Finally, we elaborated on the eventuality of a weakly bound

hypertriton excited state 3
�H∗. Fitting LECs to a fixed value

of B�(3
�H∗) and four-body constraints while varying a�N

scattering lengths in a wide range −3 < a�N < 0, we found
solutions for |a�N

1 | < |a�N
0 | when 3

�H∗ is bound and the re-
maining s-shell hypernuclei are described in agreement with
experiment. The lifetime of the hypothetically bound excited
state of the hypertriton is given by weak decay and the elec-
tromagnetic M1 dipole transition to the ground state, which
depends strongly on the energy splitting between the two
states 3/2+ and 1/2+. The γ -ray spectroscopy measurements
of the hypertriton planned at the J-PARC K1.1 beamline [62]
could also help to resolve the question about the nature of the
excited state 3

�H∗(3/2+) and determine its binding energy if it
is bound.
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TABLE I. Potential energy contributions (MeV) in A = 3, 4, 5
s-shell hypernuclei calculated for λ = 1 fm−1 using the χEFT(LO)
�N scattering lengths [12].

Z
�A 〈VNN 〉 〈VNNN 〉 〈V�N 〉 〈V 0 1

2
�NN 〉 〈V 1 1

2
�NN 〉 〈V 0 3

2
�NN 〉 B�

3
�H −11.30 0.00 −1.41 −0.32 0.13
4
�H −35.65 −0.46 −6.40 −1.98 0.39 2.16
4
�H∗ −34.34 −0.43 −4.37 −0.16 0.28 −0.79 1.07
5
�He −92.49 −2.97 −12.07 −2.32 1.57 −2.92 6.29
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APPENDIX: TWO-BODY AND THREE-BODY ENERGY
CONTRIBUTIONS TO HYPERNUCLEAR BINDING

ENERGIES

This Appendix provides details of some results obtained
in /πEFT (LO) s-shell hypernuclear calculations initiated in
Ref. [25] for bound states and pursued in the present work
to study unbound systems. In these calculations the NN and
�N two-body LECs are determined from the correspond-
ing scattering lengths input. Fitting to B(3H) = 8.482 MeV,
a three-body NNN LEC with I = S = 1/2 is determined.
Applying the χEFT(LO) model [12] scattering lengths, for
example (see Fig. 1 here), and using 3

�H, 4
�H(0+), and

TABLE II. Potential energy contributions (MeV) in A = 3, 4, 5
s-shell hypernuclei calculated for λ = 4 fm−1 using the χEFT(LO)
�N scattering lengths [12].

Z
�A 〈VNN 〉 〈VNNN 〉 〈V�N 〉 〈V 0 1

2
�NN 〉 〈V 1 1

2
�NN 〉 〈V 0 3

2
�NN 〉 B�

3
�H −37.11 0.00 −5.45 0.92 0.13
4
�H −88.38 8.06 −22.71 3.67 2.38 2.16
4
�H∗ −87.75 8.05 −14.99 0.23 1.68 2.08 1.07
5
�He −156.47 23.89 −27.63 1.72 4.05 3.81 3.06

4
�H∗(1+) B� input values, the three three-body LECs and the
corresponding energy contributions 〈V IS

�NN 〉 listed in the tables
below are extracted from the bound state calculations of these
systems. This enables a well-defined 4He and 5

�He binding
energy calculation, with results for 5

�He listed in the last line
of each of the tables.

Tables I and II list results obtained by using cutoff val-
ues λ = 1 fm−1 and λ = 4 fm−1, respectively. Note how the
three-body potential contributions turn from weak attraction
for λ = 1 fm−1 (except in the I = 1, S = 1/2 channel) into
larger-size repulsion for λ = 4 fm−1. This �NN repulsion is
responsible for eliminating largely the ≈3 MeV overbinding
of 5

�He for λ = 1 fm−1, as seen also in Fig. 2(a), almost
reproducing for λ = 4 fm−1 the actual binding energy value
Bexp

� (5
�He) = 3.12 MeV. We note that whereas each of the

repulsive � kinetic energy and the two-body �N attractive
potential energy increases steadily with increasing cutoff λ,
the repulsive three-body �NN potential contribution remains
finite and relatively small, less than 10 MeV, upon increasing
λ (see Fig. 2(b) in Ref. [63]).
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